1
|
Gao H, Dong G, Yao Y, Yang H. Identification and validation of aging-related genes in neuropathic pain using bioinformatics. Front Genet 2024; 15:1430275. [PMID: 39113685 PMCID: PMC11303200 DOI: 10.3389/fgene.2024.1430275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Background Neuropathic pain (NP) is a debilitating and refractory chronic pain with a higher prevalence especially in elderly patients. Cell senescence considered a key pathogenic factor in NP. The objective of this research is to discover genes associated with aging in peripheral blood of individuals with NP using bioinformatics techniques. Methods Two cohorts (GSE124272 and GSE150408) containing peripheral blood samples of NP were downloaded from the GEO database. By merging the two cohorts, differentially expressed aging-related genes (DE-ARGs) were obtained by intersection with aging-related genes. The potential biological mechanisms of DE-ARGs were further analyzed through GO and KEGG. Three machine learning methods, namely, LASSO, SVM-RFE, and Random Forest, were utilized to identify diagnostic biomarkers. A Nomogram model was developed to assess their diagnostic accuracy. The validation of biomarker expression and diagnostic effectiveness was conducted in three distinct pain cohorts. The CIBERSORT algorithm was employed to evaluate the immune cell composition in the peripheral blood of patients with NP and investigate its association with the expression of diagnostic biomarkers. Results This study identified a total of 24 DE-ARGs, mainly enriched in "Chemokine signaling pathway," "Inflammatory mediator regulation of TRP channels," "HIF-1 signaling pathway" and "FOXO signaling pathway". Three machine learning algorithms identified a total of four diagnostic biomarkers (CEBPA, CEACAM1, BTG3 and IL-1R1) with good diagnostic performance and the similar expression difference trend in different types of pain cohorts. The expression levels of CEACAM1 and IL-1R1 exhibit a positive correlation with the percentage of neutrophils. Conclusion Using machine learning techniques, our research identified four diagnostic biomarkers related to aging in peripheral blood, providing innovative approaches for the diagnosis and treatment of NP.
Collapse
Affiliation(s)
| | | | | | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Suzuki M, Nakamura A, Matsumoto Y, Kang W, Ichinose M, Kawano N, Yamada M, Shindo M, Katano D, Saito T, Harada Y, Miyado M, Miyado K. Identification of a syncytin gene in a non-rodent laboratory mammal, Suncus murinus. J Vet Med Sci 2023; 85:912-920. [PMID: 37438116 PMCID: PMC10539813 DOI: 10.1292/jvms.22-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
An endogenous retrovirus-derived membrane protein, syncytin (SYN), contributes to placental function via trophoblast fusion. Multinuclear trophoblasts (syncytiotrophoblasts) physically and functionally mediate the interaction between fetal and maternal vessels in various ways. Suncus murinus (suncus) is a small mammalian species with a pregnancy duration of approximately 30 days, 1.5 times longer than mice. However, the molecular basis for the longer pregnancy duration is unknown. In this study, we first isolated two genes that encoded putative SYN proteins expressed in the suncus placenta, which were named syncytin-1-like proteins 1 and 2 (SYN1L1 and SYN1L2). When their expression vectors were introduced into cultured cells, suncus SYN1L2 was found to be active in cell fusion. Moreover, the SYN1L2 protein was homologous to a SYN1-like protein identified in greater mouse-eared bats (bat SYN1L) and was structurally compared with bat SYN1L and other SYN proteins, implying the presence of structural features of the SYN1L2 protein.
