1
|
Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, Kocot KM, Arbizu PM, Moles J, Schell T, Schwabe E, Sun J, Wong NLWS, Yap-Chiongco M, Sigwart JD. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science 2025; 387:1001-1007. [PMID: 40014700 DOI: 10.1126/science.ads0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 03/01/2025]
Abstract
Extreme morphological disparity within Mollusca has long confounded efforts to reconstruct a stable backbone phylogeny for the phylum. Familiar molluscan groups-gastropods, bivalves, and cephalopods-each represent a diverse radiation with myriad morphological, ecological, and behavioral adaptations. The phylum further encompasses many more unfamiliar experiments in animal body-plan evolution. In this work, we reconstructed the phylogeny for living Mollusca on the basis of metazoan BUSCO (Benchmarking Universal Single-Copy Orthologs) genes extracted from 77 (13 new) genomes, including multiple members of all eight classes with two high-quality genome assemblies for monoplacophorans. Our analyses confirm a phylogeny proposed from morphology and show widespread genomic variation. The flexibility of the molluscan genome likely explains both historic challenges with their genomes and their evolutionary success.
Collapse
Affiliation(s)
- Zeyuan Chen
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Departamento de Biologia Marina, Universidad Catolica del Norte, Coquimbo, Chile
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Maria Teresa Gonzalez
- Instituto Ciencias Naturales "Alexander von Humboldt," Universidad de Antofagasta, FACIMAR, Antofagasta, Chile
| | - Vanessa Liz González
- Informatics and Data Science Center, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Carola Greve
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL, USA
| | - Pedro Martinez Arbizu
- German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Juan Moles
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Tilman Schell
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | | | - Jin Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Nur Leena W S Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Malaysia
| | - Meghan Yap-Chiongco
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Julia D Sigwart
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany
| |
Collapse
|
2
|
Xu M, Gu Z, Huang J, Guo B, Jiang L, Xu K, Ye Y, Li J. The Complete Mitochondrial Genome of Mytilisepta virgata (Mollusca: Bivalvia), Novel Gene Rearrangements, and the Phylogenetic Relationships of Mytilidae. Genes (Basel) 2023; 14:910. [PMID: 37107667 PMCID: PMC10137486 DOI: 10.3390/genes14040910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The circular mitochondrial genome of Mytilisepta virgata spans 14,713 bp, which contains 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. Analysis of the 13 PCGs reveals that the mitochondrial gene arrangement of Mytilisepta is relatively conserved at the genus level. The location of the atp8 gene in Mytilisepta keenae differs from that of other species. However, compared with the putative molluscan ancestral gene order, M. virgata exhibits a high level of rearrangement. We constructed phylogenetic trees based on concatenated 12 PCGs from Mytilidae. As a result, we found that M. virgata is in the same clade as other Mytilisepta spp. The result of estimated divergence times revealed that M. virgata and M. keenae diverged around the early Paleogene period, although the oldest Mytilisepta fossil was from the late or upper Eocene period. Our results provide robust statistical evidence for a sister-group relationship within Mytilida. The findings not only confirm previous results, but also provide valuable insights into the evolutionary history of Mytilidae.
Collapse
Affiliation(s)
- Minhui Xu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhongqi Gu
- Shengsi Marine Science and Technology Institute, Shengsi, Zhoushan 202450, China
| | - Ji Huang
- Shengsi Marine Science and Technology Institute, Shengsi, Zhoushan 202450, China
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lihua Jiang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of China, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
3
|
Guo Y, Meng L, Wang M, Zhong Z, Li D, Zhang Y, Li H, Zhang H, Seim I, Li Y, Jiang A, Ji Q, Su X, Chen J, Fan G, Li C, Liu S. Hologenome analysis reveals independent evolution to chemosymbiosis by deep-sea bivalves. BMC Biol 2023; 21:51. [PMID: 36882766 PMCID: PMC9993606 DOI: 10.1186/s12915-023-01551-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Bivalves have independently evolved a variety of symbiotic relationships with chemosynthetic bacteria. These relationships range from endo- to extracellular interactions, making them ideal for studies on symbiosis-related evolution. It is still unclear whether there are universal patterns to symbiosis across bivalves. Here, we investigate the hologenome of an extracellular symbiotic thyasirid clam that represents the early stages of symbiosis evolution. RESULTS We present a hologenome of Conchocele bisecta (Bivalvia: Thyasiridae) collected from deep-sea hydrothermal vents with extracellular symbionts, along with related ultrastructural evidence and expression data. Based on ultrastructural and sequencing evidence, only one dominant Thioglobaceae bacteria was densely aggregated in the large bacterial chambers of C. bisecta, and the bacterial genome shows nutritional complementarity and immune interactions with the host. Overall, gene family expansions may contribute to the symbiosis-related phenotypic variations in different bivalves. For instance, convergent expansions of gaseous substrate transport families in the endosymbiotic bivalves are absent in C. bisecta. Compared to endosymbiotic relatives, the thyasirid genome exhibits large-scale expansion in phagocytosis, which may facilitate symbiont digestion and account for extracellular symbiotic phenotypes. We also reveal that distinct immune system evolution, including expansion in lipopolysaccharide scavenging and contraction of IAP (inhibitor of apoptosis protein), may contribute to the different manners of bacterial virulence resistance in C. bisecta. CONCLUSIONS Thus, bivalves employ different pathways to adapt to the long-term co-existence with their bacterial symbionts, further highlighting the contribution of stochastic evolution to the independent gain of a symbiotic lifestyle in the lineage.
