1
|
Zhu N, Feng Y, Shi G, Zhang Q, Yuan B, Qiao Q. Evolutionary analysis of TIR- and non-TIR-NBS-LRR disease resistance genes in wild strawberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1452251. [PMID: 39640992 PMCID: PMC11617207 DOI: 10.3389/fpls.2024.1452251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Introduction NBS-LRR genes (NLRs) are the most extensive category of plant resistance genes (R genes) and play a crucial role in pathogen defense. Understanding the diversity and evolutionary dynamics of NLRs in different plant species is essential for improving disease resistance. This study investigates the NLR gene family in eight diploid wild strawberry species to explore their structural characteristics, evolutionary relationships, and potential for enhancing disease resistance. Methods We conducted a comprehensive genome-wide identification and structural analysis of NLRs across eight diploid wild strawberry species. Phylogenetic analysis was performed to examine the relationships between TIR-NLRs (TNLs), Non-TIR-NLRs (non-TNLs), CC-NLRs (CNLs), and RPW8-NLRs (RNLs). Gene structures were compared, and gene expression was profiled across different NLR subfamilies. Additionally, in vitro leaf inoculation assays with Botrytis cinerea were performed to assess the resistance of various strawberry species. Results Our analysis revealed that non-TNLs constitute over 50% of the NLR gene family in all eight strawberry species, surpassing the proportion of TNLs. Phylogenetic analysis showed that TNLs diverged into two subclades: one grouping with CNLs and the other closely related to RNLs. A significantly higher number of non-TNLs were under positive selection compared to TNLs, indicating their rapid diversification. Gene structure analysis demonstrated that non-TNLs have shorter gene structures than TNLs and exhibit higher expression levels, particularly RNLs. Notably, non-TNLs showed dominant expression under both normal and infected conditions. In vitro leaf inoculation assays revealed that Fragaria pentaphylla and Fragaria nilgerrensis, which have the highest proportion of non-TNLs, exhibited significantly greater resistance to Botrytis cinerea compared to Fragaria vesca, which has the lowest proportion of non-TNLs. Discussion The findings of this study provide important insights into the evolutionary dynamics of NLRs in strawberries, particularly the significant role of non-TNLs in pathogen defense. The rapid diversification and higher expression levels of non-TNLs suggest their potential contribution to enhanced disease resistance. This research highlights the value of non-TNLs in strawberry breeding programs aimed at improving resistance to pathogens such as Botrytis cinerea.
Collapse
Affiliation(s)
- Ni Zhu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yuxi Feng
- School of Agriculture, Yunnan University, Kunming, China
| | - Guangxin Shi
- School of Agriculture, Yunnan University, Kunming, China
| | - Qihang Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Bo Yuan
- School of Agriculture, Yunnan University, Kunming, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Hou Q, Yu R, Shang C, Deng H, Wen Z, Qiu Z, Qiao G. Molecular characterization and evolutionary relationships of DOFs in four cherry species and functional analysis in sweet cherry. Int J Biol Macromol 2024; 263:130346. [PMID: 38403208 DOI: 10.1016/j.ijbiomac.2024.130346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The DOF (DNA binding with one finger) has multiple functions in plants. However, it has received little attention in the research field of cherries. In this study, the evolutionary relationship and molecular characterization of DOF in four cherry species were analyzed, revealing its expression pattern in sweet cherry. There are 23 members in Prunus avium cv. 'Tieton', 88 in Prunus cerasus, 53 in Cerasus × yedoensis, and 27 in Cerasus serrulata. Most of these genes are intron-less or non-intron, with a conserved C2-C2 domain. Due to heterozygosity and chromosomal ploidy, whole-genome duplication (WGD) events occur to varying degrees, and DOF genes are contracted during evolution. Furthermore, these genes are affected by purifying selection pressure. Under low-temperature treatment, the expression of PavDOF2 and PavDOF18 were significantly up-regulated, while that of PavDOF16 is significantly down-regulated. The expression of PavDOF9, PavDOF12, PavDOF14, PavDOF16, PavDOF17, PavDOF18, and PavDOF19 exhibits an increasing trend during flower development and varies during sweet cherry fruit development. PavDOF1, PavDOF8, PavDOF9, and PavDOF15 are localized in the nucleus but is not transcriptionally active. The findings systemically demonstrate the molecular characteristics of DOF in different cherry varieties, providing a basis for further research on the functions of these genes.