Collapse
Affiliation(s)
- Miki Suzuki
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Nakamura
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yu Matsumoto
- Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Minoru Ichinose
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Natsuko Kawano
- Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Miyuki Shindo
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daiki Katano
- Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Yuichirou Harada
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Mami Miyado
- Department of Food and Nutrition, Beppu University, Oita, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
3
|
Kammerer R, Zimmermann W. Two waves of evolution in the rodent pregnancy-specific glycoprotein (Psg) gene family lead to structurally diverse PSGs. BMC Genomics 2023; 24:468. [PMID: 37605167 PMCID: PMC10440875 DOI: 10.1186/s12864-023-09560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The evolution of pregnancy-specific glycoprotein (PSG) genes within the CEA gene family of primates correlates with the evolution of hemochorial placentation about 45 Myr ago. Thus, we hypothesized that hemochorial placentation with intimate contact between fetal cells and maternal immune cells favors the evolution and expansion of PSGs. With only a few exceptions, all rodents have hemochorial placentas thus the question arises whether Psgs evolved in all rodent genera. RESULTS In the analysis of 94 rodent species from 4 suborders, we identified Psg genes only in the suborder Myomorpha in three families (characteristic species in brackets), namely Muridae (mouse), Cricetidae (hamster) and Nesomyidae (giant pouched rat). All Psgs are located, as previously described for mouse and rat, in a region of the genome separated from the Cea gene family locus by several megabases, further referred to as the rodent Psg locus. In the suborders Castorimorpha (beaver), Hystricognatha (guinea pig) and Sciuromorpha (squirrel), neither Psg genes nor so called CEA-related cell adhesion molecule (Ceacam) genes were found in the Psg locus. There was even no evidence for the existence of Psgs in any other genomic region. In contrast to the Psg-harboring rodent species, which do not have activating CEACAMs, we were able to identify Ceacam genes encoding activating CEACAMs in all other rodents studied. In the Psg locus, there are genes encoding three structurally distinct CEACAM/PSGs: (i) CEACAMs composed of one N- and one A2-type domain (CEACAM9, CEACAM15), (ii) composed of two N domains (CEACAM11-CEACAM14) and (iii) composed of three to eight N domains and one A2 domain (PSGs). All of them were found to be secreted glycoproteins preferentially expressed by trophoblast cells, thus they should be considered as PSGs. CONCLUSION In rodents Psg genes evolved only recently in the suborder Myomorpha shortly upon their most recent common ancestor (MRCA) has coopted the retroviral genes syncytin-A and syncytin-B which enabled the evolution of the three-layered trophoblast. The expansion of Psgs is limited to the Psg locus most likely after a translocation of a CEA-related gene - possibly encoding an ITAM harboring CEACAM. According to the expression pattern two waves of gene amplification occurred, coding for structurally different PSGs.
Collapse
Affiliation(s)
- Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Greifswald, Germany
| | - Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| |
Collapse
|
4
|
Carter AM. Evolution of Placental Hormones: Implications for Animal Models. Front Endocrinol (Lausanne) 2022; 13:891927. [PMID: 35692413 PMCID: PMC9176407 DOI: 10.3389/fendo.2022.891927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Human placenta secretes a variety of hormones, some of them in large amounts. Their effects on maternal physiology, including the immune system, are poorly understood. Not one of the protein hormones specific to human placenta occurs outside primates. Instead, laboratory and domesticated species have their own sets of placental hormones. There are nonetheless several examples of convergent evolution. Thus, horse and human have chorionic gonadotrophins with similar functions whilst pregnancy-specific glycoproteins have evolved in primates, rodents, horses, and some bats, perhaps to support invasive placentation. Placental lactogens occur in rodents and ruminants as well as primates though evolved through duplication of different genes and with functions that only partially overlap. There are also placental hormones, such as the pregnancy-associated glycoproteins of ruminants, that have no equivalent in human gestation. This review focusses on the evolution of placental hormones involved in recognition and maintenance of pregnancy, in maternal adaptations to pregnancy and lactation, and in facilitating immune tolerance of the fetal semiallograft. The contention is that knowledge gained from laboratory and domesticated mammals can translate to a better understanding of human placental endocrinology, but only if viewed in an evolutionary context.
