1
|
Ramos B, Vadlamudi NK, Han C, Sadarangani M. Future immunisation strategies to prevent Streptococcus pneumoniae infections in children and adults. THE LANCET. INFECTIOUS DISEASES 2025; 25:e330-e344. [PMID: 40112854 DOI: 10.1016/s1473-3099(24)00740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 03/22/2025]
Abstract
Streptococcus pneumoniae is a major respiratory pathogen, causing 1·2 million deaths and 197 million pneumonia episodes globally in 2016. The spread of S pneumoniae to sterile sites, such as the blood and brain, leads to invasive pneumococcal disease. The best approach available for prevention of invasive pneumococcal disease in children and, more recently, adults is the use of pneumococcal conjugate vaccines (PCVs). PCVs are also highly effective at preventing colonisation and, thus, transmission, offering indirect protection to non-target immunisation groups such as adults-a characteristic that has been crucial in their success. However, PCVs only include and protect up to 20 of the 100 serotypes that can cause disease. The rise in adult cases of invasive pneumococcal disease from serotypes included in PCVs suggests indirect protection might be limited. Additionally, non-vaccine serotypes and some vaccine types that persist, some linked to antibiotic resistance, continue to cause disease. Future vaccine strategies include increasing the number of serotypes covered in PCVs for use in children and adults, broader vaccine use in adults, the development of adult-specific conjugate vaccines containing serotypes different from those covered in PCVs used in children, and protein vaccines, all of which will be explored in this Review. These strategies are expected to help mitigate the global burden of invasive pneumococcal disease in future years.
Collapse
Affiliation(s)
- Bernice Ramos
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nirma Khatri Vadlamudi
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Crystal Han
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Guillem L, Alia-Ramos P, Gonzalez-Diaz A, Ardanuy C, Boix-Palop L, Van den Eynde E, Cabellos C. Cohort study exploring the association of cerebrospinal fluid metalloprotease levels and Microbiological characteristics to cerebral vasculitis complication in Pneumococcal meningitis. Sci Rep 2025; 15:15854. [PMID: 40328863 PMCID: PMC12056018 DOI: 10.1038/s41598-025-99883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Cerebrovascular complications are frequent in pneumococcal meningitis and are associated with poor functional outcomes. Among these complications, the incidence of cerebral vasculitis (CV) has been increasingly reported, but neither its pathogenesis nor its relationship with cortisone treatment have been conclusively established. We wanted to describe cerebrospinal fluid (CSF) metalloprotease (MMP) levels, which are linked to cerebral damage and vasculitis (MMP-2, MMP-9, and the antagonist TIMP-1), and differences in microbiological serotypes or virulence factors that could be associated to the development of this complication. A prospective multicenter cohort study was performed from January 2019 to August 2022. All adult patients diagnosed with pneumococcal meningitis and for whom CSF samples from the initial lumbar puncture were available were included and followed up for six months after discharge. Streptococcus pneumoniae strains isolated from CSF or blood were assessed including whole genome sequencing and CSF levels of MMP-2, MMP-9, and TIMP-1 were measured. CV developed in three of 21 patients (14.3%). The serotypes of those who developed CV were 3, 9 N, and 35 F, with no microbiological differences with respect to the non-CV group. The CV group had higher CSF levels of MMP-9 (13.2 vs. 9.8 ng/L) and TIMP-1 (699 vs. 318 ng/L), but lower CSF levels of MMP-2 (5689 vs. 10,484 ng/L) compared with the non-CV group. Although no patients with CV died, they had worse clinical outcomes than the non-CV group. CV is a frequent complication of pneumococcal meningitis that may be associated with worse outcomes. No differences in microbiological serotypes or virulence factors were detected. Further analyses should be carried out to confirm whether CSF MMP levels may be markers of CV development.
Collapse
Affiliation(s)
- Lluïsa Guillem
- Infectious Diseases Department, Department of Clinical Sciences, Hospital Universitari de Bellvitge-Bellvitge Institute for Biomedical Research (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, 08907, Spain.
| | - Pedro Alia-Ramos
- Clinical Biochemistry Department, Hospital Universitari de Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, 08907, Spain
| | - Aida Gonzalez-Diaz
- Microbiology Department, Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Universitari de Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, 08907, Spain
- Centro de Investigación Biomédica de Enfermedades Respiratorias (CIBERES), ISCIII, Madrid, Spain
| | - Carmen Ardanuy
- Centro de Investigación Biomédica de Enfermedades Respiratorias (CIBERES), ISCIII, Madrid, Spain
- Microbiology Department, Department of Pathology and Experimental Therapeutics, Hospital Universitari de Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, 08907, Spain
| | - Lucia Boix-Palop
- Infectious Diseases Department, Hospital Universitari Mútua de Terrassa, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eva Van den Eynde
- Infectious Diseases Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carmen Cabellos
- Infectious Diseases Department, Department of Clinical Sciences, Hospital Universitari de Bellvitge-Bellvitge Institute for Biomedical Research (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, 08907, Spain
- Centro de Investigación Biomédica de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Talat D, Sumitomo T, Honda-Ogawa M, Takahara Y, Mori Y, Masaya Yamaguchi, Nakata M, Ibrahim MS, Kawabata S. Two-component regulatory system TCS08 of a serotype 4 strain in pneumococcal pneumonia pathogenesis. J Oral Biosci 2024; 66:567-574. [PMID: 38885903 DOI: 10.1016/j.job.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES Streptococcus pneumoniae, a human respiratory pathogen, causes diseases with severe morbidity and mortality rates worldwide. The two-component regulatory system (TCS) is an important signaling pathway that enables regulation of gene expression in response to environmental cues, thereby allowing an organism to adapt to a variety of host niches. Here we examined the contribution of pneumococcal TCS08 to bacterial colonization, the development of pneumonia, and pulmonary dysfunction. METHODS We employed an hk08 knockout mutant (Δhk08) with a background of the TIGR4 wild-type (WT) strain to verify whether TCS08 is associated with bacterial colonization and the development of pneumonia in a murine infection model. To clarify the association of hk08 inactivation-induced phenotypic changes with their virulence, we examined pneumococcal capsule production, colony morphology, and surface-displayed protein profiles. RESULTS Pneumococcal TCS08 was involved in bacterial colonization in the respiratory tract. Interruption of the signaling pathway of TCS08 by hk08 inactivation impaired mouse survival and increased the bacterial burden within the respiratory tract. Furthermore, a histopathological examination revealed massive inflammatory cell infiltration, edema formation, and diffuse alveolar damage in the lung tissues of mice infected with Δhk08 versus the WT or complemented strain. Interestingly, virulence-associated phenotype changes, including capsule production, increased chain length, and surface-displayed protein profile, were observed in the Δhk08 strain. CONCLUSIONS The present findings indicate that TCS08 contributes to pneumococcal colonization and pulmonary dysfunction by assisting adaptation to the respiratory tract milieu, leading to the development of pneumonia.