Collapse
Affiliation(s)
- Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chunqiong Shang
- College of Forestry, Guizhou University/ Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, Guizhou Province, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhilang Qiu
- School of Biology & Engineering, School of Health Medicine Modern Industry, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
3
|
Chen Y, Ma T, Zhang T, Ma L. Trends in the evolution of intronless genes in Poaceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1065631. [PMID: 36875616 PMCID: PMC9978806 DOI: 10.3389/fpls.2023.1065631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Intronless genes (IGs), which are a feature of prokaryotes, are a fascinating group of genes that are also present in eukaryotes. In the current study, a comparison of Poaceae genomes revealed that the origin of IGs may have involved ancient intronic splicing, reverse transcription, and retrotranspositions. Additionally, IGs exhibit the typical features of rapid evolution, including recent duplications, variable copy numbers, low divergence between paralogs, and high non-synonymous to synonymous substitution ratios. By tracing IG families along the phylogenetic tree, we determined that the evolutionary dynamics of IGs differed among Poaceae subfamilies. IG families developed rapidly before the divergence of Pooideae and Oryzoideae and expanded slowly after the divergence. In contrast, they emerged gradually and consistently in the Chloridoideae and Panicoideae clades during evolution. Furthermore, IGs are expressed at low levels. Under relaxed selection pressure, retrotranspositions, intron loss, and gene duplications and conversions may promote the evolution of IGs. The comprehensive characterization of IGs is critical for in-depth studies on intron functions and evolution as well as for assessing the importance of introns in eukaryotes.
Collapse
Affiliation(s)
- Yong Chen
- *Correspondence: Tingting Zhang, ; Lei Ma,
| | | | | | - Lei Ma
- *Correspondence: Tingting Zhang, ; Lei Ma,
| |
Collapse
|
4
|
Bai Y, Liu H, Zhu K, Cheng ZM. Evolution and functional analysis of the GRAS family genes in six Rosaceae species. BMC PLANT BIOLOGY 2022; 22:569. [PMID: 36471247 PMCID: PMC9724429 DOI: 10.1186/s12870-022-03925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND GRAS genes formed one of the important transcription factor gene families in plants, had been identified in several plant species. The family genes were involved in plant growth, development, and stress resistance. However, the comparative analysis of GRAS genes in Rosaceae species was insufficient. RESULTS In this study, a total of 333 GRAS genes were identified in six Rosaceae species, including 51 in strawberry (Fragaria vesca), 78 in apple (Malus domestica), 41 in black raspberry (Rubus occidentalis), 59 in European pear (Pyrus communis), 56 in Chinese rose (Rosa chinensis), and 48 in peach (Prunus persica). Motif analysis showed the VHIID domain, SAW motif, LR I region, and PFYRE motif were considerably conserved in the six Rosaceae species. All GRAS genes were divided into 10 subgroups according to phylogenetic analysis. A total of 15 species-specific duplicated clades and 3 lineage-specific duplicated clades were identified in six Rosaceae species. Chromosomal localization presented the uneven distribution of GRAS genes in six Rosaceae species. Duplication events contributed to the expression of the GRAS genes, and Ka/Ks analysis suggested the purification selection as a major force during the evolution process in six Rosaceae species. Cis-acting elements and GO analysis revealed that most of the GRAS genes were associated with various environmental stress in six Rosaceae species. Coexpression network analysis showed the mutual regulatory relationship between GRAS and bZIP genes, suggesting the ability of the GRAS gene to regulate abiotic stress in woodland strawberry. The expression pattern elucidated the transcriptional levels of FvGRAS genes in various tissues and the drought and salt stress in woodland strawberry, which were verified by RT-qPCR analysis. CONCLUSIONS The evolution and functional analysis of GRAS genes provided insights into the further understanding of GRAS genes on the abiotic stress of Rosaceae species.
