1
|
Smith EP, Valdivia RH. Chlamydia trachomatis: a model for intracellular bacterial parasitism. J Bacteriol 2025; 207:e0036124. [PMID: 39976429 PMCID: PMC11925236 DOI: 10.1128/jb.00361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Chlamydia comprises a diverse group of obligate intracellular bacteria that cause infections in animals, including humans. These organisms share fascinating biology, including distinct developmental stages, non-canonical cell surface structures, and adaptations to intracellular parasitism. Chlamydia trachomatis is of particular interest due to its significant clinical importance, causing both ocular and sexually transmitted infections. The strain L2/434/Bu, responsible for lymphogranuloma venereum, is the most common strain used to study chlamydial molecular and cell biology because it grows readily in cell culture and is amenable to genetic manipulation. Indeed, this strain has enabled researchers to tackle fundamental questions about the molecular mechanisms underlying Chlamydia's developmental transitions and biphasic lifecycle and cellular adaptations to obligate intracellular parasitism, including characterizing numerous conserved virulence genes and defining immune responses. However, L2/434/Bu is not representative of C. trachomatis strains that cause urogenital infections in humans, limiting its utility in addressing questions of host tropism and immune evasion in reproductive organs. Recent research efforts are shifting toward understanding the unique attributes of more clinically relevant C. trachomatis genovars.
Collapse
Affiliation(s)
- Erin P. Smith
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Host-Microbe Interactions, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Olagoke O, Aziz A, Zhu L, Read T, Dean D. Whole-genome automated assembly pipeline for Chlamydia trachomatis strains from reference, in vitro and clinical samples using the integrated CtGAP pipeline. NAR Genom Bioinform 2025; 7:lqae187. [PMID: 39781511 PMCID: PMC11704784 DOI: 10.1093/nargab/lqae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Whole genome sequencing (WGS) is pivotal for the molecular characterization of Chlamydia trachomatis (Ct)-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. Ct WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with in vitro propagation. No single tool exists for the entirety of Ct genome assembly, necessitating the adaptation of multiple programs with varying success. Compounding this issue is the absence of reliable Ct reference strain genomes. We, therefore, developed CtGAP-Chlamydia trachomatisGenome Assembly Pipeline-as an integrated 'one-stop-shop' pipeline for assembly and characterization of Ct genome sequencing data from various sources including isolates, in vitro samples, clinical swabs and urine. CtGAP, written in Snakemake, enables read quality statistics output, adapter and quality trimming, host read removal, de novo and reference-guided assembly, contig scaffolding, selective ompA, multi-locus-sequence and plasmid typing, phylogenetic tree construction, and recombinant genome identification. Twenty Ct reference genomes were also generated. Successfully validated on a diverse collection of 363 samples containing Ct, CtGAP represents a novel pipeline requiring minimal bioinformatics expertise with easy adaptation for use with other bacterial species.
Collapse
Affiliation(s)
- Olusola Olagoke
- Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA
| | - Ammar Aziz
- Victorian Infectious Diseases Reference Laboratory, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Lucile H Zhu
- Department of Bioengineering, University of California San Francisco and Berkeley School of Engineering, 306 Stanley Hall, Berkeley, CA, 94720, USA
| | - Timothy D Read
- Departments of Medicine and Genetics, Division of Infectious Diseases, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Deborah Dean
- Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA
- Department of Bioengineering, University of California San Francisco and Berkeley School of Engineering, 306 Stanley Hall, Berkeley, CA, 94720, USA
- Bixby Center for Global Reproductive Health, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94110, USA
- Benioff Center for Microbiome Medicine, University of California San Francisco, 513 Parnassus Avenue, S357, San Francisco, CA, 94143, USA
- University of California San Francisco Institute of Global Health Sciences, 550 16th Street, 3rd Floor Mission Hall, San Francisco, CA, 94158, USA
| |
Collapse
|
3
|
Rodrigues R, Sousa C, Barros A, Vale N. Chlamydia trachomatis: From Urogenital Infections to the Pathway of Infertility. Genes (Basel) 2025; 16:205. [PMID: 40004534 PMCID: PMC11855039 DOI: 10.3390/genes16020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Chlamydia trachomatis (CT) is a major cause of sexually transmitted infections (STIs) worldwide, with significant implications for reproductive health. The bacterium's genome contains highly polymorphic regions, influencing both the type and severity of infections. These genetic variations, particularly those occurring in the major outer membrane protein (MOMP) gene, are critical for classifying the bacterium into distinct serovars and enable CT to adapt to diverse host environments, contributing to its immune evasion, persistence, and pathogenicity. Persistent or untreated urogenital infections can lead to chronic inflammation, tissue damage, and pelvic inflammatory disease, ultimately increasing the risk of ectopic pregnancy, spontaneous abortion, and infertility. This review consolidates current knowledge on the genetic diversity of CT, its potential role in modulating infection outcomes, and its immune evasion mechanisms. By integrating scientific evidence linking chlamydial infections to infertility, we underscore the urgent need for targeted research to address this critical public health challenge.
Collapse
Affiliation(s)
- Rafaela Rodrigues
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.); (A.B.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, Leça do Balio, 4465-671 Matosinhos, Portugal
| | - Carlos Sousa
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.); (A.B.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, Leça do Balio, 4465-671 Matosinhos, Portugal
| | - Alberto Barros
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.); (A.B.)
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Centre for Reproductive Genetics Alberto Barros, 4100-012 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.); (A.B.)