Collapse
Affiliation(s)
- Yang Guo
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingfeng Meng
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Denghui Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Hanbo Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yuli Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Aijun Jiang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Qianyue Ji
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Xiaoshan Su
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- College of Marine Science, University of Chinese Academy of Sciences, Qingdao, 266400, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- Qingdao Key Laboratory of Marine Genomics, BGI-qingdao, Qingdao, China.
| |
Collapse
|
4
|
Genome-wide sequencing identifies a thermal-tolerance related synonymous mutation in the mussel, Mytilisepta virgata. Commun Biol 2023; 6:5. [PMID: 36596992 PMCID: PMC9810668 DOI: 10.1038/s42003-022-04407-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
The roles of synonymous mutations for adapting to stressful thermal environments are of fundamental biological and ecological interests but poorly understood. To study whether synonymous mutations influence thermal adaptation at specific microhabitats, a genome-wide genotype-phenotype association analysis is carried out in the black mussels Mytilisepta virgata. A synonymous mutation of Ubiquitin-specific Peptidase 15 (MvUSP15) is significantly associated with the physiological upper thermal limit. The individuals carrying GG genotype (the G-type) at the mutant locus possess significantly lower heat tolerance compared to the individuals carrying GA and AA genotypes (the A-type). When heated to sublethal temperature, the G-type exhibit higher inter-individual variations in MvUSP15 expression, especially for the mussels on the sun-exposed microhabitats. Taken together, a synonymous mutation in MvUSP15 can affect the gene expression profile and interact with microhabitat heterogeneity to influence thermal resistance. This integrative study sheds light on the ecological importance of adaptive synonymous mutations as an underappreciated genetic buffer against heat stress and emphasizes the importance of integrative studies at a microhabitat scale for evaluating and predicting the impacts of climate change.
Collapse
|
5
|
First Insights into the Repertoire of Secretory Lectins in Rotifers. Mar Drugs 2022; 20:md20020130. [PMID: 35200659 PMCID: PMC8878817 DOI: 10.3390/md20020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Due to their high biodiversity and adaptation to a mutable and challenging environment, aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules. Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in immunity, reproduction, self/nonself recognition and several other biological processes, are particularly attractive targets for biotechnological research. To date, lectin research in the Lophotrochozoa has been restricted to the most widespread phyla, which are the usual targets of comparative immunology studies, such as Mollusca and Annelida. Here we provide the first overview of the repertoire of the secretory lectin-like molecules encoded by the genomes of six target rotifer species: Brachionus calyciflorus, Brachionus plicatilis, Proales similis (class Monogononta), Adineta ricciae, Didymodactylos carnosus and Rotaria sordida (class Bdelloidea). Overall, while rotifer secretory lectins display a high molecular diversity and belong to nine different structural classes, their total number is significantly lower than for other groups of lophotrochozoans, with no evidence of lineage-specific expansion events. Considering the high evolutionary divergence between rotifers and the other major sister phyla, their widespread distribution in aquatic environments and the ease of their collection and rearing in laboratory conditions, these organisms may represent interesting targets for glycobiological studies, which may allow the identification of novel carbohydrate-binding proteins with peculiar biological properties.
Collapse
|
6
|
Diverse Localization Patterns of an R-Type Lectin in Marine Annelids. Molecules 2021; 26:molecules26164799. [PMID: 34443386 PMCID: PMC8399747 DOI: 10.3390/molecules26164799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Lectins facilitate cell–cell contact and are critical in many cellular processes. Studying lectins may help us understand the mechanisms underlying tissue regeneration. We investigated the localization of an R-type lectin in a marine annelid (Perinereis sp.) with remarkable tissue regeneration abilities. Perinereis nuntia lectin (PnL), a galactose-binding lectin with repeating Gln-X-Trp motifs, is derived from the ricin B-chain. An antiserum was raised against PnL to specifically detect a 32-kDa lectin in the crude extracts from homogenized lugworms. The antiserum detected PnL in the epidermis, setae, oblique muscle, acicula, nerve cord, and nephridium of the annelid. Some of these tissues and organs also produced Galactose (Gal) or N-acetylgalactosamine (GalNAc), which was detected by fluorescent-labeled plant lectin. These results indicated that the PnL was produced in the tissues originating from the endoderm, mesoderm, and ectoderm. Besides, the localizing pattern of PnL partially merged with the binding pattern of a fluorescent-labeled mushroom lectin that binds to Gal and GalNAc. It suggested that PnL co-localized with galactose-containing glycans in Annelid tissue; this might be the reason PnL needed to be extracted with haptenic sugar, such as d-galactose, in the buffer. Furthermore, we found that a fluorescein isothiocyanate-labeled Gal/GalNAc-binding mushroom lectin binding pattern in the annelid tissue overlapped with the localizing pattern of PnL. These findings suggest that lectin functions by interacting with Gal-containing glycoconjugates in the tissues.
Collapse
|
7
|
Fujii Y. [Cell Function Research of β-Trefoil Lectins from Mytilidae]. YAKUGAKU ZASSHI 2021; 141:481-488. [PMID: 33790114 DOI: 10.1248/yakushi.20-00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two novel β-trefoil lectins, MytiLec-1 and SeviL were found from mussels in the coast of Yokohama and Nagasaki. MytiLec-1 was purified from gill and mantle of Mytilus galloprovincialis. It was consisted of 149 amino acid residues and there was no similarity with any other proteins when it was discovered. We advocate for this "Mytilectin" as a new protein family because of their novelty of its primary structure and homologues were also found in other mussels. Glycan array analysis revealed that MytiLec-1 specifically bound to the Gb3 and Gb4 glycan which contained the α-galactoside. MytiLec-1 caused the apoptosis against the Burkitt's lymphoma cells through the interaction of Gb3 express in their cell surface. On the other hand, SeviL obtained from gill and mantle of Mytilisepta virgata showed the specific binding against GM1b, asialo GM1 and SSEA-4 which are known as glycosphingolipid glycan including the β-galactoside. In addition, SeviL was identified as R type lectin by confirmation of QXW motif within its primary structure. Messenger RNA of SeviL like R type lectins was also found among the musssels including Mytilus galloprovincialis. SeviL also showed the apoptosis against asialo GM1 expressing cells. To apply the anticancer lectin as a novel molecular target drug, primary structure of MytiLec-1 was analyzed to enhance the stabilization of confirmation by computational design technique. It was succeeded to produce a monomeric artificial β-trefoil lectin, Mitsuba-1 without losing the Gb3 binding ability. Comparison of biological function between Mitsuba-1 and MytiLec-1 is also described in this study.