Collapse
Affiliation(s)
- Dalia Talat
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan; Department of Microbiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Tomoko Sumitomo
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan; Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Mariko Honda-Ogawa
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yuki Takahara
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan; Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yasushi Mori
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masaya Yamaguchi
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan; Bioinformatics Research Unit, Osaka University Graduate School of Dentistry, Osaka, Japan; Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Japan; Center for Infectious Diseases Education and Research, Osaka University, Japan
| | - Masanobu Nakata
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan; Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Madiha S Ibrahim
- Department of Microbiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Shigetada Kawabata
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan; Center for Infectious Diseases Education and Research, Osaka University, Japan.
| |
Collapse
|
4
|
Puzia W, Gawor J, Gromadka R, Żuchniewicz K, Wróbel-Pawelczyk I, Ronkiewicz P, Gołębiewska A, Hryniewicz W, Sadowy E, Skoczyńska A. Highly Resistant Serotype 19A Streptococcus pneumoniae of the GPSC1/CC320 Clone from Invasive Infections in Poland Prior to Antipneumococcal Vaccination of Children. Infect Dis Ther 2023; 12:2017-2037. [PMID: 37442903 PMCID: PMC10505132 DOI: 10.1007/s40121-023-00842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The introduction of pneumococcal conjugate vaccines (PCV) into the national immunization programs (NIPs) has significantly reduced the number of pneumococcal infections. However, infections caused by isolates of non-vaccine serotypes (NVT) started spreading shortly thereafter and strains of NVT 19A have become the main cause of invasive pneumococcal disease burden worldwide. The aim of the study was to characterize serotype 19A invasive pneumococci of GPSC1/CC320 circulating in Poland before the introduction of PCV into the Polish NIP in 2017 and to compare them to isolates from other countries where PCVs were implemented much earlier than in Poland. METHODS All the GPSC1/CC320 isolates were analyzed by serotyping, susceptibility testing, and whole genome sequencing followed by analyses of resistome, virulome, and core genome multilocus sequence typing (cgMLST), including comparative analysis with isolates with publicly accessible genomic sequences (PubMLST). RESULTS During continuous surveillance the NRCBM collected 4237 invasive Streptococcus pneumoniae isolates between 1997 and 2016, including 200 isolates (4.7%) of serotype 19A. The most prevalent among 19A pneumococci were highly resistant representatives of Global Pneumococcal Sequence Cluster 1/Clonal Complex 320, GPSC1/CC320 (n = 97, 48.5%). Isolates of GPSC1/CC320 belonged to three sequence types (STs): ST320 (75.2%) ST4768 (23.7%), and ST15047 (1.0%), which all represented the 19A-III cps subtype and had complete loci for both PI-1 and PI-2 pili types. On the basis of the cgMLST analysis the majority of Polish GPSC1/CC320 isolates formed a group clearly distinct from pneumococci of this clone observed in other countries. CONCLUSION Before introduction of PCV in the Polish NIP we noticed an unexpected increase of serotype 19A in invasive pneumococcal infections, with the most common being representatives of highly drug-resistant GPSC1/CC320 clone, rarely identified in Europe both before and even after PCV introduction.
Collapse
Affiliation(s)
- Weronika Puzia
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106, Warsaw, Poland
| | - Karolina Żuchniewicz
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106, Warsaw, Poland
| | - Izabela Wróbel-Pawelczyk
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Patrycja Ronkiewicz
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Agnieszka Gołębiewska
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Anna Skoczyńska
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland.
| |
Collapse
|
5
|
Hu D, Laczkovich I, Federle MJ, Morrison DA. Identification and Characterization of Negative Regulators of Rgg1518 Quorum Sensing in Streptococcus pneumoniae. J Bacteriol 2023; 205:e0008723. [PMID: 37341600 PMCID: PMC10367586 DOI: 10.1128/jb.00087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Streptococcus pneumoniae is an agent of otitis media, septicemia, and meningitis and remains the leading cause of community-acquired pneumonia regardless of vaccine use. Of the various strategies that S. pneumoniae takes to enhance its potential to colonize the human host, quorum sensing (QS) is an intercellular communication process that provides coordination of gene expression at a community level. Numerous putative QS systems are identifiable in the S. pneumoniae genome, but their gene-regulatory activities and contributions to fitness have yet to be fully evaluated. To contribute to assessing regulatory activities of rgg paralogs present in the D39 genome, we conducted transcriptomic analysis of mutants of six QS regulators. Our results find evidence that at least four QS regulators impact the expression of a polycistronic operon (encompassing genes spd_1517 to spd_1513) that is directly controlled by the Rgg/SHP1518 QS system. As an approach to unravel the convergent regulation placed on the spd_1513-1517 operon, we deployed transposon mutagenesis screening in search of upstream regulators of the Rgg/SHP1518 QS system. The screen identified two types of insertion mutants that result in increased activity of Rgg1518-dependent transcription, one type being where the transposon inserted into pepO, an annotated endopeptidase, and the other type being insertions in spxB, a pyruvate oxidase. We demonstrate that pneumococcal PepO degrades SHP1518 to prevent activation of Rgg/SHP1518 QS. Moreover, the glutamic acid residue in the conserved "HExxH" domain is indispensable for the catalytic function of PepO. Finally, we confirmed the metalloendopeptidase property of PepO, which requires zinc ions, but not other ions, to facilitate peptidyl hydrolysis. IMPORTANCE Streptococcus pneumoniae uses quorum sensing to communicate and regulate virulence. In our study, we focused on one Rgg quorum sensing system (Rgg/SHP1518) and found that multiple other Rgg regulators also control it. We further identified two enzymes that inhibit Rgg/SHP1518 signaling and revealed and validated one enzyme's mechanisms for breaking down quorum sensing signaling molecules. Our findings shed light on the complex regulatory network of quorum sensing in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Duoyi Hu
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Irina Laczkovich
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
D'Mello A, Lane JR, Tipper JL, Martínez E, Roussey HN, Harrod KS, Orihuela CJ, Tettelin H. Influenza A virus modulation of Streptococcus pneumoniae infection using ex vivo transcriptomics in a human primary lung epithelial cell model reveals differential host glycoconjugate uptake and metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526157. [PMID: 36778321 PMCID: PMC9915477 DOI: 10.1101/2023.01.29.526157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Streptococcus pneumoniae (Spn) is typically an asymptomatic colonizer of the nasopharynx but it also causes pneumonia and disseminated disease affecting various host anatomical sites. Transition from colonization to invasive disease is not well understood. Studies have shown that such a transition can occur as result of influenza A virus coinfection. Methods We investigated the pneumococcal (serotype 19F, strain EF3030) and host transcriptomes with and without influenza A virus (A/California/07 2009 pH1N1) infection at this transition. This was done using primary, differentiated Human Bronchial Epithelial Cells (nHBEC) in a transwell monolayer model at an Air-Liquid Interface (ALI), with multispecies deep RNA-seq. Results Distinct pneumococcal gene expression profiles were observed in the presence and absence of influenza. Influenza coinfection allowed for significantly greater pneumococcal growth and triggered the differential expression of bacterial genes corresponding to multiple metabolic pathways; in totality suggesting a fundamentally altered bacterial metabolic state and greater nutrient availability when coinfecting with influenza. Surprisingly, nHBEC transcriptomes were only modestly perturbed by infection with EF3030 alone in comparison to that resulting from Influenza A infection or coinfection, which had drastic alterations in thousands of genes. Influenza infected host transcriptomes suggest significant loss of ciliary function in host nHBEC cells. Conclusions Influenza A virus infection of nHBEC promotes pneumococcal infection. One reason for this is an altered metabolic state by the bacterium, presumably due to host components made available as result of viral infection. Influenza infection had a far greater impact on the host response than did bacterial infection alone, and this included down regulation of genes involved in expressing cilia. We conclude that influenza infection promotes a pneumococcal metabolic shift allowing for transition from colonization to disseminated disease.