- RISE-Health, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Büttner KA, Wegner F, Bregy V, Entrocassi AC, Gallo Vaulet ML, López Aquino D, La Rosa L, Svidler López L, Puolakkainen MH, Hiltunen-Back E, Imkamp F, Egli A, Seth-Smith HMB, Rodríguez Fermepin M, On Behalf Of The Escmid Study Group For Mycoplasma And Chlamydia Infections Esgmac. Chlamydia trachomatis genomes from rectal samples: description of a new clade comprising ompA-genotype L4 from Argentina. Microb Genom 2025; 11. [PMID: 39943870 DOI: 10.1099/mgen.0.001350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Whole-genome analysis has provided insights into the evolution of Chlamydia trachomatis and, recently, into circulating strains that cause lymphogranuloma venereum (LGV). A large LGV outbreak of a new ompA-genotype, L2b, was first reported in Europe in the early 2000s, primarily affecting men who have sex with men (MSM), and then expanded globally. More recent work shows that this outbreak is diversifying into variants of described ompA-genotypes, with the same L2b genomic backbone. This study extends the investigation of LGV cases to Argentina and Finland. In 2017, an LGV outbreak was described in Argentina characterized by distinct genomic features shown by both ompA-genotyping and Multi-Locus Sequence Typing (MLST) analysis. We have obtained whole-genome sequences from cultured isolates and clinical samples via SureSelect (Agilent) target enrichment. Based on ompA and phylogenetic analyses, we describe further diversity within the ompA-genotype L2b clade, illustrating the transmission dynamics in Argentina and Finland. A key finding is that of a novel clade of Argentinian samples, characterized by a proposed new ompA-genotype L4. Additionally, we present the genome sequence of a non-LGV strain associated with anorectal proctitis. These findings contribute to the investigation of LGV evolution, particularly with the presence of the novel L4 lineage, and provide insights into genomic diversity and transmission dynamics of C. trachomatis.
Collapse
Affiliation(s)
- Karina Andrea Büttner
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
- Member of the ESCMID study Group on Mycoplasma and Chlamydia (ESGMAC)
| | - Fanny Wegner
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Vera Bregy
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Andrea Carolina Entrocassi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - María Lucía Gallo Vaulet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | | | - Luciana La Rosa
- Centro Privado de Cirugía y Coloproctología, Buenos Aires, Argentina
| | | | - Mirja H Puolakkainen
- Member of the ESCMID study Group on Mycoplasma and Chlamydia (ESGMAC)
- University of Helsinki, Department of Virology and Helsinki University Hospital, Department of Virology and Immunology, Helsinki, Finland
| | - Eija Hiltunen-Back
- Department of Dermatology and Allergology, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Frank Imkamp
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Helena M B Seth-Smith
- Member of the ESCMID study Group on Mycoplasma and Chlamydia (ESGMAC)
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Marcelo Rodríguez Fermepin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
- Member of the ESCMID study Group on Mycoplasma and Chlamydia (ESGMAC)
| | | |
Collapse
|
5
|
Salgado-Morales R, Barba-Xochipa K, Martínez-Ocampo F, Dantán-González E, Hernández-Mendoza A, Quiterio-Trenado M, Rodríguez-Santiago M, Rivera-Ramírez A. Pangenome-Wide Association Study in the Chlamydiaceae Family Reveals Key Evolutionary Aspects of Their Relationship with Their Hosts. Int J Mol Sci 2024; 25:12671. [PMID: 39684382 DOI: 10.3390/ijms252312671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
The Chlamydiaceae are a family of obligate intracellular bacteria known for their unique biphasic developmental cycle. Chlamydial are associated with various host organisms, including humans, and have been proposed as emerging pathogens. Genomic studies have significantly enhanced our understanding of chlamydial biology, host adaptation, and evolutionary processes. In this study, we conducted a complete pangenome association analysis (pan-GWAS) using 101 genomes from the Chlamydiaceae family to identify differentially represented genes in Chlamydia and Chlamydophila, revealing their distinct evolutionary strategies for interacting with eukaryotic hosts. Our analysis identified 289 genes with differential abundance between the two clades: 129 showed a strong association with Chlamydia and 160 with Chlamydophila. Most genes in Chlamydia were related to the type III secretion system, while Chlamydophila genes corresponded to various functional categories, including translation, replication, transport, and metabolism. These findings suggest that Chlamydia has developed a high dependence on mammalian cells for replication, facilitated by a complex T3SS for intracellular manipulation. In contrast, the metabolic and functional diversity in Chlamydophila allows it to colonize a broad range of hosts, such as birds, reptiles, amphibians, and mammals, making it a less specialized clade.
Collapse
Affiliation(s)
- Rosalba Salgado-Morales
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Karla Barba-Xochipa
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Universidad 1, Tlaxcala de Xicohténcatl CP 90000, Mexico
| | - Fernando Martínez-Ocampo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
- Programa de Estancias Posdoctorales por México 2022(3), Modalidad Académica-Inicial, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez CP 03940, Mexico
| | - Edgar Dantán-González
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Manuel Quiterio-Trenado
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca CP 62100, Mexico
| | - Magdalena Rodríguez-Santiago
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Universidad 1, Tlaxcala de Xicohténcatl CP 90000, Mexico
| | - Abraham Rivera-Ramírez
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| |
Collapse
|
6
|
Lamkiewicz K, Barf LM, Sachse K, Hölzer M. RIBAP: a comprehensive bacterial core genome annotation pipeline for pangenome calculation beyond the species level. Genome Biol 2024; 25:170. [PMID: 38951884 PMCID: PMC11218241 DOI: 10.1186/s13059-024-03312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Microbial pangenome analysis identifies present or absent genes in prokaryotic genomes. However, current tools are limited when analyzing species with higher sequence diversity or higher taxonomic orders such as genera or families. The Roary ILP Bacterial core Annotation Pipeline (RIBAP) uses an integer linear programming approach to refine gene clusters predicted by Roary for identifying core genes. RIBAP successfully handles the complexity and diversity of Chlamydia, Klebsiella, Brucella, and Enterococcus genomes, outperforming other established and recent pangenome tools for identifying all-encompassing core genes at the genus level. RIBAP is a freely available Nextflow pipeline at github.com/hoelzer-lab/ribap and zenodo.org/doi/10.5281/zenodo.10890871.
Collapse
Affiliation(s)
- Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena, 07743, Germany
| | - Lisa-Marie Barf
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena, 07743, Germany
| | - Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena, 07743, Germany
| | - Martin Hölzer
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, 13353, Germany.