Collapse
Affiliation(s)
- Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Identification of KLF6/PSGs and NPY-Related USF2/CEACAM Transcriptional Regulatory Networks via Spinal Cord Bulk and Single-Cell RNA-Seq Analysis. DISEASE MARKERS 2021; 2021:2826609. [PMID: 34880956 PMCID: PMC8648463 DOI: 10.1155/2021/2826609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022]
Abstract
Background To further understand the development of the spinal cord, an exploration of the patterns and transcriptional features of spinal cord development in newborn mice at the cellular transcriptome level was carried out. Methods The mouse single-cell sequencing (scRNA-seq) dataset was downloaded from the GSE108788 dataset. Single-cell RNA-Seq (scRNA-Seq) was conducted on cervical and lumbar spinal V2a interneurons from 2 P0 neonates. Single-cell analysis using the Seurat package was completed, and marker mRNAs were identified for each cluster. Then, pseudotemporal analysis was used to analyze the transcription changes of marker mRNAs in different clusters over time. Finally, the functions of these marker mRNAs were assessed by enrichment analysis and protein-protein interaction (PPI) networks. A transcriptional regulatory network was then constructed using the TRRUST dataset. Results A total of 949 cells were screened. Single-cell analysis was conducted based on marker mRNAs of each cluster, which revealed the heterogeneity of neonatal mouse spinal cord neuronal cells. Functional analysis of pseudotemporal trajectory-related marker mRNAs suggested that pregnancy-specific glycoproteins (PSGs) and carcinoembryonic antigen cell adhesion molecules (CEACAMs) were the core mRNAs in cluster 3. GSVA analysis then demonstrated that the different clusters had differences in pathway activity. By constructing a transcriptional regulatory network, USF2 was identified to be a transcriptional regulator of CEACAM1 and CEACAM5, while KLF6 was identified to be a transcriptional regulator of PSG3 and PSG5. This conclusion was then validated using the Genotype-Tissue Expression (GTEx) spinal cord transcriptome dataset. Conclusions This study completed an integrated analysis of a single-cell dataset with the utilization of marker mRNAs. USF2/CEACAM1&5 and KLF6/PSG3&5 transcriptional regulatory networks were identified by spinal cord single-cell analysis.
Collapse
|
6
|
Zimmermann W, Kammerer R. The immune-modulating pregnancy-specific glycoproteins evolve rapidly and their presence correlates with hemochorial placentation in primates. BMC Genomics 2021; 22:128. [PMID: 33602137 PMCID: PMC7893922 DOI: 10.1186/s12864-021-07413-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Pregnancy-specific glycoprotein (PSG) genes belong to the carcinoembryonic antigen (CEA) gene family, within the immunoglobulin gene superfamily. In humans, 10 PSG genes encode closely related secreted glycoproteins. They are exclusively expressed in fetal syncytiotrophoblast cells and represent the most abundant fetal proteins in the maternal blood. In recent years, a role in modulation of the maternal immune system possibly to avoid rejection of the semiallogeneic fetus and to facilitate access of trophoblast cells to maternal resources via the blood system has been suggested. Alternatively, they could serve as soluble pathogen decoy receptors like other members of the CEA family. Despite their clearly different domain organization, similar functional properties have also been observed for murine and bat PSG. As these species share a hemochorial type of placentation and a seemingly convergent formation of PSG genes during evolution, we hypothesized that hemochorial placentae support the evolution of PSG gene families. Results To strengthen this hypothesis, we have analyzed PSG genes in 57 primate species which exhibit hemochorial or epitheliochorial placentation. In nearly all analyzed apes some 10 PSG genes each could be retrieved from genomic databases, while 6 to 24 PSG genes were found in Old World monkey genomes. Surprisingly, only 1 to 7 PSG genes could be identified in New World monkeys. Interestingly, no PSG genes were found in more distantly related primates with epitheliochorial placentae like lemurs and lorises. The exons encoding the putative receptor-binding domains exhibit strong selection for diversification in most primate PSG as revealed by rapid loss of orthologous relationship during evolution and high ratios of nonsynonymous and synonymous mutations. Conclusion The distribution of trophoblast-specific PSGs in primates and their pattern of selection supports the hypothesis that PSG are still evolving to optimize fetal-maternal or putative pathogen interactions in mammals with intimate contact of fetal cells with the immune system of the mother like in hemochorial placentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07413-8.