Collapse
Affiliation(s)
- Adonis D'Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jessica R Lane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Eriel Martínez
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Holly N Roussey
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
7
|
Zafar MA, Costa-Terryl A, Young TM. The Two-Component System YesMN Promotes Pneumococcal Host-to-Host Transmission and Regulates Genes Involved in Zinc Homeostasis. Infect Immun 2023; 91:e0037522. [PMID: 36537790 PMCID: PMC9872629 DOI: 10.1128/iai.00375-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/27/2022] [Indexed: 01/25/2023] Open
Abstract
The ability to sense and respond rapidly to the dynamic environment of the upper respiratory tract (URT) makes Streptococcus pneumoniae (Spn) a highly successful human pathogen. Two-component systems (TCSs) of Spn sense and respond to multiple signals it encounters allowing Spn to adapt and thrive in various host sites. Spn TCS have been implicated in their ability to promote pneumococcal colonization of the URT and virulence. As the disease state can be a dead-end for a pathogen, we considered whether TCS would contribute to pneumococcal transmission. Herein, we determined the role of YesMN, an understudied TCS of Spn, and observe that YesMN contributes toward pneumococcal shedding and transmission but is not essential for colonization. The YesMN regulon includes genes involved in zinc homeostasis and glycan metabolism, which are upregulated during reduced zinc availability in a YesMN-dependent fashion. Thus, we identified the YesMN regulon and a potential molecular signal it senses that lead to the activation of genes involved in zinc homeostasis and glycan metabolism. Furthermore, in contrast to Spn monoinfection, we demonstrate that YesMN is critical for high pneumococcal density in the URT during influenza A virus (IAV) coinfection. We attribute reduced colonization of the yesMN mutant possibly due to increased association with and clearance by the mucus covering the URT epithelial surface. Thus, our results highlight the dynamic interactions that occur between Spn and IAV in the URT, and the role that TCSs play in modulation of these interactions.
Collapse
Affiliation(s)
- M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alicia Costa-Terryl
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Taylor M. Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
Saralahti AK, Harjula SKE, Rantapero T, Uusi-Mäkelä MIE, Kaasinen M, Junno M, Piippo H, Nykter M, Lohi O, Rounioja S, Parikka M, Rämet M. Characterization of the innate immune response to Streptococcus pneumoniae infection in zebrafish. PLoS Genet 2023; 19:e1010586. [PMID: 36622851 PMCID: PMC9858863 DOI: 10.1371/journal.pgen.1010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/20/2023] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is one of the most frequent causes of pneumonia, sepsis and meningitis in humans, and an important cause of mortality among children and the elderly. We have previously reported the suitability of the zebrafish (Danio rerio) larval model for the study of the host-pathogen interactions in pneumococcal infection. In the present study, we characterized the zebrafish innate immune response to pneumococcus in detail through a whole-genome level transcriptome analysis and revealed a well-conserved response to this human pathogen in challenged larvae. In addition, to gain understanding of the genetic factors associated with the increased risk for severe pneumococcal infection in humans, we carried out a medium-scale forward genetic screen in zebrafish. In the screen, we identified a mutant fish line which showed compromised resistance to pneumococcus in the septic larval infection model. The transcriptome analysis of the mutant zebrafish larvae revealed deficient expression of a gene homologous for human C-reactive protein (CRP). Furthermore, knockout of one of the six zebrafish crp genes by CRISPR-Cas9 mutagenesis predisposed zebrafish larvae to a more severe pneumococcal infection, and the phenotype was further augmented by concomitant knockdown of a gene for another Crp isoform. This suggests a conserved function of C-reactive protein in anti-pneumococcal immunity in zebrafish. Altogether, this study highlights the similarity of the host response to pneumococcus in zebrafish and humans, gives evidence of the conserved role of C-reactive protein in the defense against pneumococcus, and suggests novel host genes associated with pneumococcal infection.
Collapse
Affiliation(s)
- Anni K. Saralahti
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna-Kaisa E. Harjula
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tommi Rantapero
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Meri I. E. Uusi-Mäkelä
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Kaasinen
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maiju Junno
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannaleena Piippo
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | | | - Mataleena Parikka
- Laboratory of Infection Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- FVR–Finnish Vaccine Research, Tampere, Finland
| |
Collapse
|
9
|
Redzic JS, Rahkola J, Tran N, Holyoak T, Lee E, Martín-Galiano AJ, Meyer N, Zheng H, Eisenmesser E. A substrate-induced gating mechanism is conserved among Gram-positive IgA1 metalloproteases. Commun Biol 2022; 5:1190. [PMID: 36336763 PMCID: PMC9637739 DOI: 10.1038/s42003-022-04173-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
The mucosal adaptive immune response is dependent on the production of IgA antibodies and particularly IgA1, yet opportunistic bacteria have evolved mechanisms to specifically block this response by producing IgA1 proteases (IgA1Ps). Our lab was the first to describe the structures of a metal-dependent IgA1P (metallo-IgA1P) produced from Gram-positive Streptococcus pneumoniae both in the absence and presence of its IgA1 substrate through cryo-EM single particle reconstructions. This prior study revealed an active-site gating mechanism reliant on substrate-induced conformational changes to the enzyme that begged the question of whether such a mechanism is conserved among the wider Gram-positive metallo-IgA1P subfamily of virulence factors. Here, we used cryo-EM to characterize the metallo-IgA1P of a more distantly related family member from Gemella haemolysans, an emerging opportunistic pathogen implicated in meningitis, endocarditis, and more recently bacteremia in the elderly. While the substrate-free structures of these two metallo-IgA1Ps exhibit differences in the relative starting positions of the domain responsible for gating substrate, the enzymes have similar domain orientations when bound to IgA1. Together with biochemical studies that indicate these metallo-IgA1Ps have similar binding affinities and activities, these data indicate that metallo-IgA1P binding requires the specific IgA1 substrate to open the enzymes for access to their active site and thus, largely conform to an "induced fit" model.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Jeremy Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Disease, University of Colorado Denver School of Medicine and Denver Veterans Affairs Medical Center, Aurora, CO, 80045, USA
| | - Norman Tran
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | | | - Nancy Meyer
- Pacific Northwest Cryo-EM Center, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Patrono LV, Röthemeier C, Kouadio L, Couacy‐Hymann E, Wittig RM, Calvignac‐Spencer S, Leendertz FH. Non-invasive genomics of respiratory pathogens infecting wild great apes using hybridisation capture. Influenza Other Respir Viruses 2022; 16:858-861. [PMID: 35388591 PMCID: PMC9343332 DOI: 10.1111/irv.12984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Human respiratory pathogens have repeatedly caused lethal outbreaks in wild great apes across Africa, leading to population declines. Nonetheless, our knowledge of potential genomic changes associated with pathogen introduction and spread at the human-great ape interface remains sparse. Here, we made use of target enrichment coupled with next generation sequencing to non-invasively investigate five outbreaks of human-introduced respiratory disease in wild chimpanzees living in Taï National Park, Ivory Coast. By retrieving 34 complete viral genomes and three distinct constellations of pneumococcal virulence factors, we provide genomic insights into these spillover events and describe a framework for non-invasive genomic surveillance in wildlife.