| |
Collapse
|
7
|
Abdulabbas HT, Mohammad Ali AN, Farjadfar A, Arabfard M, Najafipour S, Kouhpayeh A, Ghasemian A, Behmard E. Design of a novel multi-epitope vaccine candidate against Chlamydia trachomatis using structural and nonstructural proteins: an immunoinformatics study. J Biomol Struct Dyn 2024; 42:4356-4369. [PMID: 37288800 DOI: 10.1080/07391102.2023.2220812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Chlamydia trachomatis (C. trachomatis) is an obligate intracellular bacterium which causes eye and sexually transmitted infections. During pregnancy, the bacterium is associated with preterm complications, low weight of neonates, fetal demise and endometritis leading to infertility. The aim of our study was design of a multi-epitope vaccine (MEV) candidate against C. trachomatis. After protein sequence adoption from the NCBI, potential epitopes toxicity, antigenicity, allergenicity, MHC-I and MHC-II binding, cytotoxic T lymphocytes (CTLs), Helper T lymphocytes (HTLs) and interferon-γ (IFN-γ)- induction were predicted. The adopted epitopes were fused together using appropriate linkers. In the next step, the MEV structural mapping and characterization, three-dimensional (3D) structure homology modeling and refinement were also performed. The MEV candidate interaction with the toll-like receptor 4 (TLR4) was also docked. The immune responses simulation was assessed using the C-IMMSIM server. Molecular dynamic (MD) simulation verified the structural stability of the TLR4-MEV complex. The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach demonstrated the MEV high affinity of binding to the TLR4, MHC-I and MHC-II. The MEV construct was also stable and water soluble and had enough antigenicity and lacked allergenicity with stimulation of T cells and B cells and INF-γ release. The immune simulation confirmed acceptable responses of both the humoral and cellular arms. It is proposed that in vitro and in vivo studies are needed to evaluate the findings of this study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Al Muthanna, Iraq
| | | | - Akbar Farjadfar
- Department of medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
8
|
Ghasemian E, Faal N, Pickering H, Sillah A, Breuer J, Bailey RL, Mabey D, Holland MJ. Genomic insights into local-scale evolution of ocular Chlamydia trachomatis strains within and between individuals in Gambian trachoma-endemic villages. Microb Genom 2024; 10:001210. [PMID: 38445851 PMCID: PMC10999739 DOI: 10.1099/mgen.0.001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Trachoma, a neglected tropical disease caused by Chlamydia trachomatis (Ct) serovars A-C, is the leading infectious cause of blindness worldwide. Africa bears the highest burden, accounting for over 86 % of global trachoma cases. We investigated Ct serovar A (SvA) and B (SvB) whole genome sequences prior to the induction of mass antibiotic drug administration in The Gambia. Here, we explore the factors contributing to Ct strain diversification and the implications for Ct evolution within the context of ocular infection. A cohort study in 2002-2003 collected ocular swabs across nine Gambian villages during a 6 month follow-up study. To explore the genetic diversity of Ct within and between individuals, we conducted whole-genome sequencing (WGS) on a limited number (n=43) of Ct-positive samples with an omcB load ≥10 from four villages. WGS was performed using target enrichment with SureSelect and Illumina paired-end sequencing. Out of 43 WGS samples, 41 provided sufficient quality for further analysis. ompA analysis revealed that 11 samples had highest identity to ompA from strain A/HAR13 (NC_007429) and 30 had highest identity to ompA from strain B/Jali20 (NC_012686). While SvB genome sequences formed two distinct village-driven subclades, the heterogeneity of SvA sequences led to the formation of many individual branches within the Gambian SvA subclade. Comparing the Gambian SvA and SvB sequences with their reference strains, Ct A/HAR13 and Ct B/Jali20, indicated an single nucleotide polymorphism accumulation rate of 2.4×10-5 per site per year for the Gambian SvA and 1.3×10-5 per site per year for SvB variants (P<0.0001). Variant calling resulted in a total of 1371 single nucleotide variants (SNVs) with a frequency >25 % in SvA sequences, and 438 SNVs in SvB sequences. Of note, in SvA variants, highest evolutionary pressure was recorded on genes responsible for host cell modulation and intracellular survival mechanisms, whereas in SvB variants this pressure was mainly on genes essential for DNA replication/repair mechanisms and protein synthesis. A comparison of the sequences between observed separate infection events (4-20 weeks between infections) suggested that the majority of the variations accumulated in genes responsible for host-pathogen interaction such as CTA_0166 (phospholipase D-like protein), CTA_0498 (TarP) and CTA_0948 (deubiquitinase). This comparison of Ct SvA and SvB variants within a trachoma endemic population focused on their local evolutionary adaptation. We found a different variation accumulation pattern in the Gambian SvA chromosomal genes compared with SvB, hinting at the potential of Ct serovar-specific variation in diversification and evolutionary fitness. These findings may have implications for optimizing trachoma control and prevention strategies.
Collapse
Affiliation(s)
- Ehsan Ghasemian
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Nkoyo Faal
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Harry Pickering
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Ansumana Sillah
- National Eye Health Programme, Ministry of Health, Kanifing, Gambia
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - Robin L. Bailey
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - David Mabey
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Martin J. Holland
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
9
|
Turman BJ, Darville T, O'Connell CM. Plasmid-mediated virulence in Chlamydia. Front Cell Infect Microbiol 2023; 13:1251135. [PMID: 37662000 PMCID: PMC10469868 DOI: 10.3389/fcimb.2023.1251135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.
Collapse
Affiliation(s)
- Breanna J. Turman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
10
|
Sachse K, Hölzer M, Vorimore F, Barf LM, Sachse C, Laroucau K, Marz M, Lamkiewicz K. Genomic analysis of 61 Chlamydia psittaci strains reveals extensive divergence associated with host preference. BMC Genomics 2023; 24:288. [PMID: 37248517 PMCID: PMC10226258 DOI: 10.1186/s12864-023-09370-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Chlamydia (C.) psittaci, the causative agent of avian chlamydiosis and human psittacosis, is a genetically heterogeneous species. Its broad host range includes parrots and many other birds, but occasionally also humans (via zoonotic transmission), ruminants, horses, swine and rodents. To assess whether there are genetic markers associated with host tropism we comparatively analyzed whole-genome sequences of 61 C. psittaci strains, 47 of which carrying a 7.6-kbp plasmid. RESULTS Following clean-up, reassembly and polishing of poorly assembled genomes from public databases, phylogenetic analyses using C. psittaci whole-genome sequence alignment revealed four major clades within this species. Clade 1 represents the most recent lineage comprising 40/61 strains and contains 9/10 of the psittacine strains, including type strain 6BC, and 10/13 of human isolates. Strains from different non-psittacine hosts clustered in Clades 2- 4. We found that clade membership correlates with typing schemes based on SNP types, ompA genotypes, multilocus sequence types as well as plasticity zone (PZ) structure and host preference. Genome analysis also revealed that i) sequence variation in the major outer membrane porin MOMP can result in 3D structural changes of immunogenic domains, ii) past host change of Clade 3 and 4 strains could be associated with loss of MAC/perforin in the PZ, rather than the large cytotoxin, iii) the distinct phylogeny of atypical strains (Clades 3 and 4) is also reflected in their repertoire of inclusion proteins (Inc family) and polymorphic membrane proteins (Pmps). CONCLUSIONS Our study identified a number of genomic features that can be correlated with the phylogeny and host preference of C. psittaci strains. Our data show that intra-species genomic divergence is associated with past host change and includes deletions in the plasticity zone, structural variations in immunogenic domains and distinct repertoires of virulence factors.