Collapse
Affiliation(s)
- Yibo Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
5
|
Guo L, You C, Zhang H, Wang Y, Zhang R. Genome-wide analysis of NBS-LRR genes in Rosaceae species reveals distinct evolutionary patterns. Front Genet 2022; 13:1052191. [PMID: 36437946 PMCID: PMC9685399 DOI: 10.3389/fgene.2022.1052191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes, one of the largest gene families in plants, are evolving rapidly and playing a critical role in plant resistance to pathogens. In this study, a genome-wide search in 12 Rosaceae genomes screened out 2188 NBS-LRR genes, with the gene number varied distinctively across different species. The reconciled phylogeny revealed 102 ancestral genes (7 RNLs, 26 TNLs, and 69 CNLs), which underwent independent gene duplication and loss events during the divergence of the Rosaceae. The NBS-LRR genes exhibited dynamic and distinct evolutionary patterns in the 12 Rosaceae species due to independent gene duplication/loss events, which resulted the discrepancy of NBS-LRR gene number among Rosaceae species. Specifically, Rubus occidentalis, Potentilla micrantha, Fragaria iinumae and Gillenia trifoliata, displayed a “first expansion and then contraction” evolutionary pattern; Rosa chinensis exhibited a “continuous expansion” pattern; F. vesca had a “expansion followed by contraction, then a further expansion” pattern, three Prunus species and three Maleae species shared a “early sharp expanding to abrupt shrinking” pattern. Overall, this study elucidated the dynamic and complex evolutionary patterns of NBS-LRR genes in the 12 Rosaceae species, and could assist further investigation of mechanisms driving these evolutionary patterns.
Collapse
Affiliation(s)
- Liping Guo
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Chen You
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Hanghang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- *Correspondence: Yukun Wang, ; Rui Zhang,
| | - Rui Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Yukun Wang, ; Rui Zhang,
| |
Collapse
|
6
|
Vining KJ, Pandelova I, Lange I, Parrish AN, Lefors A, Kronmiller B, Liachko I, Kronenberg Z, Srividya N, Lange BM. Chromosome-level genome assembly of Mentha longifolia L. reveals gene organization underlying disease resistance and essential oil traits. G3 GENES|GENOMES|GENETICS 2022; 12:6584825. [PMID: 35551385 PMCID: PMC9339296 DOI: 10.1093/g3journal/jkac112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.
Collapse
Affiliation(s)
- Kelly J Vining
- Department of Horticulture, Oregon State University , Corvallis, OR 97331, USA
| | - Iovanna Pandelova
- Department of Horticulture, Oregon State University , Corvallis, OR 97331, USA
| | - Iris Lange
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Amber N Parrish
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Andrew Lefors
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Brent Kronmiller
- Center for Quantitative Life Sciences, Oregon State University , Corvallis, OR 97331, USA
| | | | | | - Narayanan Srividya
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - B Markus Lange
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| |
Collapse
|
7
|
Zhong Y, Chen Z, Cheng ZM. Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species. Mol Genet Genomics 2022; 297:263-276. [PMID: 35031863 PMCID: PMC8803762 DOI: 10.1007/s00438-021-01849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.