Collapse
Affiliation(s)
- Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, Department of Urology, University Hospital, LMU Munich, Germany.
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| |
Collapse
|
7
|
Kammerer R, Ballesteros A, Bonsor D, Warren J, Williams JM, Moore T, Dveksler G. Equine pregnancy-specific glycoprotein CEACAM49 secreted by endometrial cup cells activates TGFB. Reproduction 2020; 160:685-694. [PMID: 33065543 PMCID: PMC11404722 DOI: 10.1530/rep-20-0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/07/2020] [Indexed: 11/08/2022]
Abstract
In early equine pregnancy, a highly invasive trophoblast cell subpopulation, the chorionic girdle cells, invade the endometrium and form endometrial cups (EC). These cells express classical MHC molecules, thereby stimulating a humoral and cellular immune response, resulting in a massive accumulation of maternal CD4+ and CD8+ T cells around the EC. Nevertheless, no immediate destruction of endometrial cups by maternal lymphoid cells occurs, presumably due to immune tolerance. Although the environment of EC is rich in TGFB and in FOXP3+, CD4+ T cells, the mechanisms leading to tolerance have not been elucidated. Recently, we discovered that equine trophoblast cells secrete pregnancy-specific glycoproteins (PSGs). Since human and murine PSGs activate latent TGFB, we hypothesized that equine PSGs may have a similar activity. We performed plasmon surface resonance experiments to show that equine PSG CEACAM49 can directly bind to the latency-associated peptide (LAP) of both TGFB1 and TGFB2. We then found that the binding of CEACAM49 leads to the activation of TGFB1 as determined by both ELISA and cell-based assays. Furthermore, the activation of TGFB is a unique function of PSGs within the human CEA family, because CEACAM1, 3, 5, 6, 8 do not activate this cytokine. This finding further strengthens the classification of CEACAM49 as an equine PSG. Based on our results, we hypothesize that activation of latent TGFB in the EC environment by equine PSGs secreted by invasive trophoblast cells, could contribute to the generation of regulatory T cells (Tregs) to maintain immune tolerance.
Collapse
Affiliation(s)
- Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - John M Williams
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Mendoza M, Lu D, Ballesteros A, Blois SM, Abernathy K, Feng C, Dimitroff CJ, Zmuda J, Panico M, Dell A, Vasta GR, Haslam SM, Dveksler G. Glycan characterization of pregnancy-specific glycoprotein 1 and its identification as a novel Galectin-1 ligand. Glycobiology 2020; 30:895-909. [PMID: 32280962 DOI: 10.1093/glycob/cwaa034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 μM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra M Blois
- Experimental and Clinical Research Center, Charité Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany.,Charité- Universitätsmedizin Berlin, Institute for Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kelsey Abernathy
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Charles J Dimitroff
- Translational Medicine, Translational Glycobiology Institute, FIU, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Jonathan Zmuda
- Biosciences Division, Thermo Fisher Scientific, 7335 Executive Way, Frederick MD 21704, USA
| | - Maria Panico
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| |
Collapse
|
9
|
Bonsignore P, Kuiper JWP, Adrian J, Goob G, Hauck CR. CEACAM3-A Prim(at)e Invention for Opsonin-Independent Phagocytosis of Bacteria. Front Immunol 2020; 10:3160. [PMID: 32117212 PMCID: PMC7026191 DOI: 10.3389/fimmu.2019.03160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Phagocytosis is one of the key innate defense mechanisms executed by specialized cells in multicellular animals. Recent evidence suggests that a particular phagocytic receptor expressed by human polymorphonuclear granulocytes, the carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3), is one of the fastest-evolving human proteins. In this focused review, we will try to resolve the conundrum why a conserved process such as phagocytosis is conducted by a rapidly changing receptor. Therefore, we will first summarize the biochemical and structural details of this immunoglobulin-related glycoprotein in the context of the human CEACAM family. The function of CEACAM3 for the efficient, opsonin-independent detection and phagocytosis of highly specialized, host-restricted bacteria will be further elaborated. Taking into account the decisive role of CEACAM3 in the interaction with pathogenic bacteria, we will discuss the evolutionary trajectory of the CEACAM3 gene within the primate lineage and highlight the consequences of CEACAM3 polymorphisms in human populations. From a synopsis of these studies, CEACAM3 emerges as an important component of human innate immunity and a prominent example of a dedicated receptor for professional phagocytosis.