Collapse
Affiliation(s)
- Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Martin Hölzer
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch Institute, 13353, Berlin, Germany
| | - Fabien Vorimore
- Laboratory for Animal Health, Identypath, ANSES Maisons-Alfort, Paris-Est University, 94706, Paris, France
| | - Lisa-Marie Barf
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre 3 / Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Institute for Biological Information Processing 6 / Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Karine Laroucau
- Laboratory for Animal Health, Bacterial Zoonosis Unit, ANSES Maisons-Alfort, Paris-Est University, 94706, Paris, France
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
- JRG Analytical MicroBioinformatics, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
11
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
12
|
Tang Y, Yang X, Duan L, Zhan W, Chen K, Chai H, Liu P, Chen M, Zhao H, Liang L, Wei M, Luo M. Genetic and clinical characteristics of genital Chlamydia trachomatis infection in Guangzhou, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105285. [PMID: 35447370 DOI: 10.1016/j.meegid.2022.105285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Genital Chlamydia trachomatis (CT) is one of the most common agents of sexually transmitted infections and can cause severe disorders. This study aimed to analyse the genetic and clinical characteristics of genital CT infection among women in Guangzhou, China. METHODS From September 2020 to August 2021, a total of 8955 female patients were enrolled in this study. The presence of genital CT was detected by real-time PCR, and 273 positive samples were randomly selected for further genetic and clinical characteristics analysis. RESULTS The positive rate of genital CT infection was 7.5% (670/8955), with the highest rate in women aged 21-30 years. A total of 8 genotypes were identified: DH, J, K, and recombinant genotype Ba/D. The predominant genotype was J (n = 78, 28.6%), followed by E (n = 63, 23.1%), F (n = 48, 17.6%), and D (n = 38, 13.9%). Abnormal vaginal discharge (n = 165, 61.8%), cervical columnar epithelial ectopy (n = 124, 46.4%), vaginal itching (n = 77, 28.8%), and lower abdominal pain (n = 61, 22.8%) were the predominant symptoms. Additionally, genotype G infection exhibited a significantly higher rate of abnormal vaginal discharge (P = 0.03) and genotype D infection exhibited a higher white blood cell count (P = 0.01) than the other genotypes. Phylogenetic analysis revealed a total of 20 variants with 25 mutation positions and the H2 variant in four patients was first discovered in our study. CONCLUSIONS Genotypes J, E, F, and D were the major genotypes of genital CT in Guangzhou, and they manifested as abnormal vaginal discharge, cervical columnar epithelial ectopy, vaginal itching, and lower abdominal pain. The present study provides guidance for future integrated interventions to reduce the burden of genital CT infection and accelerate the development of vaccines.
Collapse
Affiliation(s)
- Yuan Tang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China
| | - Xiaohan Yang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China; Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou 511442, People's Republic of China
| | - Lei Duan
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China
| | - Wenli Zhan
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China; Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou 511442, People's Republic of China
| | - Keyi Chen
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China; Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou 511442, People's Republic of China
| | - Huiying Chai
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China; Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou 511442, People's Republic of China
| | - Pan Liu
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China; Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou 511442, People's Republic of China
| | - Minchai Chen
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China; Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou 511442, People's Republic of China
| | - Hongyu Zhao
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China; Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou 511442, People's Republic of China
| | - Lihua Liang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China; Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou 511442, People's Republic of China
| | - Mengru Wei
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China
| | - Mingyong Luo
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou 511442, People's Republic of China; Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou 511442, People's Republic of China.
| |
Collapse
|
13
|
López-Pintor JM, Martínez-García L, Maruri A, Menéndez B, Puerta T, Rodríguez C, González-Alba JM, Rodríguez-Domínguez M, Galán JC. Quantification of plasmid copy number as surrogate marker of virulence among different invasive and non-invasive genotypes of Chlamydia trachomatis. Diagn Microbiol Infect Dis 2022; 102:115610. [DOI: 10.1016/j.diagmicrobio.2021.115610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
|
14
|
Seth-Smith HMB, Bénard A, Bruisten SM, Versteeg B, Herrmann B, Kok J, Carter I, Peuchant O, Bébéar C, Lewis DA, Puerta T, Keše D, Balla E, Zákoucká H, Rob F, Morré SA, de Barbeyrac B, Galán JC, de Vries HJC, Thomson NR, Goldenberger D, Egli A. Ongoing evolution of Chlamydia trachomatis lymphogranuloma venereum: exploring the genomic diversity of circulating strains. Microb Genom 2021; 7. [PMID: 34184981 PMCID: PMC8461462 DOI: 10.1099/mgen.0.000599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lymphogranuloma venereum (LGV), the invasive infection of the sexually transmissible infection (STI) Chlamydia trachomatis, is caused by strains from the LGV biovar, most commonly represented by ompA-genotypes L2b and L2. We investigated the diversity in LGV samples across an international collection over seven years using typing and genome sequencing. LGV-positive samples (n=321) from eight countries collected between 2011 and 2017 (Spain n=97, Netherlands n=67, Switzerland n=64, Australia n=53, Sweden n=37, Hungary n=31, Czechia n=30, Slovenia n=10) were genotyped for pmpH and ompA variants. All were found to contain the 9 bp insertion in the pmpH gene, previously associated with ompA-genotype L2b. However, analysis of the ompA gene shows ompA-genotype L2b (n=83), ompA-genotype L2 (n=180) and several variants of these (n=52; 12 variant types), as well as other/mixed ompA-genotypes (n=6). To elucidate the genomic diversity, whole genome sequencing (WGS) was performed from selected samples using SureSelect target enrichment, resulting in 42 genomes, covering a diversity of ompA-genotypes and representing most of the countries sampled. A phylogeny of these data clearly shows that these ompA-genotypes derive from an ompA-genotype L2b ancestor, carrying up to eight SNPs per isolate. SNPs within ompA are overrepresented among genomic changes in these samples, each of which results in an amino acid change in the variable domains of OmpA (major outer membrane protein, MOMP). A reversion to ompA-genotype L2 with the L2b genomic backbone is commonly seen. The wide diversity of ompA-genotypes found in these recent LGV samples indicates that this gene is under immunological selection. Our results suggest that the ompA-genotype L2b genomic backbone is the dominant strain circulating and evolving particularly in men who have sex with men (MSM) populations.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Clinical Bacteriology & Mycology, University Hospital Basel, University of Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Angèle Bénard