Collapse
Affiliation(s)
- Yan Zhong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhao Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Cheng
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Si Z, Wang L, Qiao Y, Roychowdhury R, Ji Z, Zhang K, Han J. Genome-wide comparative analysis of the nucleotide-binding site-encoding genes in four Ipomoea species. FRONTIERS IN PLANT SCIENCE 2022; 13:960723. [PMID: 36061812 PMCID: PMC9434374 DOI: 10.3389/fpls.2022.960723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/27/2022] [Indexed: 05/14/2023]
Abstract
The nucleotide-binding site (NBS)-encoding gene is a major type of resistance (R) gene, and its diverse evolutionary patterns were analyzed in different angiosperm lineages. Until now, no comparative studies have been done on the NBS encoding genes in Ipomoea species. In this study, various numbers of NBS-encoding genes were identified across the whole genome of sweet potato (Ipomoea batatas) (#889), Ipomoea trifida (#554), Ipomoea triloba (#571), and Ipomoea nil (#757). Gene analysis showed that the CN-type and N-type were more common than the other types of NBS-encoding genes. The phylogenetic analysis revealed that the NBS-encoding genes formed three monophyletic clades: CNL, TNL, and RNL, which were distinguished by amino acid motifs. The distribution of the NBS-encoding genes among the chromosomes was non-random and uneven; 83.13, 76.71, 90.37, and 86.39% of the genes occurred in clusters in sweet potato, I. trifida, I. triloba, and I. nil, respectively. The duplication pattern analysis reveals the presence of higher segmentally duplicated genes in sweet potatoes than tandemly duplicated ones. The opposite trend was found for the other three species. A total of 201 NBS-encoding orthologous genes were found to form synteny gene pairs between any two of the four Ipomea species, suggesting that each of the synteny gene pairs was derived from a common ancestor. The gene expression patterns were acquired by analyzing using the published datasets. To explore the candidate resistant genes in sweet potato, transcriptome analysis has been carried out using two resistant (JK20 and JK274) and susceptible cultivars (Tengfei and Santiandao) of sweet potato for stem nematodes and Ceratocystis fimbriata pathogen, respectively. A total of 11 differentially expressed genes (DEGs) were found in Tengfei and JK20 for stem nematodes and 19 DEGs in Santiandao and JK274 for C. fimbriata. Moreover, six DEGs were further selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. The results may provide new insights into the evolution of NBS-encoding genes in the Ipomoea genome and contribute to the future molecular breeding of sweet potatoes.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- *Correspondence: Zengzhi Si,
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)–Volcani Center, Rishon LeZion, Israel
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
9
|
Liu H, Lyu HM, Zhu K, de Peer YV, Cheng ZM(M. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1072-1082. [PMID: 33217085 PMCID: PMC7116809 DOI: 10.1111/tpj.15088] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/02/2023]
Abstract
Eukaryotic genes can be classified into intronless (no introns), intron-poor (three or fewer introns per gene) or intron-rich. Early eukaryotic genes were mostly intron-rich, and their alternative splicing into multiple transcripts, giving rise to different proteins, might have played pivotal roles in adaptation and evolution. Interestingly, extant plant genomes contain many gene families with one or sometimes few sub-families with genes that are intron-poor or intronless, and it remains unknown when and how these intron-poor or intronless genes have originated and evolved, and what their possible functions are. In this study, we identified 33 such gene families that contained intronless and intron-poor sub-families. Intronless genes seemed to have first emerged in early land plant evolution, while intron-poor sub-families seemed first to have appeared in green algae. In contrast to intron-rich genes, intronless genes in intron-poor sub-families occurred later, and were subject to stronger functional constraints. Based on RNA-seq analyses in Arabidopsis and rice, intronless or intron-poor genes in AP2, EF-hand_7, bZIP, FAD_binding_4, STE_STE11, CAMK_CAMKL-CHK1 and C2 gene families were more likely to play a role in response to drought and salt stress, compared with intron-rich genes in the same gene families, whereas intronless genes in the B_lectin and S_locus_glycop gene family were more likely to participate in epigenetic processes and plant development. Understanding the origin and evolutionary trajectory, as well as the potential functions, of intronless and intron-poor sub-families provides further insight into plant genome evolution and the functional divergence of genes.
