1
|
Liang Y, Mi Z, Kuo PC. Differential MYC and PROM1 mRNA isoform expression in breast invasive carcinoma as biomarkers for subtyping and prognosis. Surgery 2025; 179:108798. [PMID: 39306567 DOI: 10.1016/j.surg.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 02/02/2025]
Abstract
BACKGROUND Cancer stem cells are a subpopulation of tumor cells with the ability to self-renew; evidence suggests that cancer stem cells are responsible for recurrence, metastasis, and resistance to therapy. MYC and CD133 (PROM1 gene) are clinical biomarkers for cancer stem cells, and their dysregulation is involved in the progression of many cancers. Alternative splicing of these genes may contribute to cancer stem cell differentiation. METHODS Transcriptional and clinical data of PROM1 and MYC mRNA isoforms in breast cancer samples were downloaded from the TCGA Splicing Variants Database site, a web-tool to explore mRNA alternative-splicing based on TCGA samples. Data include RSEM isoform expression, clinical sample types, survival data, and clinical receptor expression. Breast cancer subtypes (luminal A, luminal B, Her2 positive, triple negative) were assigned on the basis of estrogen, progesterone, and HER2 expression. RESULTS Expression of MYC isoforms uc003ysh.1 and uc003ysi.3 was significantly greater in triple-negative breast cancer compared with all other breast cancer subtypes (P < .001). Isoform uc003ysi.3 was associated with greater 5-year survival in luminal A breast cancer (hazard ratio, 0.79; 95% confidence interval, 0.65-0.96; P = .02). PROM1 isoforms uc003gop.2, uc003goq.3, uc003gos.2, and uc003gou.2 were expressed greatest in triple-negative breast cancer (P < .001). PROM1 isoform uc003gou.2 was associated with better 5-year survival in luminal A breast cancer (hazard ratio, 0.79; 95% confidence interval, 0.65-0.97; P = .02). CONCLUSIONS MYC and PROM1 isoforms are differentially expressed in breast cancer subtypes. Certain isoforms confer better survival prognosis. Further work should be done to study alternative splicing in cancer stem cells.
Collapse
Affiliation(s)
- Yifan Liang
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Zhiyong Mi
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Paul C Kuo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL; Bay Pines Veterans Affairs Health Care System, Bay Pines, FL.
| |
Collapse
|
2
|
Fusco C, Di Rella F, Liotti A, Colamatteo A, Ferrara AL, Gigantino V, Collina F, Esposito E, Donzelli I, Porcellini A, Feola A, Micillo T, Perna F, Garziano F, Maniscalco GT, Varricchi G, Mottola M, Zuccarelli B, De Simone B, di Bonito M, Matarese G, Accurso A, Pontillo M, Russo D, Insabato L, Spaziano A, Cantone I, Pezone A, De Rosa V. CD4 +FOXP3Exon2 + regulatory T cell frequency predicts breast cancer prognosis and survival. SCIENCE ADVANCES 2025; 11:eadr7934. [PMID: 39813341 PMCID: PMC11734725 DOI: 10.1126/sciadv.adr7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
CD4+FOXP3+ regulatory T cells (Tregs) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral Tregs remain largely unknown. Here, we found that a functionally distinct subpopulation of Tregs, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis. Notably, a comprehensive examination of the TCGA validated FOXP3E2 as an independent prognostic marker in all other BC subtypes. We found that FOXP3E2 expression underlies BCs with defective mismatch repair and a stem-like signature and highlights pathways involved in tumor survival. Last, we found that the TME induces FOXP3E2 through the CXCL12/CXCR4 axis and confirmed the higher immunosuppressive capacity of FOXP3E2+ Tregs derived from patients with BC. Our study suggests that FOXP3E2+ Tregs might be used as an independent biomarker to predict BC prognosis and survival and to develop super-targeted immunotherapies.