Collapse
Affiliation(s)
- Yuki Fujii
- Laboratory of Functional Morphology, Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
8
|
Ip JCH, Xu T, Sun J, Li R, Chen C, Lan Y, Han Z, Zhang H, Wei J, Wang H, Tao J, Cai Z, Qian PY, Qiu JW. Host-Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam. Mol Biol Evol 2021; 38:502-518. [PMID: 32956455 PMCID: PMC7826175 DOI: 10.1093/molbev/msaa241] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endosymbiosis with chemosynthetic bacteria has enabled many deep-sea invertebrates to thrive at hydrothermal vents and cold seeps, but most previous studies on this mutualism have focused on the bacteria only. Vesicomyid clams dominate global deep-sea chemosynthesis-based ecosystems. They differ from most deep-sea symbiotic animals in passing their symbionts from parent to offspring, enabling intricate coevolution between the host and the symbiont. Here, we sequenced the genomes of the clam Archivesica marissinica (Bivalvia: Vesicomyidae) and its bacterial symbiont to understand the genomic/metabolic integration behind this symbiosis. At 1.52 Gb, the clam genome encodes 28 genes horizontally transferred from bacteria, a large number of pseudogenes and transposable elements whose massive expansion corresponded to the timing of the rise and subsequent divergence of symbiont-bearing vesicomyids. The genome exhibits gene family expansion in cellular processes that likely facilitate chemoautotrophy, including gas delivery to support energy and carbon production, metabolite exchange with the symbiont, and regulation of the bacteriocyte population. Contraction in cellulase genes is likely adaptive to the shift from phytoplankton-derived to bacteria-based food. It also shows contraction in bacterial recognition gene families, indicative of suppressed immune response to the endosymbiont. The gammaproteobacterium endosymbiont has a reduced genome of 1.03 Mb but retains complete pathways for sulfur oxidation, carbon fixation, and biosynthesis of 20 common amino acids, indicating the host’s high dependence on the symbiont for nutrition. Overall, the host–symbiont genomes show not only tight metabolic complementarity but also distinct signatures of coevolution allowing the vesicomyids to thrive in chemosynthesis-based ecosystems.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa Prefecture, Japan
| | - Yi Lan
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhuang Han
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Haibin Zhang
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Jiangong Wei
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Hongbin Wang
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Jun Tao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
9
|
Hayashida PY, da Silva Junior PI. Insights into Antimicrobial Peptides from Limacus flavus Mucus. Curr Microbiol 2021; 78:2970-2979. [PMID: 34086076 DOI: 10.1007/s00284-021-02552-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/24/2021] [Indexed: 11/27/2022]
Abstract
Antimicrobial peptides have been a major research subject since the rise of antimicrobial resistance as a major public health problem. These molecules are considered a potential therapeutic source of antibiotics with broad-spectrum activity against microorganisms. Two antimicrobial peptides were isolated from the mucus of the Limacus flavus slug. The mucus was obtained by thermal shock, lyophilized and extracted with acetic acid. The supernatant was prefractionated in Sep-Pak and shortly thereafter fractionated by reverse-phase high-performance liquid chromatography. The manually obtained fractions were used in antimicrobial and cytotoxic assays and finally subjected to mass spectrometry (MS/MS). Characterization was performed by bioinformatics analysis with the tool Peaks®X + and by comparison with the NCBI and UniProt-SwissProt databases. Additionally, the physicochemical parameters of the samples were evaluated with online programs. Two fractions comtained antimicrobial peptides with the ability to inhibit Micrococcus luteus A270; both samples, LFMP-001 and LFMP-002, were hydrophilic molecules consisting of fewer than 20 residues. Comparison of the SDS-PAGE and Peaks®X + data showed that both had Mw < 3 kDa. In summary, this study presents data on the isolation and characterization of antimicrobial peptides from a slug and shows their potential against gram-positive bacteria.
Collapse
Affiliation(s)
- Patricia Yumi Hayashida
- Laboratory for Applied Toxinology (LETA) - Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, Butantan Institute, São Paulo, Brazil
- Interunit Postgraduate Program in Biotechnology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pedro Ismael da Silva Junior
- Laboratory for Applied Toxinology (LETA) - Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, Butantan Institute, São Paulo, Brazil.
- Interunit Postgraduate Program in Biotechnology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Klein AH, Motti CA, Hillberg AK, Ventura T, Thomas-Hall P, Armstrong T, Barker T, Whatmore P, Cummins SF. Development and Interrogation of a Transcriptomic Resource for the Giant Triton Snail (Charonia tritonis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:501-515. [PMID: 34191212 PMCID: PMC8270824 DOI: 10.1007/s10126-021-10042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/03/2021] [Indexed: 06/01/2023]
Abstract
Gastropod molluscs are among the most abundant species that inhabit coral reef ecosystems. Many are specialist predators, along with the giant triton snail Charonia tritonis (Linnaeus, 1758) whose diet consists of Acanthaster planci (crown-of-thorns starfish), a corallivore known to consume enormous quantities of reef-building coral. C. tritonis are considered vulnerable due to overexploitation, and a decline in their populations is believed to have contributed to recurring A. planci population outbreaks. Aquaculture is considered one approach that could help restore natural populations of C. tritonis and mitigate coral loss; however, numerous questions remain unanswered regarding their life cycle, including the molecular factors that regulate their reproduction and development. In this study, we have established a reference C. tritonis transcriptome derived from developmental stages (embryo and veliger) and adult tissues. This was used to identify genes associated with cell signalling, such as neuropeptides and G protein-coupled receptors (GPCRs), involved in endocrine and olfactory signalling. A comparison of developmental stages showed that several neuropeptide precursors are exclusively expressed in post-hatch veligers and functional analysis found that FFamide stimulated a significant (20.3%) increase in larval heart rate. GPCRs unique to veligers, and a diversity of rhodopsin-like GPCRs located within adult cephalic tentacles, all represent candidate olfactory receptors. In addition, the cytochrome P450 superfamily, which participates in the biosynthesis and degradation of steroid hormones and lipids, was also found to be expanded with at least 91 genes annotated, mostly in gill tissue. These findings further progress our understanding of C. tritonis with possible application in developing aquaculture methods.