Collapse
Affiliation(s)
- Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Meng Lyu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaikai Zhu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yves Van de Peer
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Zong-Ming (Max) Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Sciences, University of Tennessee, Knoxville 37996, USA
- Corresponding author (, )
| |
Collapse
|
10
|
Sun M, Zhang M, Singh J, Song B, Tang Z, Liu Y, Wang R, Qin M, Li J, Khan A, Wu J. Contrasting genetic variation and positive selection followed the divergence of NBS-encoding genes in Asian and European pears. BMC Genomics 2020; 21:809. [PMID: 33213380 PMCID: PMC7678159 DOI: 10.1186/s12864-020-07226-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The NBS disease-related gene family coordinates the inherent immune system in plants in response to pathogen infections. Previous studies have identified NBS-encoding genes in Pyrus bretschneideri ('Dangshansuli', an Asian pear) and Pyrus communis ('Bartlett', a European pear) genomes, but the patterns of genetic variation and selection pressure on these genes during pear domestication have remained unsolved. RESULTS In this study, 338 and 412 NBS-encoding genes were identified from Asian and European pear genomes. This difference between the two pear species was the result of proximal duplications. About 15.79% orthologous gene pairs had Ka/Ks ratio more than one, indicating two pear species undergo strong positive selection after the divergence of Asian and European pear. We identified 21 and 15 NBS-encoding genes under fire blight and black spot disease-related QTL, respectively, suggesting their importance in disease resistance. Domestication caused decreased nucleotide diversity across NBS genes in Asian cultivars (cultivated 6.23E-03; wild 6.47E-03), but opposite trend (cultivated 6.48E-03; wild 5.91E-03) appeared in European pears. Many NBS-encoding coding regions showed Ka/Ks ratio of greater than 1, indicating the role of positive selection in shaping diversity of NBS-encoding genes in pear. Furthermore, we detected 295 and 122 significantly different SNPs between wild and domesticated accessions in Asian and European pear populations. Two NBS genes (Pbr025269.1 and Pbr019876.1) with significantly different SNPs showed >5x upregulation between wild and cultivated pear accessions, and > 2x upregulation in Pyrus calleryana after inoculation with Alternaria alternata. We propose that positively selected and significantly different SNPs of an NBS-encoding gene (Pbr025269.1) regulate gene expression differences in the wild and cultivated groups, which may affect resistance in pear against A. alternata. CONCLUSION Proximal duplication mainly led to the different number of NBS-encoding genes in P. bretschneideri and P. communis genomes. The patterns of genetic diversity and positive selection pressure differed between Asian and European pear populations, most likely due to their independent domestication events. This analysis helps us understand the evolution, diversity, and selection pressure in the NBS-encoding gene family in Asian and European populations, and provides opportunities to study mechanisms of disease resistance in pear.
Collapse
Affiliation(s)
- Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingyue Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jugpreet Singh
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Bobo Song
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zikai Tang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yueyuan Liu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Runze Wang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mengfan Qin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Awais Khan
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
11
|
Tirnaz S, Bayer PE, Inturrisi F, Zhang F, Yang H, Dolatabadian A, Neik TX, Severn-Ellis A, Patel DA, Ibrahim MI, Pradhan A, Edwards D, Batley J. Resistance Gene Analogs in the Brassicaceae: Identification, Characterization, Distribution, and Evolution. PLANT PHYSIOLOGY 2020; 184:909-922. [PMID: 32796089 PMCID: PMC7536671 DOI: 10.1104/pp.20.00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 05/02/2023]