Collapse
Affiliation(s)
- Livia V. Patrono
- Project Group Epidemiology of Highly Pathogenic MicroorganismsRobert Koch InstituteBerlinGermany
- Department of Ecology and Emergence of Zoonotic DiseasesHelmholtz Institute for One HealthGreifswaldGermany
| | - Caroline Röthemeier
- Project Group Epidemiology of Highly Pathogenic MicroorganismsRobert Koch InstituteBerlinGermany
| | - Leonce Kouadio
- Laboratoire National d'Appui au Développement Agricole/Laboratoire Central de Pathologie AnimaleBingervilleCôte d'Ivoire
| | - Emmanuel Couacy‐Hymann
- Laboratoire National d'Appui au Développement Agricole/Laboratoire Central de Pathologie AnimaleBingervilleCôte d'Ivoire
| | - Roman M. Wittig
- Department of PrimatologyMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee ProjectCentre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | | | - Fabian H. Leendertz
- Project Group Epidemiology of Highly Pathogenic MicroorganismsRobert Koch InstituteBerlinGermany
- Department of Ecology and Emergence of Zoonotic DiseasesHelmholtz Institute for One HealthGreifswaldGermany
- Taï Chimpanzee ProjectCentre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| |
Collapse
|
11
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
12
|
Moreno-Blanco A, Solano-Collado V, Ortuno-Camuñas A, Espinosa M, Ruiz-Cruz S, Bravo A. PclR is a transcriptional activator of the gene that encodes the pneumococcal collagen-like protein PclA. Sci Rep 2022; 12:11827. [PMID: 35821046 PMCID: PMC9276737 DOI: 10.1038/s41598-022-15758-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
The Gram-positive bacterium Streptococcus pneumoniae is a major human pathogen that shows high levels of genetic variability. The pneumococcal R6 genome harbours several gene clusters that are not present in all strains of the species. One of these clusters contains two divergent genes, pclA, which encodes a putative surface-exposed protein that contains large regions of collagen-like repeats, and spr1404 (here named pclR). PclA was shown to mediate pneumococcal adherence to host cells in vitro. In this work, we demonstrate that PclR (494 amino acids) is a transcriptional activator. It stimulates transcription of the pclA gene by binding to a specific DNA site upstream of the core promoter. In addition, we show that PclR has common features with the MgaSpn transcriptional regulator (493 amino acids), which is also encoded by the R6 genome. These proteins have high sequence similarity (60.3%), share the same organization of predicted functional domains, and generate multimeric complexes on linear double-stranded DNAs. However, on the PpclA promoter region, MgaSpn binds to a site different from the one recognized by PclR. Our results indicate that PclR and MgaSpn have similar DNA-binding properties but different DNA-binding specificities, pointing to a different regulatory role of both proteins.
Collapse
Affiliation(s)
- Ana Moreno-Blanco
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Virtu Solano-Collado
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain.,Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alejandro Ortuno-Camuñas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sofía Ruiz-Cruz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain. .,School of Microbiology, University College Cork and APC Microbiome Ireland, Western Road, Cork, T12 YT20, Ireland.
| | - Alicia Bravo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
13
|
González-Díaz A, Berbel D, Ercibengoa M, Cercenado E, Larrosa N, Quesada MD, Casabella A, Cubero M, Marimón JM, Domínguez MÁ, Carrera-Salinas A, Càmara J, Martín-Galiano AJ, Yuste J, Martí S, Ardanuy C. Genomic features of predominant non-PCV13 serotypes responsible for adult invasive pneumococcal disease in Spain. J Antimicrob Chemother 2022; 77:2389-2398. [PMID: 35815569 DOI: 10.1093/jac/dkac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although pneumococcal conjugate vaccines (PCVs) effectively prevent invasive pneumococcal disease (IPD), serotype replacement has occurred. OBJECTIVES We studied the pangenome, antibiotic resistance mechanisms and presence of mobile elements in predominant non-PCV13 serotypes causing adult IPD after PCV13 vaccine introduction in Spain. METHODS We conducted a multicentre study comparing three periods in six Spanish hospitals and analysed through whole genome sequencing representative strains collected in the pre-PCV13, early-PCV13 and late-PCV13 periods. RESULTS Among 2197 cases of adult IPD identified, 110 pneumococci expressing non-PCV13 capsules were sequenced. Seven predominant serotypes accounted for 42.6% of IPD episodes in the late-PCV13 period: serotypes 8 (14.4%), 12F (7.5%), 9N (5.2%), 11A (4.1%), 22F (3.9%), 24F (3.9%) and 16F (3.6%). All predominant non-PCV13 serotypes were highly clonal, comprising one or two clonal complexes (CC). In general, CC538, CC4048, CC3016F, CC43322F and CC669N, related to predominant non-PCV13 serotypes, were antibiotic susceptible. CC15611A was associated with resistance to co-trimoxazole, penicillin and amoxicillin. CC23024F was non-susceptible to penicillin and resistant to erythromycin, clindamycin, and tetracycline. Six composite transposon structures of the Tn5252-family were found in CC23024F, CC98912F and CC3016F carrying different combinations of erm(B), tet(M), and cat. Pangenome analysis revealed differences in accessory genomes among the different CC, with most variety in CC3016F (23.9%) and more conservation in CC15611A (8.5%). CONCLUSIONS We identified highly clonal predominant serotypes responsible for IPD in adults. The detection of not only conjugative elements carrying resistance determinants but also clones previously associated with vaccine serotypes (CC15611A and CC23024F) highlights the importance of the accessory genome.