Collapse
Affiliation(s)
- A H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - C A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, 4810, Australia
| | - A K Hillberg
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - T Ventura
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - P Thomas-Hall
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, 4810, Australia
| | - T Armstrong
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, 4810, Australia
| | - T Barker
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, 4810, Australia
| | - P Whatmore
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
- eResearch Office, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - S F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.
| |
Collapse
|
11
|
Fields PA, Eraso A. A year in the salt marsh: Seasonal changes in gill protein expression in the temperate intertidal mussel Geukensia demissa. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105088. [PMID: 32798780 DOI: 10.1016/j.marenvres.2020.105088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Organisms living in temperate and polar regions experience extensive seasonal changes in the physical and biotic environment, including temperature, insolation, and food availability, among other factors. Sessile intertidal organisms respond to such seasonal fluctuations largely through physiological and biochemical means, because their behavioral responses are severely limited. In this study, we used a proteomic approach to examine changes in seasonal protein expression of gill from the intertidal mussel Geukensia demissa, a keystone species of the western Atlantic salt marsh, over the course of one year. Gill tissue of mussels collected in summer had the greatest number of proteins significantly increased in abundance (37 of 592 spots detected on two-dimensional polyacrylamide gels), although autumn mussels revealed a comparable proportion of up-regulated proteins (31 spots). In contrast, the number of proteins changing in abundance in winter and spring mussels were substantially smaller (15 and 9, respectively). Identification of these proteins revealed both expected and unanticipated changes to the proteome. Maintenance of gill cilia dominates in the summer when filter-feeding is most active, as evidenced by cytoskeletal proteins such as tektin-4 and tubulin isoforms; a signal of protection from heat stress is also present in summer (e.g., heat shock cognate 70). In autumn oxidative stress protection (peroxiredoxin-5 and manganese-containing superoxide dismutase) and aerobic ATP synthetic capacity (ATP synthase subunits a and delta) appear to increase. In winter a signal of cold-induced oxidative stress is apparent (Mn-SOD and NADP-dependent isocitrate dehydrogenase), perhaps in association with heavy metal toxicity and exposure to pathogens. Gill tissue from spring shows relatively little environmental acclimatization, other than a possible increase in protein synthesis capacity.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, PO Box 3003, Franklin & Marshall College, Lancaster, PA, USA, 17604.
| | - Ariel Eraso
- Biology Department, PO Box 3003, Franklin & Marshall College, Lancaster, PA, USA, 17604; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 1945 Colorado Avenue, Denver, CO, 80309, USA
| |
Collapse
|
12
|
Purification and Functional Characterization of the Effects on Cell Signaling of Mytilectin: A Novel β-Trefoil Lectin from Marine Mussels. Methods Mol Biol 2020. [PMID: 32306329 DOI: 10.1007/978-1-0716-0430-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In the 2010s, a novel lectin family with β-trefoil folding has been identified in marine mussels from the family Mytilidae (phylum Mollusca). "MytiLec-1," the lectin described in this chapter, was the first member of this family to be isolated and characterized from the Mediterranean mussel Mytilus galloprovincialis, a commercially and ecologically important species, spread in marine coastal areas worldwide. MytiLec-1 bound to the sugar moiety of globotriose (Gb3: Galα1-4Galβ1-4Glc), an α-galactoside, leading to apoptosis of Gb3-expressing Burkitt's lymphoma cells. Although the primary structure of MytiLec-1 was quite unusual, its three-dimensional structure was arranged as a β-trefoil fold, which is the typical architecture of "Ricin B chain (or R)-type" lectins, which are found in a broad range of organisms. To date, MytiLec-1-like lectins have been exclusively found in a few species of the mollusk family Mytilidae (M. galloprovincialis, M. trossulus, M. californianus, and Crenomytilus grayanus) and in the phylum Brachiopoda. Transcriptome data revealed the presence of different structural forms of mytilectin in mussels, which included prototype and chimera-type proteins. The primary sequence of these lectins did not match any previously described known protein family, leading to their assignment to the new "mytilectin family." We here report the method of purification of this lectin and describe its use in cell biology.
Collapse
|
13
|
The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians. Sci Rep 2020; 10:5445. [PMID: 32214214 PMCID: PMC7096497 DOI: 10.1038/s41598-020-62408-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
Amphibians evolved in the Devonian period about 400 Mya and represent a transition step in tetrapod evolution. Among amphibians, high-throughput sequencing data are very limited for Caudata, due to their largest genome sizes among terrestrial vertebrates. In this paper we present the transcriptome from the fire bellied newt Cynops orientalis. Data here presented display a high level of completeness, comparable to the fully sequenced genomes available from other amphibians. Moreover, this work focused on genes involved in gametogenesis and sexual development. Surprisingly, the gsdf gene was identified for the first time in a tetrapod species, so far known only from bony fish and basal sarcopterygians. Our analysis failed to isolate fgf24 and foxl3, supporting the possible loss of both genes in the common ancestor of Rhipidistians. In Cynops, the expression analysis of genes described to be sex-related in vertebrates singled out an expected functional role for some genes, while others displayed an unforeseen behavior, confirming the high variability of the sex-related pathway in vertebrates.