Abstract
The Brassicaceae consists of a wide range of species, including important Brassica crop species and the model plant Arabidopsis (Arabidopsis thaliana). Brassica spp. crop diseases impose significant yield losses annually. A major way to reduce susceptibility to disease is the selection in breeding for resistance gene analogs (RGAs). Nucleotide binding site-leucine rich repeats (NLRs), receptor-like kinases (RLKs), and receptor-like proteins (RLPs) are the main types of RGAs; they contain conserved domains and motifs and play specific roles in resistance to pathogens. Here, all classes of RGAs have been identified using annotation and assembly-based pipelines in all available genome annotations from the Brassicaceae, including multiple genome assemblies of the same species where available (total of 32 genomes). The number of RGAs, based on genome annotations, varies within and between species. In total 34,065 RGAs were identified, with the majority being RLKs (21,691), then NLRs (8,588) and RLPs (3,786). Analysis of the RGA protein sequences revealed a high level of sequence identity, whereby 99.43% of RGAs fell into several orthogroups. This study establishes a resource for the identification and characterization of RGAs in the Brassicaceae and provides a framework for further studies of RGAs for an ultimate goal of assisting breeders in improving resistance to plant disease.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Fabian Inturrisi
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Fangning Zhang
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Hua Yang
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - Aria Dolatabadian
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Ting X Neik
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Anita Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Dhwani A Patel
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Muhammad I Ibrahim
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Aneeta Pradhan
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| |
Collapse
|
12
|
Xue JY, Zhao T, Liu Y, Liu Y, Zhang YX, Zhang GQ, Chen H, Zhou GC, Zhang SZ, Shao ZQ. Genome- Wide Analysis of the Nucleotide Binding Site Leucine-Rich Repeat Genes of Four Orchids Revealed Extremely Low Numbers of Disease Resistance Genes. Front Genet 2020; 10:1286. [PMID: 31998358 PMCID: PMC6960632 DOI: 10.3389/fgene.2019.01286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
Orchids are one of the most diverse flowering plant families, yet possibly maintain the smallest number of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) type plant resistance (R) genes among the angiosperms. In this study, a genome-wide search in four orchid taxa identified 186 NBS-LRR genes. Furthermore, 214 NBS-LRR genes were identified from seven orchid transcriptomes. A phylogenetic analysis recovered 30 ancestral lineages (29 CNL and one RNL), far fewer than other angiosperm families. From the genetics aspect, the relatively low number of ancestral R genes is unlikely to explain the low number of R genes in orchids alone, as historical gene loss and scarce gene duplication has continuously occurred, which also contributes to the low number of R genes. Due to recent sharp expansions, Phalaenopsis equestris and Dendrobium catenatum having 52 and 115 genes, respectively, and exhibited an “early shrinking to recent expanding” evolutionary pattern, while Gastrodia elata and Apostasia shenzhenica both exhibit a “consistently shrinking” evolutionary pattern and have retained only five and 14 NBS-LRR genes, respectively. RNL genes remain in extremely low numbers with only one or two copies per genome. Notably, all of the orchid RNL genes belong to the ADR1 lineage. A separate lineage, NRG1, was entirely absent and was likely lost in the common ancestor of all monocots. All of the TNL genes were absent as well, coincident with the RNL NRG1 lineage, which supports the previously proposed notion that a potential functional association between the TNL and RNL NRG1 genes.