Collapse
Affiliation(s)
- Aida González-Díaz
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Dàmaris Berbel
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - María Ercibengoa
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Osakidetza Basque Health, Donostia-San Sebastian, Spain
| | - Emilia Cercenado
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Clinical Microbiology and Infectious Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Nieves Larrosa
- Microbiology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain.,Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
| | - Mª Dolores Quesada
- Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
| | - Antonio Casabella
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Hospital Universitari Germans Trias i Pujol, UAB, Badalona, Spain
| | - Meritxell Cubero
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - José María Marimón
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Osakidetza Basque Health, Donostia-San Sebastian, Spain
| | - M Ángeles Domínguez
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Barcelona, Spain.,Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Anna Carrera-Salinas
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Antonio J Martín-Galiano
- Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - José Yuste
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Parc Taulí, Sabadell, Spain
| |
Collapse
|
14
|
Cao H, Chiu KHY, Chiu SS, Jiang S, Chow KH, Ho PL. Genomic investigation of a Streptococcus pneumoniae serotype 24F strain causing meningoencephalitis in Hong Kong. Int J Med Microbiol 2021; 311:151543. [PMID: 34864352 DOI: 10.1016/j.ijmm.2021.151543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Pneumococcal conjugate vaccines (PCVs) successfully decreased the incidence of invasive pneumococcal disease in children. However, many countries have reported serotype replacement and a rebound in diseases from non-vaccine serotypes. Here, we report the genomic investigation of a Streptococcus pneumoniae strain M215 that caused severe meningoencephalitis in an infant in 2019. The strain was assigned to serotype 24F using the bioinformatic pipeline SeroBA and pneumococcal type specific anti-sera. The strain was resistant to cotrimoxazole from mutations in both folA and folP genes. It was susceptible to penicillin and other non-β-lactam antibiotics. Phylogenetically, it belongs to Global Pneumococcal Sequence Cluster (GPSC) 6 and multi-locus sequence type 162. A total of 38 virulence genes were detected in the genome of M215. Upon comparison of the profile of virulence genes, GPSC6 but not non-GPSC6 strains of serotype 24F and related serotypes were found to possess the major virulence determinant, pilus islet-1, comprising genes encoding sortases (srtB, srtC, srtD), pilus proteins (rrgA, rrgB and rrgC) and one transcriptional regulator (rlrA), which was previously described to be characteristic feature of international clones in the pre-PCV era. In our locality, this represented the first detection of serotype 24F and GPSC6/ST162 causing serious pneumococcal disease. The emergence of the non-vaccine serotype 24F GPSC6/ST162 lineage with molecular feature of high virulence is concerning and emphasizes the need for full characterization of strains causing severe disease.
Collapse
Affiliation(s)
- Huiluo Cao
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, China
| | | | - Susan S Chiu
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Shuo Jiang
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Kin-Hung Chow
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Pak-Leung Ho
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
15
|
Comparative genomics of invasive Streptococcus pneumoniae CC320/271 serotype 19F/19A before the introduction of pneumococcal vaccine in India. Mol Biol Rep 2021; 48:3265-3276. [PMID: 33876375 DOI: 10.1007/s11033-021-06353-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
The emergence of multi drug resistant clone CC320 serotype19F/19A and their capsular (cps) antigenic variants due to selective pressures such as vaccine had been reported worldwide. Hence, it is important to identify the prevalent clones, sequence types and cps variants of serotype 19F/19A in India, where PCV13 has been recently introduced. Multi-locus sequence typing (MLST) was performed for all (n = 21) invasive S. pneumoniae isolates of serotype 19A (n = 5) and 19F (n = 16) collected between the years 2012 and 2018 from children less than 5 years. The genome characterization by whole genome sequencing for the Sequence types (STs) 320 and 271(n = 7) were performed and compared with another six Indian WGSs of similar STs available from the GPS platform. The predominant STs in the serotype 19F/19A study isolates were of CC320: ST 320, 236 and 271, associated with PMEN clone Taiwan19F-14. The WGSs of CC320 study isolates showed high genomic similarity to the Taiwan19F-14 clone, and the penicillin binding protein (PBP) amino acid sequence similarity was 100% for PBP1A, 93% for PBP 2B and 2X. Whilst PBP comparison with other global MDR ST320 strains revealed that the ST320 clones in India are of low-level penicillin resistance. The presence of a few ST320/19A/19F invasive isolates with high similarity to the Taiwan clone suggests slow and gradual expansion of Taiwan19F-14 associated CC320 clones in India. Since serotype 19F/19A is covered by PCV13 vaccine, the expansion of 19F/19A cones with non-PCV13 vaccine serotype in India should be monitored.
Collapse
|
16
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
17
|
Reslan L, Finianos M, Bitar I, Moumneh MB, Araj GF, Zaghlout A, Boutros C, Jisr T, Nabulsi M, Kara Yaccoub G, Hamze M, Osman M, Bou Raad E, Hrabak J, Matar GM, Dbaibo G. The Emergence of Invasive Streptococcus pneumoniae Serotype 24F in Lebanon: Complete Genome Sequencing Reveals High Virulence and Antimicrobial Resistance Characteristics. Front Microbiol 2021; 12:637813. [PMID: 33746930 PMCID: PMC7967862 DOI: 10.3389/fmicb.2021.637813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background Invasive pneumococcal disease (IPD) remains a global health problem. IPD incidence has significantly decreased by the use of pneumococcal conjugate vaccines (PCV). Nevertheless, non-PCV serotypes remain a matter of concern. Eight Streptococcus pneumoniae serotype 24F isolates, belonging to a non-PCV serotype, were detected through the Lebanese Inter-Hospital Pneumococcal Surveillance Program. The aim of the study is to characterize phenotypic and genomic features of the 24F isolates in Lebanon. Methods WGS using long reads sequencing (PacBio) was performed to produce complete circular genomes and to determine clonality, antimicrobial resistance and virulence determinants. Results The sequencing results yielded eight closed circular genomes. Three multilocus sequence typing (MLST) types were identified (ST11618, ST14184, ST15253). Both MLST and WGS analyses revealed that these isolates from Lebanon were genetically homogenous belonging to clonal complex CC230 and clustered closely with isolates originating from Canada, United States of America, United Kingdom and Iceland. Their penicillin binding protein profiles correlated with both β-lactam susceptibility patterns and MLST types. Moreover, the isolates harbored the macrolide and tetracycline resistance genes and showed a similar virulence gene profile. To our knowledge, this study represents the first report of complete phenotypic and genomic characterization of the emerging Streptococcus pneumoniae, serotype 24F, in the Middle East and North Africa region.
Collapse
Affiliation(s)
- Lina Reslan
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Plzen, Czechia
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Plzen, Czechia
| | - Mohamad Bahij Moumneh
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - George F Araj
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon.,Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Alissar Zaghlout
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Celina Boutros
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Tamima Jisr
- Department of Laboratory and Blood, Makassed General Hospital, Beirut, Lebanon
| | | | | | - Monzer Hamze
- Department of Microbiology, Nini Hospital, Tripoli, Lebanon
| | - Marwan Osman
- El-Youssef Hospital Center, Department of Clinical Laboratory, Halba, Lebanon
| | - Elie Bou Raad
- El-Youssef Hospital Center, Department of Clinical Laboratory, Halba, Lebanon
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Plzen, Czechia
| | - Ghassan M Matar
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan Dbaibo
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
18
|
McGuire MK, Randall AZ, Seppo AE, Järvinen KM, Meehan CL, Gindola D, Williams JE, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Foster JA, Otoo GE, Rodríguez JM, Pareja RG, Bode L, McGuire MA, Campo JJ. Multipathogen Analysis of IgA and IgG Antigen Specificity for Selected Pathogens in Milk Produced by Women From Diverse Geographical Regions: The INSPIRE Study. Front Immunol 2021; 11:614372. [PMID: 33643297 PMCID: PMC7905217 DOI: 10.3389/fimmu.2020.614372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Breastfeeding provides defense against infectious disease during early life. The mechanisms underlying this protection are complex but likely include the vast array of immune cells and components, such as immunoglobulins, in milk. Simply characterizing the concentrations of these bioactives, however, provides only limited information regarding their potential relationships with disease risk in the recipient infant. Rather, understanding pathogen and antigen specificity profiles of milk-borne immunoglobulins might lead to a more complete understanding of how maternal immunity impacts infant health and wellbeing. Milk produced by women living in 11 geographically dispersed populations was applied to a protein microarray containing antigens from 16 pathogens, including diarrheagenic E. coli, Shigella spp., Salmonella enterica serovar Typhi, Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis and other pathogens of global health concern, and specific IgA and IgG binding was measured. Our analysis identified novel disease-specific antigen responses and suggests that some IgA and IgG responses vary substantially within and among populations. Patterns of antibody reactivity analyzed by principal component analysis and differential reactivity analysis were associated with either lower-to-middle-income countries (LMICs) or high-income countries (HICs). Antibody levels were generally higher in LMICs than HICs, particularly for Shigella and diarrheagenic E. coli antigens, although sets of S. aureus, S. pneumoniae, and some M. tuberculosis antigens were more reactive in HICs. Differential responses were typically specific to canonical immunodominant antigens, but a set of nondifferential but highly reactive antibodies were specific to antigens possibly universally recognized by antibodies in human milk. This approach provides a promising means to understand how breastfeeding and human milk protect (or do not protect) infants from environmentally relevant pathogens. Furthermore, this approach might lead to interventions to boost population-specific immunity in at-risk breastfeeding mothers and their infants.