Collapse
Affiliation(s)
- Clorinda Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesca Di Rella
- Oncologia Clinica Sperimentale di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Alessandra Colamatteo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Anne Lise Ferrara
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Vincenzo Gigantino
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Francesca Collina
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Emanuela Esposito
- Chirurgia Oncologica di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Ivana Donzelli
- Chirurgia Oncologica di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Antonia Feola
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Teresa Micillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Federica Garziano
- U.O.C Biochimica Clinica Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno-C.T.O. Presidio Monaldi, Napoli, Italy
| | - Giorgia Teresa Maniscalco
- Clinica Neurologica e Unità Stroke, Centro Sclerosi Multipla, Ospedale “A.Cardarelli”, Napoli 80131, Italy
| | - Gilda Varricchi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Maria Mottola
- U.O.C Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli, Napoli 80131, Italy
| | - Bruno Zuccarelli
- U.O.C Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli, Napoli 80131, Italy
| | - Bruna De Simone
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Maurizio di Bonito
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| | - Antonello Accurso
- Dipartimento di Chirurgia Generale, Oncologica, Bariatrica e Metabolica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Martina Pontillo
- Dipartimento di Chirurgia Generale, Oncologica, Bariatrica e Metabolica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Daniela Russo
- Unità di Anatomia Patologica, Dipartimento di Scienze Biomediche Avanzate, Facoltà di Medicina, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Luigi Insabato
- Unità di Anatomia Patologica, Dipartimento di Scienze Biomediche Avanzate, Facoltà di Medicina, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Alessandra Spaziano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Irene Cantone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| | - Antonio Pezone
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| |
Collapse
|
3
|
Ali BM, El-Abhar HS, Mohamed G, Nassar HR, Aliedin N, Sharaky M, Shouman SA, Kamel M. A study of the role of androgen receptor and androgen receptor variant 7 in TNBC patients and the effect of their targeting by Enzalutamide and EPI-001 in MDA-MB-231. J Steroid Biochem Mol Biol 2025; 245:106636. [PMID: 39536950 DOI: 10.1016/j.jsbmb.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The lack of targeted therapy for triple-negative breast cancer (TNBC) is among the mainsprings of its poor prognosis. This study aimed to elucidate the role of the androgen receptor (AR) and its splice variant 7 (ARv7) in TNBC patients. Further, the molecular impact of their blockers, Enzalutamide and EPI-001, on the TNBC cell line MDA-MB-231 was investigated. Thereby, immunohistochemical expression of AR/ARv7 was assessed for TNBC Egyptian patients. Moreover, bioinformatics analysis of AR/ARv7 RNA status was carried out on TNBC patients from The Cancer Genome Atlas Breast Carcinoma project (TCGA-BRCA). Data from both groups was correlated with patients' clinicopathological features. Besides, scratch wound healing assay and ELISA were employed to assess the effect of AR/ARv7 blockers on several metastasis markers in MDA-MB-231 cell line. In the Egyptian-TNBC patients, AR expression was associated with worse 7-year DFS (40.6 ± 18.6 %). In addition, ARv7 showed cytoplasmic and nuclear patterns, and both cytoplasmic and nuclear ARv7+ patients demonstrated a worse 7-year DFS (22.7 ± 17.7 % and 20 ± 17.9 %) and overall survival (63.6 ± 14.5 % and 40 ± 21.8 %). Importantly, 80 % of the nuclear ARv7+ patients developed distant metastasis. The data of the TCGA-TNBC patients showed a tendency for poor outcomes in the high ARv7-expressing patients. Molecularly, in MDA-MB-231, both inhibitors modulated metastasis and epithelial to mesenchymal transition (EMT) markers ROCK1, ROCK2, c-Myc, E-cadherin and N-cadherin, with EPI-001 downregulating NF-ĸB level as well. We concluded that ARv7 indicated poor prognosis in the studied cohorts and that blocking of AR/ARv7 abated metastasis and key regulators of EMT in MDA-MB-231, at least in part by targeting ROCK/NF-ĸB/c-Myc axis.