Collapse
|
14
|
Audino JA, Serb JM, Marian JEAR. Phylogeny and anatomy of marine mussels (Bivalvia: Mytilidae) reveal convergent evolution of siphon traits. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Convergent morphology is a strong indication of an adaptive trait. Marine mussels (Mytilidae) have long been studied for their ecology and economic importance. However, variation in lifestyle and phenotype also make them suitable models for studies focused on ecomorphological correlation and adaptation. The present study investigates mantle margin diversity and ecological transitions in the Mytilidae to identify macroevolutionary patterns and test for convergent evolution. A fossil-calibrated phylogenetic hypothesis of Mytilidae is inferred based on five genes for 33 species (19 genera). Morphological variation in the mantle margin is examined in 43 preserved species (25 genera) and four focal species are examined for detailed anatomy. Trait evolution is investigated by ancestral state estimation and correlation tests. Our phylogeny recovers two main clades derived from an epifaunal ancestor. Subsequently, different lineages convergently shifted to other lifestyles: semi-infaunal or boring into hard substrate. Such transitions are correlated with the development of long siphons in the posterior mantle region. Two independent origins are reconstructed for the posterior lobules on the inner fold, which are associated with intense mucociliary transport, suggesting an important cleansing role in epifaunal mussels. Our results reveal new examples of convergent morphological evolution associated with lifestyle transitions in marine mussels.
Collapse
Affiliation(s)
- Jorge A Audino
- Department of Zoology, University of São Paulo, Rua do Matão, Travessa 14, São Paulo, São Paulo, Brazil
| | - Jeanne M Serb
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, 2200 Osborn Dr., Ames, IA, USA
| | - José Eduardo A R Marian
- Department of Zoology, University of São Paulo, Rua do Matão, Travessa 14, São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Greco S, Gerdol M, Edomi P, Pallavicini A. Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia). Antibiotics (Basel) 2020; 9:E37. [PMID: 31963793 PMCID: PMC7168163 DOI: 10.3390/antibiotics9010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/17/2022] Open
Abstract
The CS-αβ architecture is a structural scaffold shared by a high number of small, cationic, cysteine-rich defense peptides, found in nearly all the major branches of the tree of life. Although several CS-αβ peptides involved in innate immune response have been described so far in bivalve mollusks, a clear-cut definition of their molecular diversity is still lacking, leaving the evolutionary relationship among defensins, mytilins, myticins and other structurally similar antimicrobial peptides still unclear. In this study, we performed a comprehensive bioinformatic screening of the genomes and transcriptomes available for marine mussels (Mytilida), redefining the distribution of mytilin-like CS-αβ peptides, which in spite of limited primary sequence similarity maintain in all cases a well-conserved backbone, stabilized by four disulfide bonds. Variations in the size of the alpha-helix and the two antiparallel beta strand region, as well as the positioning of the cysteine residues involved in the formation of the C1-C5 disulfide bond might allow a certain degree of structural flexibility, whose functional implications remain to be investigated. The identification of mytilins in Trichomya and Perna spp. revealed that many additional CS-αβ AMPs remain to be formally described and functionally characterized in Mytilidae, and suggest that a more robust scheme should be used for the future classification of such peptides with respect with their evolutionary origin.
Collapse
Affiliation(s)
- Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (S.G.); (P.E.); (A.P.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (S.G.); (P.E.); (A.P.)
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (S.G.); (P.E.); (A.P.)
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (S.G.); (P.E.); (A.P.)
- National Institute of Oceanography and Applied Geophysics, 34151 Trieste, Italy
- Anton Dohrn Zoological Station, 80121 Naples, Italy
| |
Collapse
|
16
|
Fujii Y, Gerdol M, Kawsar SMA, Hasan I, Spazzali F, Yoshida T, Ogawa Y, Rajia S, Kamata K, Koide Y, Sugawara S, Hosono M, Tame JRH, Fujita H, Pallavicini A, Ozeki Y. A GM1b/asialo-GM1 oligosaccharide-binding R-type lectin from purplish bifurcate mussels Mytilisepta virgata and its effect on MAP kinases. FEBS J 2019; 287:2612-2630. [PMID: 31769916 PMCID: PMC7317968 DOI: 10.1111/febs.15154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022]
Abstract
A 15‐kDa lectin, termed SeviL, was isolated from Mytilisepta virgata (purplish bifurcate mussel). SeviL forms a noncovalent dimer that binds strongly to ganglio‐series GM1b oligosaccharide (Neu5Acɑ2‐3Galβ1‐3GalNAcβ1‐4Galβ1‐4Glc) and its precursor, asialo‐GM1 (Galβ1‐3GalNAcβ1‐4Galβ1‐4Glc). SeviL also interacts weakly with the glycan moiety of SSEA‐4 hexaose (Neu5Acα2‐3Galβ1‐3GalNAcβ1‐3Galα1‐4Galβ1‐4Glc). A partial protein sequence of the lectin was determined by mass spectrometry, and the complete sequence was identified from transcriptomic analysis. SeviL, consisting of 129 amino acids, was classified as an R(icin B)‐type lectin, based on the presence of the QxW motif characteristic of this fold. SeviL mRNA is highly expressed in gills and, in particular, mantle rim tissues. Orthologue sequences were identified in other species of the family Mytilidae, including Mytilus galloprovincialis, from which lectin MytiLec‐1 was isolated and characterized in our previous studies. Thus, mytilid species contain lectins belonging to at least two distinct families (R‐type lectins and mytilectins) that have a common β‐trefoil fold structure but differing glycan‐binding specificities. SeviL displayed notable cytotoxic (apoptotic) effects against various cultured cell lines (human breast, ovarian, and colonic cancer; dog kidney) that possess asialo‐GM1 oligosaccharide at the cell surface. This cytotoxic effect was inhibited by the presence of anti‐asialo‐GM1 oligosaccharide antibodies. With HeLa ovarian cancer cells, SeviL showed dose‐ and time‐dependent activation of kinase MKK3/6, p38 MAPK, and caspase‐3/9. The transduction pathways activated by SeviL via the glycosphingolipid oligosaccharide were triggered apoptosis. Database Nucleotide sequence data have been deposited in the GenBank database under accession numbers MK434191, MK434192, MK434193, MK434194, MK434195, MK434196, MK434197, MK434198, MK434199, MK434200, and MK434201.