Collapse
Affiliation(s)
- Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | | | - Antti E. Seppo
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Kirsi M. Järvinen
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Debela Gindola
- Department of Anthropology, Hawassa University, Awasa, Ethiopia
| | - Janet E. Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Daniel W. Sellen
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E. Moore
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
- MRC Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Andrew M. Prentice
- MRC Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - James A. Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Gloria E. Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | | | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Mark A. McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | | |
Collapse
|
19
|
Lan P, Shi Q, Zhang P, Chen Y, Yan R, Hua X, Jiang Y, Zhou J, Yu Y. Core Genome Allelic Profiles of Clinical Klebsiella pneumoniae Strains Using a Random Forest Algorithm Based on Multilocus Sequence Typing Scheme for Hypervirulence Analysis. J Infect Dis 2021; 221:S263-S271. [PMID: 32176785 DOI: 10.1093/infdis/jiz562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Hypervirulent Klebsiella pneumoniae (hvKP) infections can have high morbidity and mortality rates owing to their invasiveness and virulence. However, there are no effective tools or biomarkers to discriminate between hvKP and nonhypervirulent K. pneumoniae (nhvKP) strains. We aimed to use a random forest algorithm to predict hvKP based on core-genome data. METHODS In total, 272 K. pneumoniae strains were collected from 20 tertiary hospitals in China and divided into hvKP and nhvKP groups according to clinical criteria. Clinical data comparisons, whole-genome sequencing, virulence profile analysis, and core genome multilocus sequence typing (cgMLST) were performed. We then established a random forest predictive model based on the cgMLST scheme to prospectively identify hvKP. The random forest is an ensemble learning method that generates multiple decision trees during the training process and each decision tree will output its own prediction results corresponding to the input. The predictive ability of the model was assessed by means of area under the receiver operating characteristic curve. RESULTS Patients in the hvKP group were younger than those in the nhvKP group (median age, 58.0 and 68.0 years, respectively; P < .001). More patients in the hvKP group had underlying diabetes mellitus (43.1% vs 20.1%; P < .001). Clinically, carbapenem-resistant K. pneumoniae was less common in the hvKP group (4.1% vs 63.8%; P < .001), whereas the K1/K2 serotype, sequence type (ST) 23, and positive string tests were significantly higher in the hvKP group. A cgMLST-based minimal spanning tree revealed that hvKP strains were scattered sporadically within nhvKP clusters. ST23 showed greater genome diversification than did ST11, according to cgMLST-based allelic differences. Primary virulence factors (rmpA, iucA, positive string test result, and the presence of virulence plasmid pLVPK) were poor predictors of the hypervirulence phenotype. The random forest model based on the core genome allelic profile presented excellent predictive power, both in the training and validating sets (area under receiver operating characteristic curve, 0.987 and 0.999 in the training and validating sets, respectively). CONCLUSIONS A random forest algorithm predictive model based on the core genome allelic profiles of K. pneumoniae was accurate to identify the hypervirulent isolates.
Collapse
Affiliation(s)
- Peng Lan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Ping Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Rushuang Yan
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Jiancang Zhou
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
20
|
Jamalkandi SA, Kouhsar M, Salimian J, Ahmadi A. The identification of co-expressed gene modules in Streptococcus pneumonia from colonization to infection to predict novel potential virulence genes. BMC Microbiol 2020; 20:376. [PMID: 33334315 PMCID: PMC7745498 DOI: 10.1186/s12866-020-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/02/2020] [Indexed: 11/14/2022] Open
Abstract
Background Streptococcus pneumonia (pneumococcus) is a human bacterial pathogen causing a range of mild to severe infections. The complicated transcriptome patterns of pneumococci during the colonization to infection process in the human body are usually determined by measuring the expression of essential virulence genes and the comparison of pathogenic with non-pathogenic bacteria through microarray analyses. As systems biology studies have demonstrated, critical co-expressing modules and genes may serve as key players in biological processes. Generally, Sample Progression Discovery (SPD) is a computational approach traditionally used to decipher biological progression trends and their corresponding gene modules (clusters) in different clinical samples underlying a microarray dataset. The present study aimed to investigate the bacterial gene expression pattern from colonization to severe infection periods (specimens isolated from the nasopharynx, lung, blood, and brain) to find new genes/gene modules associated with the infection progression. This strategy may lead to finding novel gene candidates for vaccines or drug design. Results The results included essential genes whose expression patterns varied in different bacterial conditions and have not been investigated in similar studies. Conclusions In conclusion, the SPD algorithm, along with differentially expressed genes detection, can offer new ways of discovering new therapeutic or vaccine targeted gene products. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02059-0.
Collapse
Affiliation(s)
- Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Kouhsar
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Chan JM, Gori A, Nobbs AH, Heyderman RS. Streptococcal Serine-Rich Repeat Proteins in Colonization and Disease. Front Microbiol 2020; 11:593356. [PMID: 33193266 PMCID: PMC7661464 DOI: 10.3389/fmicb.2020.593356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosylation of proteins, previously thought to be absent in prokaryotes, is increasingly recognized as important for both bacterial colonization and pathogenesis. For mucosal pathobionts, glycoproteins that function as cell wall-associated adhesins facilitate interactions with mucosal surfaces, permitting persistent adherence, invasion of deeper tissues and transition to disease. This is exemplified by Streptococcus pneumoniae and Streptococcus agalactiae, which can switch from being relatively harmless members of the mucosal tract microbiota to bona fide pathogens that cause life-threatening diseases. As part of their armamentarium of virulence factors, streptococci encode a family of large, glycosylated serine-rich repeat proteins (SRRPs) that facilitate binding to various tissue types and extracellular matrix proteins. This minireview focuses on the roles of S. pneumoniae and S. agalactiae SRRPs in persistent colonization and the transition to disease. The potential of utilizing SRRPs as vaccine targets will also be discussed.