Collapse
Affiliation(s)
- Patrizia Bonsignore
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Johannes W P Kuiper
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Jonas Adrian
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Griseldis Goob
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Hänske J, Hammacher T, Grenkowitz F, Mansfeld M, Dau TH, Maksimov P, Friedrich C, Zimmermann W, Kammerer R. Natural selection supports escape from concerted evolution of a recently duplicated CEACAM1 paralog in the ruminant CEA gene family. Sci Rep 2020; 10:3404. [PMID: 32099040 PMCID: PMC7042247 DOI: 10.1038/s41598-020-60425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/31/2020] [Indexed: 11/24/2022] Open
Abstract
Concerted evolution is often observed in multigene families such as the CEA gene family. As a result, sequence similarity of paralogous genes is significantly higher than expected from their evolutionary distance. Gene conversion, a “copy paste” DNA repair mechanism that transfers sequences from one gene to another and homologous recombination are drivers of concerted evolution. Nevertheless, some gene family members escape concerted evolution and acquire sufficient sequence differences that orthologous genes can be assigned in descendant species. Reasons why some gene family members can escape while others are captured by concerted evolution are poorly understood. By analyzing the entire CEA gene family in cattle (Bos taurus) we identified a member (CEACAM32) that was created by gene duplication and cooption of a unique transmembrane domain exon in the most recent ancestor of ruminants. CEACAM32 shows a unique, testis-specific expression pattern. Phylogenetic analysis indicated that CEACAM32 is not involved in concerted evolution of CEACAM1 paralogs in ruminants. However, analysis of gene conversion events revealed that CEACAM32 is subject to gene conversion but remarkably, these events are found in the leader exon and intron sequences but not in exons coding for the Ig-like domains. These findings suggest that natural selection hinders gene conversion affecting protein sequences of the mature protein and thereby support escape of CEACAM32 from concerted evolution.
Collapse
Affiliation(s)
- Jana Hänske
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.,Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Tim Hammacher
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Franziska Grenkowitz
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Martin Mansfeld
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Tung Huy Dau
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Pavlo Maksimov
- Institute of Epidemiology, Friedrich-Loeffler-Institute, Greifswald - InselRiems, Germany
| | - Christin Friedrich
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.,Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.
| |
Collapse
|
11
|
Interaction of Pregnancy-Specific Glycoprotein 1 With Integrin Α5β1 Is a Modulator of Extravillous Trophoblast Functions. Cells 2019; 8:cells8111369. [PMID: 31683744 PMCID: PMC6912793 DOI: 10.3390/cells8111369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
Human pregnancy-specific glycoproteins (PSGs) serve immunomodulatory and pro-angiogenic functions during pregnancy and are mainly expressed by syncytiotrophoblast cells. While PSG mRNA expression in extravillous trophoblasts (EVTs) was reported, the proteins were not previously detected. By immunohistochemistry and immunoblotting, we show that PSGs are expressed by invasive EVTs and co-localize with integrin 5. In addition, we determined that native and recombinant PSG1, the most highly expressed member of the family, binds to 51 and induces the formation of focal adhesion structures resulting in adhesion of primary EVTs and EVT-like cell lines under 21% oxygen and 1% oxygen conditions. Furthermore, we found that PSG1 can simultaneously bind to heparan sulfate in the extracellular matrix and to 51 on the cell membrane. Wound healing assays and single-cell movement tracking showed that immobilized PSG1 enhances EVT migration. Although PSG1 did not affect EVT invasion in the in vitro assays employed, we found that the serum PSG1 concentration is lower in African-American women diagnosed with early-onset and late-onset preeclampsia, a pregnancy pathology characterized by shallow trophoblast invasion, than in their respective healthy controls only when the fetus was a male; therefore, the reduced expression of this molecule should be considered in the context of preeclampsia as a potential therapy.