Collapse
Affiliation(s)
- Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Italy
| | - Sarkar M A Kawsar
- Department of Chemistry, Faculty of Science, University of Chittagong, Bangladesh.,School of Sciences, Yokohama City University, Japan
| | - Imtiaj Hasan
- School of Sciences, Yokohama City University, Japan.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Bangladesh
| | | | - Tatsusada Yoshida
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Yukiko Ogawa
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Sultana Rajia
- School of Sciences, Yokohama City University, Japan.,Department of Pharmacy, Varendra University, Rajshahi, Bangladesh
| | - Kenichi Kamata
- Graduate School of Medical Life Science, Yokohama City University, Japan
| | | | - Shigeki Sugawara
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masahiro Hosono
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, Japan
| | - Hideaki Fujita
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Italy
| | | |
Collapse
|
17
|
Yuen B, Polzin J, Petersen JM. Organ transcriptomes of the lucinid clam Loripes orbiculatus (Poli, 1791) provide insights into their specialised roles in the biology of a chemosymbiotic bivalve. BMC Genomics 2019; 20:820. [PMID: 31699041 PMCID: PMC6836662 DOI: 10.1186/s12864-019-6177-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The lucinid clam Loripes orbiculatus lives in a nutritional symbiosis with sulphur-oxidizing bacteria housed in its gills. Although our understanding of the lucinid endosymbiont physiology and metabolism has made significant progress, relatively little is known about how the host regulates the symbiosis at the genetic and molecular levels. We generated transcriptomes from four L. orbiculatus organs (gills, foot, visceral mass, and mantle) for differential expression analyses, to better understand this clam's physiological adaptations to a chemosymbiotic lifestyle, and how it regulates nutritional and immune interactions with its symbionts. RESULTS The transcriptome profile of the symbiont-housing gill suggests the regulation of apoptosis and innate immunity are important processes in this organ. We also identified many transcripts encoding ion transporters from the solute carrier family that possibly allow metabolite exchange between host and symbiont. Despite the clam holobiont's clear reliance on chemosynthesis, the clam's visceral mass, which contains the digestive tract, is characterised by enzymes involved in digestion, carbohydrate recognition and metabolism, suggesting that L. orbiculatus has a mixotrophic diet. The foot transcriptome is dominated by the biosynthesis of glycoproteins for the construction of mucus tubes, and receptors that mediate the detection of chemical cues in the environment. CONCLUSIONS The transcriptome profiles of gills, mantle, foot and visceral mass provide insights into the molecular basis underlying the functional specialisation of bivalve organs adapted to a chemosymbiotic lifestyle.
Collapse
Affiliation(s)
- Benedict Yuen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Julia Polzin
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Jillian M Petersen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
18
|
Martins E, Bettencourt R. Gene expression study in Bathymodiolus azoricus populations from three North Atlantic hydrothermal vent sites. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103390. [PMID: 31077690 DOI: 10.1016/j.dci.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
The deep-sea hydrothermal vents are known as harsh environments, abundant in animal diversity surrounded by fluids with specific physiological and chemical composition. Bathymodiolus azoricus mussels are endemic species dwelling at hydrothermal vent sites and at distinct depth ranges. Mussels from Menez Gwen (MG), Lucky Strike (LS), Rainbow (Rb) were collected at 800 m, 1730 m and 2310 m depths respectively, along the Mid-Atlantic Ridge. Five different tissues including gill, digestive gland, mantle, adductor muscle and foot from MG, LS and Rb mussels were selected for gene expression analyses by qPCR. 30 genes were tested to investigate the level of immune and apoptotic gene expression among B. azoricus populations. Statistical analyses confirmed tissue-specific gene expression differences among the five tissues. The digestive gland tissue showed a higher transcriptional activity characterized by an up-regulation of gene activities, contrary to what was assessed in the adductor muscle tissue. Five categories included recognition, signaling, transcription, effector and apoptotic genes were analyzed in this study. The majority of genes differed in levels of expression between MG/LS and LS/Rb in the digestive gland. Our findings suggest that gene expression profiles are inherent to the tissue analyzed, thus implying an immune tissue-specificity controlling defense responses across B. azoricus mussel body as a whole.
Collapse
Affiliation(s)
- Eva Martins
- MARE - Marine and Environmental Sciences Centre, Rua Prof. Dr. Frederico Machado, 9901-862, Horta, Portugal; IMAR - Institute of Marine Research-Azores, 9901-862, Horta, Portugal.
| | - Raul Bettencourt
- OKEANOS Marine Research Center/Department of Oceanography and Fisheries, Faculty of Science and Technology, University of the Azores, Horta, Portugal
| |
Collapse
|
19
|
Flores-Herrera P, Farlora R, González R, Brokordt K, Schmitt P. De novo assembly, characterization of tissue-specific transcriptomes and identification of immune related genes from the scallop Argopecten purpuratus. FISH & SHELLFISH IMMUNOLOGY 2019; 89:505-515. [PMID: 30940577 DOI: 10.1016/j.fsi.2019.03.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The scallop Argopecten purpuratus is one of the most economically important cultured mollusks on the coasts from Chile and Peru but its production has declined, in part, due to the emergence of mass mortality events of unknown origin. Driven by this scenario, increasing progress has been made in recent years in the comprehension of immune response mechanisms in this species. However, it is still not entirely understood how different mucosal interfaces participate and cooperate with the immune competent cells, the hemocytes, in the immune defense. Thus, in this work we aimed to characterize the transcriptome of three tissues with immune relevance from A. purpuratus by next-generation sequencing and de novo transcriptome assembly. For this, 18 cDNA libraries were constructed from digestive gland, gills and hemocytes tissues of scallops from different immune conditions and sequenced by the Illumina HiSeq4000 platform. A total of 967.964.884 raw reads were obtained and 967.432.652 clean reads were generated. The clean reads were de novo assembled into 46.601 high quality contigs and 32.299 (69.31%) contigs were subsequently annotated. In addition, three de novo specific assemblies were performed from clean reads obtained from each tissue cDNA libraries for their comparison. Gene ontology (GO) and KEGG analyses revealed that annotated sequences from digestive gland, gills and hemocytes could be classified into both general and specific subcategory terms and known biological pathways, respectively, according to the tissue nature. Finally, several immune related candidate genes were identified, and the differential expression of tissue-specific genes was established, suggesting they could display specific roles in the host defense. The data presented in this study provide the first insight into the tissue specific transcriptome profiles of A. purpuratus, which should be considered for further research on the interplay between the hemocytes and mucosal immune responses.