Collapse
Affiliation(s)
- Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Andrea Gori
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Robert S. Heyderman
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
22
|
Ayoola MB, Nakamya MF, Shack LA, Park S, Lim J, Lee JH, Ross MK, Eoh H, Nanduri B. SP_0916 Is an Arginine Decarboxylase That Catalyzes the Synthesis of Agmatine, Which Is Critical for Capsule Biosynthesis in Streptococcus pneumoniae. Front Microbiol 2020; 11:578533. [PMID: 33072045 PMCID: PMC7531197 DOI: 10.3389/fmicb.2020.578533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022] Open
Abstract
The global burden of invasive pneumococcal diseases, including pneumonia and sepsis, caused by Streptococcus pneumoniae, a Gram-positive bacterial pathogen, remains a major global health risk. The success of pneumococcus as a pathogen can be attributed to its ability to regulate the synthesis of capsular polysaccharide (CPS) during invasive disease. We previously reported that deletion of a putative lysine decarboxylase (LDC; ΔSP_0916) in pneumococcal serotype 4 (TIGR4) results in reduced CPS. SP_0916 locus is annotated as either an arginine or a LDC in pneumococcal genomes. In this study, by biochemical characterization of the recombinant SP_0916, we determined the substrate specificity of SP_0916 and show that it is an arginine decarboxylase (speA/ADC). We also show that deletion of the polyamine transporter (potABCD) predicted to import putrescine and spermidine results in reduced CPS, while deletion of spermidine synthase (speE) for the conversion of putrescine to spermidine had no impact on the capsule. Targeted metabolomics identified a correlation between reduced levels of agmatine and loss of capsule in ΔspeA and ΔpotABCD, while agmatine levels were comparable between the encapsulated TIGR4 and ΔspeE. Exogenous supplementation of agmatine restored CPS in both ΔpotABCD and ΔspeA. These results demonstrate that agmatine is critical for regulating the CPS, a predominant virulence factor in pneumococci.
Collapse
Affiliation(s)
- Moses B Ayoola
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mary F Nakamya
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Leslie A Shack
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Seongbin Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Juhyeon Lim
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Jung Hwa Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Matthew K Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hyungjin Eoh
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
23
|
Cockeran R, Dix-Peek T, Dickens C, Steel HC, Anderson R, Feldman C. Biofilm formation and induction of stress response genes is a common response of several serotypes of the pneumococcus to cigarette smoke condensate. J Infect 2020; 80:204-209. [DOI: 10.1016/j.jinf.2019.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 01/26/2023]
|
24
|
A Cross-Reactive Protein Vaccine Combined with PCV-13 Prevents Streptococcus pneumoniae- and Haemophilus influenzae-Mediated Acute Otitis Media. Infect Immun 2019; 87:IAI.00253-19. [PMID: 31308088 DOI: 10.1128/iai.00253-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 11/20/2022] Open
Abstract
Acute otitis media is one of the most common childhood infections worldwide. Currently licensed vaccines against the common otopathogen Streptococcus pneumoniae target the bacterial capsular polysaccharide and confer no protection against nonencapsulated strains or capsular types outside vaccine coverage. Mucosal infections such as acute otitis media remain prevalent, even those caused by vaccine-covered serotypes. Here, we report that a protein-based vaccine, a fusion construct of epitopes of CbpA to pneumolysin toxoid, confers effective protection against pneumococcal acute otitis media for non-PCV-13 serotypes and enhances protection for PCV-13 serotypes when coadministered with PCV-13. Having cross-reactive epitopes, the fusion protein also induces potent antibody responses against nontypeable Haemophilus influenzae and S. pneumoniae, engendering protection against acute otitis media caused by emerging unencapsulated otopathogens. These data suggest that augmenting capsule-based vaccination with conserved, cross-reactive protein-based vaccines broadens and enhances protection against acute otitis media.
Collapse
|
25
|
Dorosti H, Eslami M, Nezafat N, Fadaei F, Ghasemi Y. Designing self-assembled peptide nanovaccine against Streptococcus pneumoniae: An in silico strategy. Mol Cell Probes 2019; 48:101446. [PMID: 31520715 PMCID: PMC7126903 DOI: 10.1016/j.mcp.2019.101446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023]
Abstract
Streptococcus pneumoniae is the main cause of diseases such as meningitis, pneumoniae and sepsis, especially in children and old people. Due to costly antibiotic treatment, and increasing resistance of pneumococcus, developing high-efficient protective vaccine against this pathogen is an urgent need. Although the pneumoniae polysaccharide vaccine (PPV) and pneumonia conjugate vaccines (PCV) are the efficient pneumococcal vaccine in children and adult groups, but the serotype replacement of S. pneumoniae strains causes the reduction in efficacy of such vaccines. For overcoming the aforesaid drawbacks epitope-based vaccines are introduced as the relevant alternative. In our previous research, the epitope vaccine was designed based on immunodominant epitopes from PspA, CbpA antigens as cellular stimulants and PhtD, PiuA as humoral stimulants. Because the low immunogenicity is the main disadvantage of epitope vaccine, in the current study, we applied coiled-coil self-assembled structures for developing our vaccine. Recently, self-assembled peptide nanoparticles (SAPNs) have gained much attention in the field of vaccine development due to their multivalency, self-adjuvanticity, biocompatibility, and size similarity to pathogen. In this regard, the final designed vaccine is comprised of cytotoxic T lymphocytes (CTL) epitopes from PspA and CbpA, helper T lymphocytes (HTL) epitopes from PhtD and PiuA, the pentamer and trimmer oligomeric domains form 5-stranded and 3-stranded coiled-coils as self-assembled scaffold, Diphtheria toxoids (DTD) as a universal T-helper, which fused to each other with appropriate linkers. The four different arrangements based on the order of above-mentioned compartments were constructed, and each of them were modeled, and validated to find the 3D structure. The structural, physicochemical, and immunoinformatics analyses of final vaccine construct represented that our vaccine could stimulate potent immune response against S. pneumoniae; however, the potency of that should be approved via various in vivo and in vitro immunological tests. Stimulating cellular and especially humoral immunities are essential for protection against Streptococcus Pneumoniae. Immunodominant epitopes were selected from highly protective antigens of S. pneumoniae: PspA, CbpA, PiuA, PhtD. In order to bypass the low immunogenicity of epitope-based peptide vaccine the self-assembled motifs, coiled-coil structure, was applied as the vaccine scaffold. The structural, physicochemical, and immunoinformatics results indicate that the designed vaccine can incite strong immune response against S. pneumoniae.