Collapse
|
12
|
A metaanalysis of bat phylogenetics and positive selection based on genomes and transcriptomes from 18 species. Proc Natl Acad Sci U S A 2019; 116:11351-11360. [PMID: 31113885 PMCID: PMC6561249 DOI: 10.1073/pnas.1814995116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This work represents a large, order-wide evolutionary analysis of the order Chiroptera (bats). Our pipeline for assembling sequence data and curating orthologous multiple sequence alignments includes methods for improving results when combining genomic and transcriptomic data sources. The resulting phylogenetic tree divides the order Chiroptera into Yinpterochiroptera and Yangochiroptera, in disagreement with the previous division into Megachiroptera and Microchiroptera and in agreement with some other recent molecular studies, and also provides evidence for other contested branch placements. We also performed a genome-wide analysis of positive selection and found 181 genes with signatures of positive selection. Enrichment analysis shows these positively selected genes to be primarily related to immune responses but also, surprisingly, collagen formation. Historically, the evolution of bats has been analyzed using a small number of genetic loci for many species or many genetic loci for a few species. Here we present a phylogeny of 18 bat species, each of which is represented in 1,107 orthologous gene alignments used to build the tree. We generated a transcriptome sequence of Hypsignathus monstrosus, the African hammer-headed bat, and additional transcriptome sequence for Rousettus aegyptiacus, the Egyptian fruit bat. We then combined these data with existing genomic and transcriptomic data from 16 other bat species. In the analysis of such datasets, there is no clear consensus on the most reliable computational methods for the curation of quality multiple sequence alignments since these public datasets represent multiple investigators and methods, including different source materials (chromosomal DNA or expressed RNA). Here we lay out a systematic analysis of parameters and produce an advanced pipeline for curating orthologous gene alignments from combined transcriptomic and genomic data, including a software package: the Mismatching Isoform eXon Remover (MIXR). Using this method, we created alignments of 11,677 bat genes, 1,107 of which contain orthologs from all 18 species. Using the orthologous gene alignments created, we assessed bat phylogeny and also performed a holistic analysis of positive selection acting in bat genomes. We found that 181 genes have been subject to positive natural selection. This list is dominated by genes involved in immune responses and genes involved in the production of collagens.
Collapse
|
13
|
Adrian J, Bonsignore P, Hammer S, Frickey T, Hauck CR. Adaptation to Host-Specific Bacterial Pathogens Drives Rapid Evolution of a Human Innate Immune Receptor. Curr Biol 2019; 29:616-630.e5. [PMID: 30744974 DOI: 10.1016/j.cub.2019.01.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/12/2018] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
The selective pressure by infectious agents is a major driving force in the evolution of humans and other mammals. Members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family serve as receptors for bacterial pathogens of the genera Haemophilus, Helicobacter, Neisseria, and Moraxella, which engage CEACAMs via distinct surface adhesins. While microbial attachment to epithelial CEACAMs facilitates host colonization, recognition by CEACAM3, a phagocytic receptor expressed by granulocytes, eliminates CEACAM-binding bacteria. Sequence analysis of primate CEACAM3 orthologs reveals that this innate immune receptor is one of the most rapidly evolving human proteins. In particular, the pathogen-binding extracellular domain of CEACAM3 shows a high degree of non-synonymous versus synonymous nucleotide exchanges, indicating an exceptionally strong positive selection. Using CEACAM3 domains derived from different primates, we find that the amino acid alterations found in CEACAM3 translate into characteristic binding patterns for bacterial adhesins. One such amino acid residue is F62 in human and chimp CEACAM3, which is not present in other primates and which is critical for binding the OMP P1 adhesin of Haemophilus aegyptius. Incorporation of the F62-containing motif into gorilla CEACAM3 results in a gain-of-function phenotype with regard to phagocytosis of H. aegyptius. Moreover, CEACAM3 polymorphisms found in human subpopulations widen the spectrum of recognized bacterial adhesins, suggesting an ongoing multivariate selection acting on this innate immune receptor. The species-specific detection of diverse bacterial adhesins helps to explain the exceptionally fast evolution of CEACAM3 within the primate lineage and provides an example of Red Queen dynamics in the human genome.