Collapse
Affiliation(s)
- Patricio Flores-Herrera
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile
| | - Rodolfo Farlora
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Roxana González
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile
| | - Katherina Brokordt
- Laboratory of Marine Physiology and Genetics (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica Del Norte, Chile
| | - Paulina Schmitt
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile.
| |
Collapse
|
20
|
Gerdol M, Fujii Y, Pallavicini A, Ozeki Y. Response to the editorial "Fake news" (Feb. 2018) by Prof. Brian Morton. MARINE POLLUTION BULLETIN 2019; 141:363-365. [PMID: 30955745 DOI: 10.1016/j.marpolbul.2019.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Marco Gerdol
- Dept. of Life Sciences, Univ. of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Yuki Fujii
- Dept. of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International Univ., 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Alberto Pallavicini
- Dept. of Life Sciences, Univ. of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Yasuhiro Ozeki
- Dept. of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City Univ., 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
21
|
Foulon V, Boudry P, Artigaud S, Guérard F, Hellio C. In Silico Analysis of Pacific Oyster ( Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement. Int J Mol Sci 2019; 20:E197. [PMID: 30625986 PMCID: PMC6337334 DOI: 10.3390/ijms20010197] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Following their planktonic phase, the larvae of benthic marine organisms must locate a suitable habitat to settle and metamorphose. For oysters, larval adhesion occurs at the pediveliger stage with the secretion of a proteinaceous bioadhesive produced by the foot, a specialized and ephemeral organ. Oyster bioadhesive is highly resistant to proteomic extraction and is only produced in very low quantities, which explains why it has been very little examined in larvae to date. In silico analysis of nucleic acid databases could help to identify genes of interest implicated in settlement. In this work, the publicly available transcriptome of Pacific oyster Crassostrea gigas over its developmental stages was mined to select genes highly expressed at the pediveliger stage. Our analysis revealed 59 sequences potentially implicated in adhesion of C. gigas larvae. Some related proteins contain conserved domains already described in other bioadhesives. We propose a hypothetic composition of C. gigas bioadhesive in which the protein constituent is probably composed of collagen and the von Willebrand Factor domain could play a role in adhesive cohesion. Genes coding for enzymes implicated in DOPA chemistry were also detected, indicating that this modification is also potentially present in the adhesive of pediveliger larvae.
Collapse
Affiliation(s)
- Valentin Foulon
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Pierre Boudry
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne, 29280 Plouzané, France.
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Fabienne Guérard
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Claire Hellio
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| |
Collapse
|
22
|
Fujii Y, Gerdol M, Hasan I, Koide Y, Matsuzaki R, Ikeda M, Rajia S, Ogawa Y, Kawsar SMA, Ozeki Y. Phylogeny and Properties of a Novel Lectin Family with β-Trefoil Folding in Mussels. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1717.1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yuki Fujii
- Department of Pharmaceutical Sciences, Nagasaki International University
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste
| | - Imtiaj Hasan
- Department of Life and Environmental System Science, Yokohama City University
- Department of Biochemistry and Molecular Biology, University of Rajshahi
| | - Yasuhiro Koide
- Department of Life and Environmental System Science, Yokohama City University
| | - Risa Matsuzaki
- Department of Life and Environmental System Science, Yokohama City University
| | - Mayu Ikeda
- Department of Life and Environmental System Science, Yokohama City University
| | - Sultana Rajia
- Department of Life and Environmental System Science, Yokohama City University
- Department of Pharmacy, Faculty of Pharmacy, Varendra University
| | - Yukiko Ogawa
- Department of Pharmaceutical Sciences, Nagasaki International University
| | - S. M. Abe Kawsar
- Department of Life and Environmental System Science, Yokohama City University
- Department of Chemistry, Faculty of Science, University of Chittagong
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Yokohama City University
| |
Collapse
|
23
|
Fujii Y, Gerdol M, Hasan I, Koide Y, Matsuzaki R, Ikeda M, Rajia S, Ogawa Y, Kawsar SMA, Ozeki Y. Phylogeny and Properties of a Novel Lectin Family with β-Trefoil Folding in Mussels. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1717.1j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yuki Fujii
- Department of Pharmaceutical Sciences, Nagasaki International University
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste
| | - Imtiaj Hasan
- Department of Life and Environmental System Science, Yokohama City University
- Department of Biochemistry and Molecular Biology, University of Rajshahi
| | - Yasuhiro Koide
- Department of Life and Environmental System Science, Yokohama City University
| | - Risa Matsuzaki
- Department of Life and Environmental System Science, Yokohama City University
| | - Mayu Ikeda
- Department of Life and Environmental System Science, Yokohama City University
| | - Sultana Rajia
- Department of Life and Environmental System Science, Yokohama City University
- Department of Pharmacy, Faculty of Pharmacy, Varendra University
| | - Yukiko Ogawa
- Department of Pharmaceutical Sciences, Nagasaki International University
| | - S. M. Abe Kawsar
- Department of Life and Environmental System Science, Yokohama City University
- Department of Chemistry, Faculty of Science, University of Chittagong
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Yokohama City University
| |
Collapse
|
24
|
Gerdol M, Luo YJ, Satoh N, Pallavicini A. Genetic and molecular basis of the immune system in the brachiopod Lingula anatina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:7-30. [PMID: 29278680 DOI: 10.1016/j.dci.2017.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy; Anton Dohrn Zoological Station, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
25
|