Collapse
Affiliation(s)
- Hesam Dorosti
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fardin Fadaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Abstract
S. pseudopneumoniae is an overlooked pathogen emerging as the causative agent of lower-respiratory-tract infections and associated with chronic obstructive pulmonary disease (COPD) and exacerbation of COPD. However, much remains unknown on its clinical importance and epidemiology, mainly due to the lack of specific markers to distinguish it from S. pneumoniae. Here, we provide a new molecular marker entirely specific for S. pseudopneumoniae and offer a comprehensive view of the virulence and colonization genes found in this species. Finally, our results pave the way for further studies aiming at understanding the pathogenesis and epidemiology of S. pseudopneumoniae. Streptococcus pseudopneumoniae is a close relative of the major human pathogen S. pneumoniae. It is increasingly associated with lower-respiratory-tract infections (LRTI) and a high prevalence of antimicrobial resistance (AMR). S. pseudopneumoniae is difficult to identify using traditional typing methods due to similarities with S. pneumoniae and other members of the mitis group (SMG). Using whole-genome sequencing of LRTI isolates and a comparative genomic approach, we found that a large number of pneumococcal virulence and colonization genes are present in the core S. pseudopneumoniae genome. We also reveal an impressive number of novel surface-exposed proteins encoded by the genome of this species. In addition, we propose a new and entirely specific molecular marker useful for the identification of S. pseudopneumoniae. Phylogenetic analyses of S. pseudopneumoniae show that specific clades are associated with allelic variants of core proteins. Resistance to tetracycline and macrolides, the two most common types of resistance, were found to be encoded by Tn916-like integrating conjugative elements and Mega-2. Overall, we found a tight association of genotypic determinants of AMR and phenotypic AMR with a specific lineage of S. pseudopneumoniae. Taken together, our results shed light on the distribution in S. pseudopneumoniae of genes known to be important during invasive disease and colonization and provide insight into features that could contribute to virulence, colonization, and adaptation.
Collapse
|
27
|
Abstract
Pneumococci respond extremely rapidly to the vaccine pressure created by the conjugate vaccines (PCVs). Vaccine serotypes are disappearing, meanwhile new, often previously very rare types are emerging, and it is difficult to establish what makes certain serotypes more successful in replacement. The situation is very complex: every serotype has different antibiotic sensitivity or invasive capacity. However, despite this dynamic serotype rearrangement, the overall pneumococcal carriage rate remains quite stable, suggesting that these bacterial species can be considered as a commensal colonizer.
Collapse
Affiliation(s)
- Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Kavalari ID, Fuursted K, Krogfelt KA, Slotved HC. Molecular characterization and epidemiology of Streptococcus pneumoniae serotype 24F in Denmark. Sci Rep 2019; 9:5481. [PMID: 30940899 PMCID: PMC6445336 DOI: 10.1038/s41598-019-41983-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/21/2019] [Indexed: 12/29/2022] Open
Abstract
Since 2012, have we in Denmark observed an increase of invasive pneumococcal infections (IPD) due to Streptococcus pneumoniae serotype 24F. We here present epidemiological data on 24F IPD cases, and characterization of 48 24F clinical isolates based on clonal relationship, antimicrobial resistance (AMR) determinants and virulence factors. IPD surveillance data from (1999-2016) were used to calculate the incidence and age-distribution of serotype 24F IPD and the effect of pneumococcal conjugated vaccines (PCV). Characterization of forty-eight 24F isolates (14.7% of all 24F isolates from the period) was based on whole-genome sequencing analysis (WGS). The IPD cases of serotype 24F showed a significant increase (p < 0.05) for all age groups after the PCV-13 introduction in 2010. The majority of tested 24F isolates consisted of two MLST types, i.e. the ST72 and the ST162. Serotype 24F IPD increased in Denmark after the PCV-13 introduction in parallel with an increase of the ST162 clone. The genotypic penicillin binding protein (PBP) profile agreed with the phenotypical penicillin susceptibility. The virulence genes lytA, ply, piaA, piaB, piaC, rspB and the cpsA/wzg were detected in all 24F isolates, while the pspA and zmpC genes were absent.
Collapse
Affiliation(s)
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - H-C Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
29
|
Lagousi T, Basdeki P, Routsias J, Spoulou V. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines (Basel) 2019; 7:vaccines7010009. [PMID: 30669439 PMCID: PMC6466302 DOI: 10.3390/vaccines7010009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Non-serotype-specific protein-based pneumococcal vaccines have received extensive research focus due to the limitations of polysaccharide-based vaccines. Pneumococcal proteins (PnPs), universally expressed among serotypes, may induce broader immune responses, stimulating humoral and cellular immunity, while being easier to manufacture and less expensive. Such an approach has raised issues mainly associated with sequence/level of expression variability, chemical instability, as well as possible undesirable reactogenicity and autoimmune properties. A step forward employs the identification of highly-conserved antigenic regions within PnPs with the potential to retain the benefits of protein antigens. Besides, their low-cost and stable construction facilitates the combination of several antigenic regions or peptides that may impair different stages of pneumococcal disease offering even wider serotype coverage and more efficient protection. This review discusses the up-to-date progress on PnPs that are currently under clinical evaluation and the challenges for their licensure. Focus is given on the progress on the identification of antigenic regions/peptides within PnPs and their evaluation as vaccine candidates, accessing their potential to overcome the issues associated with full-length protein antigens. Particular mention is given of the use of newer delivery system technologies including conjugation to Toll-like receptors (TLRs) and reformulation into nanoparticles to enhance the poor immunogenicity of such antigens.
Collapse
Affiliation(s)
- Theano Lagousi
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," Athens Medical School, 11527 Athens, Greece.
| | - Paraskevi Basdeki
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," Athens Medical School, 11527 Athens, Greece.
| | - John Routsias
- Department of Microbiology, Athens Medical School, 11527 Athens, Greece.
| | - Vana Spoulou
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
30
|
Anderson R, Nel JG, Feldman C. Multifaceted Role of Pneumolysin in the Pathogenesis of Myocardial Injury in Community-Acquired Pneumonia. Int J Mol Sci 2018; 19:E1147. [PMID: 29641429 PMCID: PMC5979279 DOI: 10.3390/ijms19041147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Pneumolysin (PLY), a member of the family of Gram-positive bacterial, cholesterol-dependent, β-barrel pore-forming cytolysins, is the major protein virulence factor of the dangerous respiratory pathogen, Streptococcus pneumoniae (pneumococcus). PLY plays a major role in the pathogenesis of community-acquired pneumonia (CAP), promoting colonization and invasion of the upper and lower respiratory tracts respectively, as well as extra-pulmonary dissemination of the pneumococcus. Notwithstanding its role in causing acute lung injury in severe CAP, PLY has also been implicated in the development of potentially fatal acute and delayed-onset cardiovascular events, which are now recognized as being fairly common complications of this condition. This review is focused firstly on updating mechanisms involved in the immunopathogenesis of PLY-mediated myocardial damage, specifically the direct cardiotoxic and immunosuppressive activities, as well as the indirect pro-inflammatory/pro-thrombotic activities of the toxin. Secondly, on PLY-targeted therapeutic strategies including, among others, macrolide antibiotics, natural product antagonists, cholesterol-containing liposomes, and fully humanized monoclonal antibodies, as well as on vaccine-based preventive strategies. These sections are preceded by overviews of CAP in general, the role of the pneumococcus as the causative pathogen, the occurrence and types of CAP-associated cardiac complication, and the structure and biological activities of PLY.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | - Jan G Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria 0001, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 0002, South Africa.
| |
Collapse
|