Collapse
Affiliation(s)
- Jia-Yu Xue
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China.,Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,VIB-UGent Center for Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Tao Zhao
- VIB-UGent Center for Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yang Liu
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong-Xia Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guo-Qiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongfeng Chen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guang-Can Zhou
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Shou-Zhou Zhang
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Tian S, Yin X, Fu P, Wu W, Lu J. Ectopic Expression of Grapevine Gene VaRGA1 in Arabidopsis Improves Resistance to Downy Mildew and Pseudomonas syringae pv. tomato DC3000 But Increases Susceptibility to Botrytis cinerea. Int J Mol Sci 2019; 21:E193. [PMID: 31892116 PMCID: PMC6982372 DOI: 10.3390/ijms21010193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/29/2022] Open
Abstract
The protein family with nucleotide binding sites and leucine-rich repeat (NBS-LRR) in plants stimulates immune responses caused by effectors and can mediate resistance to hemi-biotrophs and biotrophs. In our previous study, a Toll-interleukin-1(TIR)-NBS-LRR gene cloned from Vitis amurensis "Shuanghong", VaRGA1, was induced by Plasmopara viticola and could improve the resistance of tobacco to Phytophthora capsici. In this study, VaRGA1 in "Shuanghong" was also induced by salicylic acid (SA), but inhibited by jasmonic acid (JA). To investigate whether VaRGA1 confers broad-spectrum resistance to pathogens, we transferred this gene into Arabidopsis and then treated with Hyaloperonospora arabidopsidis (Hpa), Botrytis cinerea (B. cinerea), and Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Results showed that VaRGA1 improved transgenic Arabidopsis thaliana resistance to the biotrophic Hpa and hemi-biotrophic PstDC3000, but decreased resistance to the necrotrophic B. cinerea. Additionally, qPCR assays showed that VaRGA1 plays an important role in disease resistance by activating SA and inhibiting JA signaling pathways. A 1104 bp promoter fragment of VaRGA1 was cloned and analyzed to further elucidate the mechanism of induction of the gene at the transcriptional level. These results preliminarily confirmed the disease resistance function and signal regulation pathway of VaRGA1, and contributed to the identification of R-genes with broad-spectrum resistance function.
Collapse
Affiliation(s)
| | | | | | | | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.T.); (X.Y.); (P.F.); (W.W.)
| |
Collapse
|
14
|
Tirnaz S, Batley J. DNA Methylation: Toward Crop Disease Resistance Improvement. TRENDS IN PLANT SCIENCE 2019; 24:1137-1150. [PMID: 31604599 DOI: 10.1016/j.tplants.2019.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 05/23/2023]
Abstract
Crop diseases, in conjunction with climate change, are a major threat to global crop production. DNA methylation is an epigenetic mark and is involved in plants' biological processes, including development, stress adaptation, and genome evolution. By providing a new source of variation, DNA methylation introduces novel direction to both scientists and breeders with its potential in disease resistance enhancement. Here, we discuss the impact of pathogen-induced DNA methylation modifications on a host's transcriptome reprogramming and genome stability, as part of the plant's defense mechanisms. We also highlight the knowledge gaps that need to be investigated for understanding the entire role of DNA methylation in plant pathogen interactions. This will ultimately assist breeders toward improving resistance and decreasing yield losses.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
15
|
Abstract
Octoploid strawberry (Fragaria ×ananassa) is a valuable specialty crop, but profitable production and availability are threatened by many pathogens. Efforts to identify and introgress useful disease resistance genes (R-genes) in breeding programs are complicated by strawberry’s complex octoploid genome. Recently-developed resources in strawberry, including a complete octoploid reference genome and high-resolution octoploid genotyping, enable new analyses in strawberry disease resistance genetics. This study characterizes the complete R-gene collection in the genomes of commercial octoploid strawberry and two diploid ancestral relatives, and introduces several new technological and data resources for strawberry disease resistance research. These include octoploid R-gene transcription profiling, dN/dS analysis, expression quantitative trait loci (eQTL) analysis and RenSeq analysis in cultivars. Octoploid fruit eQTL were identified for 76 putative R-genes. R-genes from the ancestral diploids Fragaria vesca and Fragaria iinumae were compared, revealing differential inheritance and retention of various octoploid R-gene subtypes. The mode and magnitude of natural selection of individual F. ×ananassa R-genes was also determined via dN/dS analysis. R-gene sequencing using enriched libraries (RenSeq) has been used recently for R-gene discovery in many crops, however this technique somewhat relies upon a priori knowledge of desired sequences. An octoploid strawberry capture-probe panel, derived from the results of this study, is validated in a RenSeq experiment and is presented for community use. These results give unprecedented insight into crop disease resistance genetics, and represent an advance toward exploiting variation for strawberry cultivar improvement.