- Present address: Healthcare Systems Research Group, VHIR, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Wellcome Trust Sanger Institute, Cambridge, UK
| | - Sylvia M Bruisten
- Department of Infectious Diseases, GGD Public Health Service of Amsterdam, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity (AII), Location Academic Medical Centre, Amsterdam, The Netherlands
| | - Bart Versteeg
- Department of Infectious Diseases, GGD Public Health Service of Amsterdam, Amsterdam, The Netherlands.,Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Björn Herrmann
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity & Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Ian Carter
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Olivia Peuchant
- CHU Bordeaux, Department of Bacteriology, French National Reference Center for bacterial STIs, Bordeaux, France
| | - Cécile Bébéar
- CHU Bordeaux, Department of Bacteriology, French National Reference Center for bacterial STIs, Bordeaux, France
| | - David A Lewis
- Western Sydney Sexual Health Centre, Western Sydney Local Health District, Parramatta, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity & Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Teresa Puerta
- Unidad de ITS/VIH, Centro Sanitario Sandoval, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Darja Keše
- University of Ljubljana, Faculty of Medicine, Institute of Microbiology and Immunology, Ljubljana, Slovenia
| | - Eszter Balla
- Bacterial STI Reference Laboratory, National Public Health Center (former National Center for Epidemiology), Budapest, Hungary
| | - Hana Zákoucká
- National Reference Laboratory for Diagnostics of Syphilis and Chlamydia Infections, National Institute of Public Health, Srobarova 48, 100 42, Prague 10, Czech Republic
| | - Filip Rob
- Department of Dermatovenereology, Second Faculty of Medicine, Charles University and Hospital Bulovka, Budinova 2, 180 81, Prague 8, Czech Republic
| | - Servaas A Morré
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.,Institute for Public Health Genomics (IPHG), Department of Genetics and Cell Biology, Research Institute GROW, University of Maastricht, Maastricht, The Netherlands
| | - Bertille de Barbeyrac
- CHU Bordeaux, Department of Bacteriology, French National Reference Center for bacterial STIs, Bordeaux, France
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. CIBER en Epidemiología y Salud Pública (CIBERESP)
| | - Henry J C de Vries
- Department of Infectious Diseases, GGD Public Health Service of Amsterdam, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity (AII), Location Academic Medical Centre, Amsterdam, The Netherlands
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Cambridge, UK.,Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Daniel Goldenberger
- Clinical Bacteriology & Mycology, University Hospital Basel, University of Basel, Switzerland
| | - Adrian Egli
- Clinical Bacteriology & Mycology, University Hospital Basel, University of Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Stange M, Mari A, Roloff T, Seth-Smith HMB, Schweitzer M, Brunner M, Leuzinger K, Søgaard KK, Gensch A, Tschudin-Sutter S, Fuchs S, Bielicki J, Pargger H, Siegemund M, Nickel CH, Bingisser R, Osthoff M, Bassetti S, Schneider-Sliwa R, Battegay M, Hirsch HH, Egli A. SARS-CoV-2 outbreak in a tri-national urban area is dominated by a B.1 lineage variant linked to a mass gathering event. PLoS Pathog 2021; 17:e1009374. [PMID: 33740028 PMCID: PMC8011817 DOI: 10.1371/journal.ppat.1009374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/31/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
The first case of SARS-CoV-2 in Basel, Switzerland was detected on February 26th 2020. We present a phylogenetic study to explore viral introduction and evolution during the exponential early phase of the local COVID-19 outbreak from February 26th until March 23rd. We sequenced SARS-CoV-2 naso-oropharyngeal swabs from 746 positive tests that were performed at the University Hospital Basel during the study period. We successfully generated 468 high quality genomes from unique patients and called variants with our COVID-19 Pipeline (COVGAP), and analysed viral genetic diversity using PANGOLIN taxonomic lineages. To identify introduction and dissemination events we incorporated global SARS-CoV-2 genomes and inferred a time-calibrated phylogeny. Epidemiological data from patient questionnaires was used to facilitate the interpretation of phylogenetic observations. The early outbreak in Basel was dominated by lineage B.1 (83·6%), detected first on March 2nd, although the first sample identified belonged to B.1.1. Within B.1, 68·2% of our samples fall within a clade defined by the SNP C15324T ('Basel cluster'), including 157 identical sequences at the root of the 'Basel cluster', some of which we can specifically trace to regional spreading events. We infer the origin of B.1-C15324T to mid-February in our tri-national region. The other genomes map broadly over the global phylogenetic tree, showing several introduction events from and/or dissemination to other regions of the world via travellers. Family transmissions can also be traced in our data. A single lineage variant dominated the outbreak in the Basel area while other lineages, such as the first (B.1.1), did not propagate. A mass gathering event was the predominant initial source of cases, with travel returners and family transmissions to a lesser extent. We highlight the importance of adding specific questions to epidemiological questionnaires, to obtain data on attendance of large gatherings and their locations, as well as travel history, to effectively identify routes of transmissions in up-coming outbreaks. This phylogenetic analysis in concert with epidemiological and contact tracing data, allows connection and interpretation of events, and can inform public health interventions. Trial Registration: ClinicalTrials.gov NCT04351503.