Collapse
Affiliation(s)
- Jonas Adrian
- Lehrstuhl für Zellbiologie, Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Patrizia Bonsignore
- Lehrstuhl für Zellbiologie, Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Sebastian Hammer
- Lehrstuhl für Zellbiologie, Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Tancred Frickey
- Forest Industry Informatics, Scion, Te Papa Tipu Innovation Park, 49 Sala Street, 3015 Rotorua, New Zealand; Konstanz Research School-Chemical Biology, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl für Zellbiologie, Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; Konstanz Research School-Chemical Biology, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
14
|
Mißbach S, Aleksic D, Blaschke L, Hassemer T, Lee KJ, Mansfeld M, Hänske J, Handler J, Kammerer R. Alternative splicing after gene duplication drives CEACAM1-paralog diversification in the horse. BMC Evol Biol 2018; 18:32. [PMID: 29544443 PMCID: PMC5856374 DOI: 10.1186/s12862-018-1145-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/02/2018] [Indexed: 02/03/2023] Open
Abstract
Background The CEA gene family is one of the most rapidly evolving gene families in the human genome. The founder gene of the family is thought to be an ancestor of the inhibitory immune checkpoint molecule CEACAM1. Comprehensive analyses of mammalian genomes showed that the CEA gene family is subject to tremendous gene family expansion and contraction events in different mammalian species. While in some species (e.g. rabbits) less than three CEACAM1 related genes exist, were in others (certain microbat species) up to 100 CEACAM1 paralogs identified. We have recently reported that the horse has also an extended CEA gene family. Since mechanisms of gene family expansion and diversification are not well understood we aimed to analyze the equine CEA gene family in detail. Results We found that the equine CEA gene family contains 17 functional CEACAM1-related genes. Nine of them were secreted molecules and eight CEACAMs contain transmembrane and cytoplasmic domain exons, the latter being in the focus of the present report. Only one (CEACAM41) gene has exons coding for activating signaling motifs all other CEACAM1 paralogs contain cytoplasmic exons similar to that of the inhibitory receptor CEACAM1. However, cloning of cDNAs showed that only one CEACAM1 paralog contain functional immunoreceptor tyrosine-based inhibitory motifs in its cytoplasmic tail. Three receptors have acquired a stop codon in the transmembrane domain and two have lost their inhibitory motifs due to alternative splicing events. In addition, alternative splicing eliminated the transmembrane exon sequence of the putative activating receptor, rendering it to a secreted molecule. Transfection of eukaryotic cells with FLAG-tagged alternatively spliced CEACAMs indicates that they can be expressed in vivo. Thus detection of CEACAM41 mRNA in activated PBMC suggests that CEACAM41 is secreted by lymphoid cells upon activation. Conclusions The results of our study demonstrate that alternative splicing after gene duplication is a potent mechanism to accelerate functional diversification of the equine CEA gene family members. This potent mechanism has created novel CEACAM receptors with unique signaling capacities and secreted CEACAMs which potentially enables equine lymphoid cells to control distantly located immune cells.
Collapse
Affiliation(s)
- Sophie Mißbach
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany.,Plattform Degenerative Erkrankungen, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Denis Aleksic
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany
| | - Lisa Blaschke
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany
| | - Timm Hassemer
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany.,Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Kyung Jin Lee
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Martin Mansfeld
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany
| | - Jana Hänske
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany
| | - Johannes Handler
- Clinic for Horses, Veterinary Faculty, Freie Universität Berlin, Oertzenweg 19b, D-14163, Berlin, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany. .,Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Federal Research Institute for Animal Health, Südufer 10, D, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|