Collapse
Affiliation(s)
- Belal M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Ministry of Health and Population, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt.
| | - Ghada Mohamed
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Hanan R Nassar
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Nelly Aliedin
- Department of Medical Statistics Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Marwa Sharaky
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Samia A Shouman
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Marwa Kamel
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
4
|
Salihoglu R, Balkenhol J, Dandekar G, Liang C, Dandekar T, Bencurova E. Cat-E: A comprehensive web tool for exploring cancer targeting strategies. Comput Struct Biotechnol J 2024; 23:1376-1386. [PMID: 38596315 PMCID: PMC11001601 DOI: 10.1016/j.csbj.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Identifying potential cancer-associated genes and drug targets from omics data is challenging due to its diverse sources and analyses, requiring advanced skills and large amounts of time. To facilitate such analysis, we developed Cat-E (Cancer Target Explorer), a novel R/Shiny web tool designed for comprehensive analysis with evaluation according to cancer-related omics data. Cat-E is accessible at https://cat-e.bioinfo-wuerz.eu/. Cat-E compiles information on oncolytic viruses, cell lines, gene markers, and clinical studies by integrating molecular datasets from key databases such as OvirusTB, TCGA, DrugBANK, and PubChem. Users can use all datasets and upload their data to perform multiple analyses, such as differential gene expression analysis, metabolic pathway exploration, metabolic flux analysis, GO and KEGG enrichment analysis, survival analysis, immune signature analysis, single nucleotide variation analysis, dynamic analysis of gene expression changes and gene regulatory network changes, and protein structure prediction. Cancer target evaluation by Cat-E is demonstrated here on lung adenocarcinoma (LUAD) datasets. By offering a user-friendly interface and detailed user manual, Cat-E eliminates the need for advanced computational expertise, making it accessible to experimental biologists, undergraduate and graduate students, and oncology clinicians. It serves as a valuable tool for investigating genetic variations across diverse cancer types, facilitating the identification of novel diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Rana Salihoglu
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
| | - Johannes Balkenhol
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University Hospital of Wurzburg, 97080 Wurzburg, Germany
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital of Wurzburg, 97080 Wurzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
| |
Collapse
|
5
|
Dix-Peek T, Dickens C, Valcárcel J, Duarte RAB. Lower FGFR2 mRNA Expression and Higher Levels of FGFR2 IIIc in HER2-Positive Breast Cancer. BIOLOGY 2024; 13:920. [PMID: 39596875 PMCID: PMC11591975 DOI: 10.3390/biology13110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) has been associated with breast cancer. We performed in silico analyses to investigate the FGFR2 mRNA expression and splice variants associated with breast cancer subtypes. Online databases, including cBioPortal and TCGA SpliceSeq, were used to examine the association between the FGFR2 expression and splice variants with breast cancer subtypes. A higher FGFR2 mRNA was significantly associated with luminal, oestrogen receptor (ER)-positive breast cancers, and invasive lobular carcinomas, whereas a lower FGFR2 was associated with human epidermal growth factor receptor 2 (HER2)-positive breast cancer and invasive ductal carcinomas. The epithelial alternatively spliced FGFR2 IIIb isoform was significantly enriched in ER+ breast cancer, while the mesenchymal FGFR2 IIIc isoform was significantly prevalent in HER2+ cancer. Increased levels of FGFR2 and IIIb splice isoforms are associated with less aggressive breast cancer phenotypes, while decreased levels of FGFR2 and increased IIIc splice isoform are associated with more aggressive phenotypes.