Ip JCH, Mu H, Chen Q, Sun J, Ituarte S, Heras H, Van Bocxlaer B, Ganmanee M, Huang X, Qiu JW. AmpuBase: a transcriptome database for eight species of apple snails (Gastropoda: Ampullariidae). BMC Genomics 2018; 19:179. [PMID: 29506476 PMCID: PMC5839033 DOI: 10.1186/s12864-018-4553-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gastropoda, with approximately 80,000 living species, is the largest class of Mollusca. Among gastropods, apple snails (family Ampullariidae) are globally distributed in tropical and subtropical freshwater ecosystems and many species are ecologically and economically important. Ampullariids exhibit various morphological and physiological adaptations to their respective habitats, which make them ideal candidates for studying adaptation, population divergence, speciation, and larger-scale patterns of diversity, including the biogeography of native and invasive populations. The limited availability of genomic data, however, hinders in-depth ecological and evolutionary studies of these non-model organisms. RESULTS Using Illumina Hiseq platforms, we sequenced 1220 million reads for seven species of apple snails. Together with the previously published RNA-Seq data of two apple snails, we conducted de novo transcriptome assembly of eight species that belong to five genera of Ampullariidae, two of which represent Old World lineages and the other three New World lineages. There were 20,730 to 35,828 unigenes with predicted open reading frames for the eight species, with N50 (shortest sequence length at 50% of the unigenes) ranging from 1320 to 1803 bp. 69.7% to 80.2% of these unigenes were functionally annotated by searching against NCBI's non-redundant, Gene Ontology database and the Kyoto Encyclopaedia of Genes and Genomes. With these data we developed AmpuBase, a relational database that features online BLAST functionality for DNA/protein sequences, keyword searching for unigenes/functional terms, and download functions for sequences and whole transcriptomes. CONCLUSIONS In summary, we have generated comprehensive transcriptome data for multiple ampullariid genera and species, and created a publicly accessible database with a user-friendly interface to facilitate future basic and applied studies on ampullariids, and comparative molecular studies with other invertebrates.
Collapse
Affiliation(s)
- Jack C. H. Ip
- HKBU Institute of Research and Continuing Education, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Huawei Mu
- HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Qian Chen
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | - Jin Sun
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Santiago Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)-CONICET CCT-La Plata, La Plata, Argentina
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)-CONICET CCT-La Plata, La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Bert Van Bocxlaer
- Centre national de la recherche scientifique (CNRS), Université de Lille, UMR 8198 – Evo-Eco-Paléo, 59000 Lille, France
- Limnology Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Monthon Ganmanee
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| | - Xin Huang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Wen Qiu
- HKBU Institute of Research and Continuing Education, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
26
|
Morton B. Fake news. MARINE POLLUTION BULLETIN 2018; 128:396-397. [PMID: 29571388 DOI: 10.1016/j.marpolbul.2018.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/19/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Brian Morton
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
27
|
Myticalins: A Novel Multigenic Family of Linear, Cationic Antimicrobial Peptides from Marine Mussels (Mytilus spp.). Mar Drugs 2017. [DOI: 10.3390/md15080261 [doi link]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Myticalins: A Novel Multigenic Family of Linear, Cationic Antimicrobial Peptides from Marine Mussels (Mytilus spp.). Mar Drugs 2017; 15:md15080261. [PMID: 28829401 PMCID: PMC5577615 DOI: 10.3390/md15080261] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 12/18/2022] Open
Abstract
The application of high-throughput sequencing technologies to non-model organisms has brought new opportunities for the identification of bioactive peptides from genomes and transcriptomes. From this point of view, marine invertebrates represent a potentially rich, yet largely unexplored resource for de novo discovery due to their adaptation to diverse challenging habitats. Bioinformatics analyses of available genomic and transcriptomic data allowed us to identify myticalins, a novel family of antimicrobial peptides (AMPs) from the mussel Mytilus galloprovincialis, and a similar family of AMPs from Modiolus spp., named modiocalins. Their coding sequence encompasses two conserved N-terminal (signal peptide) and C-terminal (propeptide) regions and a hypervariable central cationic region corresponding to the mature peptide. Myticalins are taxonomically restricted to Mytiloida and they can be classified into four subfamilies. These AMPs are subject to considerable interindividual sequence variability and possibly to presence/absence variation. Functional assays performed on selected members of this family indicate a remarkable tissue-specific expression (in gills) and broad spectrum of activity against both Gram-positive and Gram-negative bacteria. Overall, we present the first linear AMPs ever described in marine mussels and confirm the great potential of bioinformatics tools for the de novo discovery of bioactive peptides in non-model organisms.
Collapse
|
29
|
Myticalins: A Novel Multigenic Family of Linear, Cationic Antimicrobial Peptides from Marine Mussels (Mytilus spp.). Mar Drugs 2017. [PMID: 28829401 DOI: 10.3390/md15080261+[doi+link]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The application of high-throughput sequencing technologies to non-model organisms has brought new opportunities for the identification of bioactive peptides from genomes and transcriptomes. From this point of view, marine invertebrates represent a potentially rich, yet largely unexplored resource for de novo discovery due to their adaptation to diverse challenging habitats. Bioinformatics analyses of available genomic and transcriptomic data allowed us to identify myticalins, a novel family of antimicrobial peptides (AMPs) from the mussel Mytilus galloprovincialis, and a similar family of AMPs from Modiolus spp., named modiocalins. Their coding sequence encompasses two conserved N-terminal (signal peptide) and C-terminal (propeptide) regions and a hypervariable central cationic region corresponding to the mature peptide. Myticalins are taxonomically restricted to Mytiloida and they can be classified into four subfamilies. These AMPs are subject to considerable interindividual sequence variability and possibly to presence/absence variation. Functional assays performed on selected members of this family indicate a remarkable tissue-specific expression (in gills) and broad spectrum of activity against both Gram-positive and Gram-negative bacteria. Overall, we present the first linear AMPs ever described in marine mussels and confirm the great potential of bioinformatics tools for the de novo discovery of bioactive peptides in non-model organisms.
Collapse
|