Collapse
|
16
|
Sugawara M, Umehara Y, Kaga A, Hayashi M, Ishimoto M, Sato S, Mitsui H, Minamisawa K. Symbiotic incompatibility between soybean and Bradyrhizobium arises from one amino acid determinant in soybean Rj2 protein. PLoS One 2019; 14:e0222469. [PMID: 31518373 PMCID: PMC6743760 DOI: 10.1371/journal.pone.0222469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Cultivated soybean (Glycine max) carrying the Rj2 allele restricts nodulation with specific Bradyrhizobium strains via host immunity, mediated by rhizobial type III secretory protein NopP and the host resistance protein Rj2. Here we found that the single isoleucine residue I490 in Rj2 is required for induction of symbiotic incompatibility. Furthermore, we investigated the geographical distribution of the Rj2-genotype soybean in a large set of germplasm by single nucleotide polymorphism (SNP) genotyping using a SNP marker for I490. By allelic comparison of 79 accessions in the Japanese soybean mini-core collection, we suggest substitution of a single amino acid residue (R490 to I490) in Rj2 induces symbiotic incompatibility with Bradyrhizobium diazoefficiens USDA 122. The importance of I490 was verified by complementation of rj2-soybean by the dominant allele encoding the Rj2 protein containing I490 residue. The Rj2 allele was also found in Glycine soja, the wild progenitor of G. max, and their single amino acid polymorphisms were associated with the Rj2-nodulation phenotype. By SNP genotyping against 1583 soybean accessions, we detected the Rj2-genotype in 5.4% of G. max and 7.7% of G. soja accessions. Distribution of the Rj2-genotype soybean plants was relatively concentrated in the temperate Asian region. These results provide important information about the mechanism of host genotype-specific symbiotic incompatibility mediated by host immunity and suggest that the Rj2 gene has been maintained by environmental conditions during the process of soybean domestication.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Akito Kaga
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masaki Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masao Ishimoto
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Hassan MZ, Rahim MA, Jung HJ, Park JI, Kim HT, Nou IS. Genome-Wide Characterization of NBS-Encoding Genes in Watermelon and Their Potential Association with Gummy Stem Blight Resistance. Int J Mol Sci 2019; 20:ijms20040902. [PMID: 30791419 PMCID: PMC6412240 DOI: 10.3390/ijms20040902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/06/2019] [Accepted: 02/17/2019] [Indexed: 11/29/2022] Open
Abstract
Watermelon (Citrullus lanatus) is a nutritionally rich and economically important horticultural crop of the Cucurbitaceae family. Gummy stem blight (GSB) is a major disease of watermelon, which is caused by the fungus Didymella bryoniae, and results in substantial economic losses in terms of yield and quality. However, only a few molecular studies have focused on GSB resistance in watermelon. Nucleotide binding site (NBS)-encoding resistance (R) genes play important roles in plant defense responses to several pathogens, but little is known about the role of NBS-encoding genes in disease resistance in watermelon. The analyzed NBS-encoding R genes comprises several domains, including Toll/interleukin-1 receptor(TIR), NBS, leucine-rich repeat (LRR), resistance to powdery mildew8(RPW8) and coiled coil (CC), which are known to be involved in disease resistance. We determined the expression patterns of these R genes in resistant and susceptible watermelon lines at different time points after D. bryoniae infection by quantitative RT-PCR. The R genes exhibited various expression patterns in the resistant watermelon compared to the susceptible watermelon. Only six R genes exhibited consistent expression patterns (Cla001821, Cla019863, Cla020705, Cla012430, Cla012433 and Cla012439), which were higher in the resistant line compared to the susceptible line. Our study provides fundamental insights into the NBS-LRR gene family in watermelon in response to D. bryoniae infection. Further functional studies of these six candidate resistance genes should help to advance breeding programs aimed at improving disease resistance in watermelons.
Collapse
Affiliation(s)
- Md Zahid Hassan
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Md Abdur Rahim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea.
| |
Collapse
|
18
|
Araújo ACD, Fonseca FCDA, Cotta MG, Alves GSC, Miller RNG. Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|