Collapse
Affiliation(s)
- Madlen Stange
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Alfredo Mari
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Tim Roloff
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Helena MB Seth-Smith
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Michael Schweitzer
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Myrta Brunner
- Human Geography, University of Basel, Basel, Switzerland
| | - Karoline Leuzinger
- Clinical Virology, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kirstine K. Søgaard
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Alexander Gensch
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sarah Tschudin-Sutter
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Simon Fuchs
- Health Services for the City of Basel, Basel, Switzerland
| | - Julia Bielicki
- Pediatric Infectious Diseases, University Children’s Hospital Basel, Basel, Switzerland
| | - Hans Pargger
- Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | | | - Roland Bingisser
- Emergency Medicine, University Hospital Basel, Basel, Switzerland
| | - Michael Osthoff
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Stefano Bassetti
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Manuel Battegay
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hans H. Hirsch
- Clinical Virology, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
16
|
Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Curr Biol 2021; 31:346-357.e3. [PMID: 33157023 PMCID: PMC7846284 DOI: 10.1016/j.cub.2020.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
Plasmids are important in microbial evolution and adaptation to new environments. Yet, carrying a plasmid can be costly, and long-term association of plasmids with their hosts is poorly understood. Here, we provide evidence that the Chlamydiae, a phylum of strictly host-associated intracellular bacteria, have coevolved with their plasmids since their last common ancestor. Current chlamydial plasmids are amalgamations of at least one ancestral plasmid and a bacteriophage. We show that the majority of plasmid genes are also found on chromosomes of extant chlamydiae. The most conserved plasmid gene families are predominantly vertically inherited, while accessory plasmid gene families show significantly increased mobility. We reconstructed the evolutionary history of plasmid gene content of an entire bacterial phylum over a period of around one billion years. Frequent horizontal gene transfer and chromosomal integration events illustrate the pronounced impact of coevolution with these extrachromosomal elements on bacterial genome dynamics in host-dependent microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Tamara Halter
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Daryl Domman
- Wellcome Sanger Institute, Parasites and Microbes Programme, Hinxton, Cambridge CB10 1SA, UK; Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria.
| |
Collapse
|
17
|
Smit PW, Cornelissen AR, Bruisten SM. Reduction of non-typeable results using a plasmid oriented Lymfogranuloma venereum PCR for typing of Chlamydia trachomatis positive samples. PLoS One 2020; 15:e0233990. [PMID: 32497069 PMCID: PMC7271987 DOI: 10.1371/journal.pone.0233990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/16/2020] [Indexed: 11/18/2022] Open
Abstract
Objectives Typing of Chlamydia trachomatis (CT) is traditionally performed by characterising the ompA gene, resulting in more than a dozen different genovars, A to L. Type L is associated with Lymphogranuloma venereum (LGV) and commonly screened for using PCR, targeting the chromosomal pmpH gene. We aimed to develop and validate a new CT/LGV plasmid-based typing assay targeting the pgp3 gene, to increase sensitivity and thus reduce the number of non-typeable results. Methods The new pgp3 PCR assay using LNA probes to detect point mutations was analytically and prospectively validated in a routine diagnostic laboratory setting. For the analytical tests, quantified nucleotide constructs (gBlocks) were used to perform limit of detection analyses. Quality control panel samples from 2018 and 2019 for CT were also tested. For the clinical study patient samples which were collected in two months in 2018 were tested simultaneously using the pmpH PCR and the pgp3 PCR. Results Analytically, the assay proved to be 100% specific relative to the previously used LGV typing assay targeting the single copy pmpH gene but it was much more sensitive to detect non-LGV CT. In the quality control panel 2 nonLGV samples and 7 LGV samples were solely positive with the pgp3 PCR and not with the pmpH PCR. None of the samples from analytical specificity panels were positive, indicating 100% specificity. In a prospective panel of 152 clinical samples, 142 (93%) were successfully typed with the pgp3 PCR compared to 78% with the pmpH PCR. The pgp3 PCR was fully concordant with the pmpH PCR to identify all LGV subtypes and detected an increased number of clinical samples of non-LGV subtype. Conclusion We developed and validated a sensitive and specific plasmid-based typing assay to discriminate LGV from non-LGV CT subtypes. This is useful in a clinical setting to quickly determine the optimal treatment for Chlamydia trachomatis infections.
Collapse
Affiliation(s)
- Pieter Willem Smit
- Public Health Laboratory (GGD) Amsterdam, Department of infectious diseases, Amsterdam, The Netherlands
- Medical Microbiology Laboratory, Maasstad ziekenhuis, Rotterdam, The Netherlands
| | - Akke Rosanne Cornelissen
- Public Health Laboratory (GGD) Amsterdam, Department of infectious diseases, Amsterdam, The Netherlands
| | - Sylvia Maria Bruisten
- Public Health Laboratory (GGD) Amsterdam, Department of infectious diseases, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Abstract
Background Evolutionary studies have been conducted that have investigated the chromosomal variance in the genus of Chlamydia. However, no all-encompassing genus-wide comparison has been performed on the plasmid. Therefore, there is a gap in the current knowledge on Chlamydia plasmid diversity. Aims This project is aimed to investigate and establish the nature and extent of diversity across the entire genus of Chlamydia, by comparing the sequences of all currently available plasmid carrying strains. Methods The PUBMED database was used to identify plasmid sequences from all available strains that met the set quality criteria for their inclusion in the study. Alignments were performed on the 51 strains that fulfilled the criteria using MEGA X software. Following that Maximum Likelihood estimation was used to construct 11 phylogenetic trees of the whole plasmid sequence, the individual 8 coding sequences, the iteron and a chromosomal gene ompA as a comparator. Results The genus-wide plasmid phylogeny produced three distinct lineages labelled as alpha, beta and gamma. Nineteen genotypes were found in the initial whole plasmid analysis. Their distribution was allocated as six C. pecorum, two C. pneumoniae, one C. gallinacea, one C. avium, one C. caviae, one C. felis, two C. psittaci, one C. trachomatis, one C. muridarum, and two C. suis. The chromosomal comparative gene ompA supported this distribution, with the same number of primary clades with the same species distribution. However, ompA sequence comparison resulted in fewer genotypes due to a reduced amount of available sequences (33 out of 51). All results were statistically significant. Conclusion The results of this study indicate that the common bacterial ancestor of all the species had a plasmid, which has diverged over time. Moreover, it suggests that there is a strong evolutionary selection towards these species retaining their plasmids due to its high level of conservation across the genus, with the notable exception of C. pneumoniae. Furthermore, the evolutionary analysis showed that the plasmid and the chromosome have co-evolved.
Collapse
Affiliation(s)
- Kolos V. Szabo
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
- * E-mail:
| | - Colette E. O’Neill
- Molecular Microbiology Group, Clinical and Experimental Sciences, University Hospital Southampton, Southampton, Hampshire, United Kingdom
| | - Ian N. Clarke
- Molecular Microbiology Group, Clinical and Experimental Sciences, University Hospital Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
19
|
Jones CA, Hadfield J, Thomson NR, Cleary DW, Marsh P, Clarke IN, O’Neill CE. The Nature and Extent of Plasmid Variation in Chlamydia trachomatis. Microorganisms 2020; 8:microorganisms8030373. [PMID: 32155798 PMCID: PMC7143637 DOI: 10.3390/microorganisms8030373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen of humans, causing both the sexually transmitted infection, chlamydia, and the most common cause of infectious blindness, trachoma. The majority of sequenced C. trachomatis clinical isolates carry a 7.5-Kb plasmid, and it is becoming increasingly evident that this is a key determinant of pathogenicity. The discovery of the Swedish New Variant and the more recent Finnish variant highlight the importance of understanding the natural extent of variation in the plasmid. In this study we analysed 524 plasmid sequences from publicly available whole-genome sequence data. Single nucleotide polymorphisms (SNP) in each of the eight coding sequences (CDS) were identified and analysed. There were 224 base positions out of a total 7550 bp that carried a SNP, which equates to a SNP rate of 2.97%, nearly three times what was previously calculated. After normalising for CDS size, CDS8 had the highest SNP rate at 3.97% (i.e., number of SNPs per total number of nucleotides), whilst CDS6 had the lowest at 1.94%. CDS5 had the highest total number of SNPs across the 524 sequences analysed (2267 SNPs), whereas CDS6 had the least SNPs with only 85 SNPs. Calculation of the genetic distances identified CDS6 as the least variable gene at the nucleotide level (d = 0.001), and CDS5 as the most variable (d = 0.007); however, at the amino acid level CDS2 was the least variable (d = 0.001), whilst CDS5 remained the most variable (d = 0.013). This study describes the largest in-depth analysis of the C. trachomatis plasmid to date, through the analysis of plasmid sequence data mined from whole genome sequences spanning 50 years and from a worldwide distribution, providing insights into the nature and extent of existing variation within the plasmid as well as guidance for the design of future diagnostic assays. This is crucial at a time when single-target diagnostic assays are failing to detect natural mutants, putting those infected at risk of a serious long-term and life-changing illness.
Collapse
Affiliation(s)
- Charlotte A. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA;
| | - Nicholas R. Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;
| | - David W. Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Peter Marsh
- Public Health England, Porton Down, Wiltshire SP40JG, UK;
| | - Ian N. Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Colette E. O’Neill
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
- Correspondence:
| |
Collapse
|
20
|
Jelocnik M. Chlamydiae from Down Under: The Curious Cases of Chlamydial Infections in Australia. Microorganisms 2019; 7:microorganisms7120602. [PMID: 31766703 PMCID: PMC6955670 DOI: 10.3390/microorganisms7120602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
In Australia, the most researched and perhaps the most successful chlamydial species are the human pathogen Chlamydia trachomatis, animal pathogens Chlamydia pecorum and Chlamydia psittaci. C. trachomatis remains the leading cause of sexually transmitted infections in Australians and trachoma in Australian Indigenous populations. C. pecorum is globally recognised as the infamous koala and widespread livestock pathogen, whilst the avian C. psittaci is emerging as a horse pathogen posing zoonotic risks to humans. Certainly not innocuous, the human infections with Chlamydia pneumoniae seem to be less prevalent that other human chlamydial pathogens (namely C. trachomatis). Interestingly, the complete host range for C. pecorum and C. psittaci remains unknown, and infections by other chlamydial organisms in Australian domesticated and wildlife animals are understudied. Considering that chlamydial organisms can be encountered by either host at the human/animal interface, I review the most recent findings of chlamydial organisms infecting Australians, domesticated animals and native wildlife. Furthermore, I also provide commentary from leading Australian Chlamydia experts on challenges and future directions in the Chlamydia research field.
Collapse
Affiliation(s)
- Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs 4557, Australia
| |
Collapse
|
21
|
Alkhidir AAI, Holland MJ, Elhag WI, Williams CA, Breuer J, Elemam AE, El Hussain KMK, Ournasseir MEH, Pickering H. Whole-genome sequencing of ocular Chlamydia trachomatis isolates from Gadarif State, Sudan. Parasit Vectors 2019; 12:518. [PMID: 31685017 PMCID: PMC6829945 DOI: 10.1186/s13071-019-3770-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trachoma, caused by ocular Chlamydia trachomatis, is the leading infectious cause of blindness worldwide. Sudan first reported trachoma in the 1930s and has since been consistently endemic. Ocular C. trachomatis previously isolated from trachoma patients in Sudan in 1963 was antigenically identical to an isolate from Saudi Arabia (A/SA1). No contemporary ocular C. trachomatis whole genome sequences have been reported from Sudan. METHODS This study sequenced twenty ocular C. trachomatis isolates to improve understanding of pathogen diversity in North-East Africa and examine for genomic variation specific to Sudan, possibly related to the persistence of trachoma in surveyed communities. High quality, whole genome sequences were obtained from 12/20 isolates. RESULTS All isolates were serovar A and had tarP and trpA sequences typical of classical, ocular C. trachomatis isolates. The Sudanese isolates formed a closely related subclade within the T2-trachoma clade of C. trachomatis phylogeny distinct from geographically disparate ocular isolates, with little intra-population diversity. We found 333 SNPs that were conserved in Sudanese ocular isolates but rare compared to other ocular C. trachomatis populations, which were focused in two genomic loci (CTA0172-CTA0173 and CTA0482). CONCLUSIONS Limited intra-population diversity and geographical clustering of ocular C. trachomatis suggests minimal transmission between and slow diversification within trachoma-endemic communities. However, diversity may have been higher pre-treatment in these communities. Over-representation of Sudan-specific SNPs in three genes suggests they may have an impact on C. trachomatis growth and transmission in this population.
Collapse
Affiliation(s)
| | - Martin J Holland
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Wafa Ibrahim Elhag
- Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | | | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK.,Microbiology, Virology, and Infection Control, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | | | | | | | - Harry Pickering
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
22
|
Abstract
Developed two decades ago as a molecular method to provide definite characterization of a bacterial isolate, Multilocus Sequence Typing (MLST) is today globally adopted as a universal fine-detailed molecular typing tool and has been applied to numerous pathogenic and nonpathogenic bacterial as well eukaryotic organisms. MLST utilizes DNA sequence of several conserved housekeeping (HK) genes which are assigned an allelic number, which then collectively constitute an allelic profile or sequence type (ST), a "molecular barcode" of the interrogated bacterial strain or a eukaryotic organism. Here, we describe the principles and molecular approaches for generating MLST data for an analysis of a bacteria in the order Chlamydiales, using a Chlamydia pecorum-specific MLST scheme as an example.
Collapse
|
23
|
O'Neill CE, Skilton RJ, Pearson SA, Filardo S, Andersson P, Clarke IN. Genetic Transformation of a C. trachomatis Ocular Isolate With the Functional Tryptophan Synthase Operon Confers an Indole-Rescuable Phenotype. Front Cell Infect Microbiol 2018; 8:434. [PMID: 30619780 PMCID: PMC6302012 DOI: 10.3389/fcimb.2018.00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Different strains are associated with ocular or urogenital infections, and a proposed mechanism that may explain this tissue tropism is the active tryptophan biosynthesis pathway encoded by the genomic trpRBA operon in urogenital strains. Here we describe genetic complementation studies that are essential to confirm the role of tryptophan synthase in the context of an ocular C. trachomatis genomic background. Ocular strain A2497 was transformed with the (urogenital) pSW2::GFP shuttle vector showing that there is no strain tropism barrier to this plasmid vector; moreover, transformation had no detrimental effect on the growth kinetics of A2497, which is important given the low transformation efficiency of C. trachomatis. A derivative of the pSW2::GFP vector was used to deliver the active tryptophan biosynthesis genes from a urogenital strain of C. trachomatis (Soton D1) to A2497 with the aim of complementing the truncated trpA gene common to most ocular strains. After confirmation of intact TrpA protein expression in the transformed A2497, the resulting transformants were cultivated in tryptophan-depleted medium with and without indole or tryptophan, showing that complementation of the truncated trpA gene by the intact and functional urogenital trpRBA operon was sufficient to bestow an indole rescuable phenotype upon A2497. This study proves that pSW2::GFP derived vectors do not conform to the cross-strain transformation barrier reported for other chlamydia shuttle vectors, suggesting these as a universal vector for transformation of all C. trachomatis strains. This vector promiscuity enabled us to test the indole rescue hypothesis by transforming ocular strain A2497 with the functional urogenital trpRBA operon, which complemented the non-functional tryptophan synthase. These data confirm that the trpRBA operon is necessary and sufficient for chlamydia to survive in tryptophan-limited environments such as the female urogenital tract.
Collapse
Affiliation(s)
- Colette Elizabeth O'Neill
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Rachel Jane Skilton
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Sarah Ann Pearson
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Simone Filardo
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Patiyan Andersson
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ian Nicholas Clarke
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| |
Collapse
|
24
|
Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124. [PMID: 30345391 PMCID: PMC6192448 DOI: 10.12688/wellcomeopenres.14826.1] [Citation(s) in RCA: 1878] [Impact Index Per Article: 268.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
The
PubMLST.org website hosts a collection of open-access, curated databases that integrate population sequence data with provenance and phenotype information for over 100 different microbial species and genera. Although the PubMLST website was conceived as part of the development of the first multi-locus sequence typing (MLST) scheme in 1998 the software it uses, the Bacterial Isolate Genome Sequence database (BIGSdb, published in 2010), enables PubMLST to include all levels of sequence data, from single gene sequences up to and including complete, finished genomes. Here we describe developments in the BIGSdb software made from publication to June 2018 and show how the platform realises microbial population genomics for a wide range of applications. The system is based on the gene-by-gene analysis of microbial genomes, with each deposited sequence annotated and curated to identify the genes present and systematically catalogue their variation. Originally intended as a means of characterising isolates with typing schemes, the synthesis of sequences and records of genetic variation with provenance and phenotype data permits highly scalable (whole genome sequence data for tens of thousands of isolates) means of addressing a wide range of functional questions, including: the prediction of antimicrobial resistance; likely cross-reactivity with vaccine antigens; and the functional activities of different variants that lead to key phenotypes. There are no limitations to the number of sequences, genetic loci, allelic variants or schemes (combinations of loci) that can be included, enabling each database to represent an expanding catalogue of the genetic variation of the population in question. In addition to providing web-accessible analyses and links to third-party analysis and visualisation tools, the BIGSdb software includes a RESTful application programming interface (API) that enables access to all the underlying data for third-party applications and data analysis pipelines.
Collapse
Affiliation(s)
- Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | | |
Collapse
|
25
|
Patiño LH, Camargo M, Muñoz M, Ríos-Chaparro DI, Patarroyo MA, Ramírez JD. Unveiling the Multilocus Sequence Typing (MLST) Schemes and Core Genome Phylogenies for Genotyping Chlamydia trachomatis. Front Microbiol 2018; 9:1854. [PMID: 30186244 PMCID: PMC6113918 DOI: 10.3389/fmicb.2018.01854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/24/2018] [Indexed: 11/21/2022] Open
Abstract
Multilocus sequence typing (MLST) has become a useful tool for studying the genetic diversity of important public health pathogens, such as Chlamydia trachomatis (Ct). Four MLST schemes have been proposed for Ct (data available from Chlamydiales MLST databases). However, the lack of a sole standardized scheme represents the greatest limitation regarding typing this species. This study was thus aimed at evaluating the usefulness of the four MLST schemes available for Ct, describing each molecular marker's pattern and its contribution toward a description of intra-specific genetic diversity and population structure. The markers for each scheme, showed a variable power of dicrimination, exhibiting in some cases over estimation in the determination of Sequence Types (STs). However, individual analysis of each locus's typing efficiency and discrimination power led to identifying 8 markers as having a suitable pattern for intra-specific typing. analyzing the 8 candidate markers gave a combination of 3 of these loci as an optimal scheme for identifying a large amount of STs, maximizing discrimination power whilst maintaining suitable typing efficiency. One scheme was compared against core genome phylogenies, finding a higher typing resolution through the last approach. These results confirm once again that although complete genome data, in particular from core genome MLST (cgMLST) allow a high resolution clustering for Ct isolates. There are combinations of molecular markers that could generate equivalent results, with the advantage of representing an easy implementation strategy and lower costs leading to contribute to the monitoring and molecular epidemiology of Ct.
Collapse
Affiliation(s)
- Luz H. Patiño
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Dora I. Ríos-Chaparro
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan D. Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|