Collapse
Affiliation(s)
- Thérèse Dix-Peek
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 07 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Caroline Dickens
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 07 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Juan Valcárcel
- ICREA and Center for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Raquel A. B. Duarte
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 07 York Road, Parktown, Johannesburg 2193, South Africa;
| |
Collapse
|
6
|
Mattos D, Rocha M, Tessmann J, Ferreira L, Gimba E. Overexpression of Osteopontin-a and Osteopontin-c Splice Variants Are Worse Prognostic Features in Colorectal Cancer. Diagnostics (Basel) 2024; 14:2108. [PMID: 39410512 PMCID: PMC11475046 DOI: 10.3390/diagnostics14192108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Osteopontin (OPN) is a glycoprotein involved in various physiological and pathological processes, and its aberrant expression in cancer cells is closely linked to tumor progression. In colorectal cancer (CRC), OPN is overexpressed, but the roles of its splice variants (OPN-SVs), OPNa, OPNb, and OPNc, are not well understood. This study aimed to characterize the expression patterns of OPN-SVs and their potential diagnostic and prognostic implications in CRC using transcriptomic data deposited in TSVdb and TCGA. Methods: The expression patterns of each OPN-SV were analyzed using transcriptomic data deposited in TSVdb and TCGA, which were correlated to patient data available at cBioPortal. Results: Bioinformatic analysis revealed that OPNa, OPNb, and OPNc are overexpressed in CRC samples compared to non-tumor samples. Notably, OPNa and OPNc are overexpressed in CRC stages (II, III, and IV) compared to stage I. Higher levels of OPNa and OPNc transcripts are associated with worse overall survival (OS) and shorter progression-free survival (PFS) in CRC patients. Additionally, the expression of OPNa, OPNb, and OPNc is correlated with BRAFV600E mutations in CRC samples. Conclusions: These findings suggest that OPNa and OPNc, in particular, have potential as diagnostic and prognostic biomarkers, paving the way for their further evaluation in CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Daniella Mattos
- Hemato-Oncology Molecular Program, National Institute of Cancer, 23rd Red Cross Square, 6th Floor, Rio de Janeiro 20230-130, RJ, Brazil;
- Biomedical Science Graduation Program, Fluminense Federal University, Rua Professor Hernani Pires de Melo, 101, Niterói 24210-130, RJ, Brazil
| | - Murilo Rocha
- Cellular and Molecular Oncobiology Program, National Institute of Cancer, Rio de Janeiro 20231-050, RJ, Brazil; (M.R.); (J.T.)
| | - Josiane Tessmann
- Cellular and Molecular Oncobiology Program, National Institute of Cancer, Rio de Janeiro 20231-050, RJ, Brazil; (M.R.); (J.T.)
| | - Luciana Ferreira
- Hemato-Oncology Molecular Program, National Institute of Cancer, 23rd Red Cross Square, 6th Floor, Rio de Janeiro 20230-130, RJ, Brazil;
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 07, Seropédica, Rio de Janeiro 23897-000, RJ, Brazil
| | - Etel Gimba
- Hemato-Oncology Molecular Program, National Institute of Cancer, 23rd Red Cross Square, 6th Floor, Rio de Janeiro 20230-130, RJ, Brazil;
- Biomedical Science Graduation Program, Fluminense Federal University, Rua Professor Hernani Pires de Melo, 101, Niterói 24210-130, RJ, Brazil
- Departamento de Ciências da Natureza, Humanities and Healthy Institute, Fluminense Federal University, Recife Street, Bela Vista, Rio das Ostras 28895-532, RJ, Brazil
| |
Collapse
|
7
|
Lin YJ, Menon AS, Hu Z, Brenner SE. Variant Impact Predictor database (VIPdb), version 2: trends from three decades of genetic variant impact predictors. Hum Genomics 2024; 18:90. [PMID: 39198917 PMCID: PMC11360829 DOI: 10.1186/s40246-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Variant interpretation is essential for identifying patients' disease-causing genetic variants amongst the millions detected in their genomes. Hundreds of Variant Impact Predictors (VIPs), also known as Variant Effect Predictors (VEPs), have been developed for this purpose, with a variety of methodologies and goals. To facilitate the exploration of available VIP options, we have created the Variant Impact Predictor database (VIPdb). RESULTS The Variant Impact Predictor database (VIPdb) version 2 presents a collection of VIPs developed over the past three decades, summarizing their characteristics, ClinGen calibrated scores, CAGI assessment results, publication details, access information, and citation patterns. We previously summarized 217 VIPs and their features in VIPdb in 2019. Building upon this foundation, we identified and categorized an additional 190 VIPs, resulting in a total of 407 VIPs in VIPdb version 2. The majority of the VIPs have the capacity to predict the impacts of single nucleotide variants and nonsynonymous variants. More VIPs tailored to predict the impacts of insertions and deletions have been developed since the 2010s. In contrast, relatively few VIPs are dedicated to the prediction of splicing, structural, synonymous, and regulatory variants. The increasing rate of citations to VIPs reflects the ongoing growth in their use, and the evolving trends in citations reveal development in the field and individual methods. CONCLUSIONS VIPdb version 2 summarizes 407 VIPs and their features, potentially facilitating VIP exploration for various variant interpretation applications. VIPdb is available at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Yu-Jen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA
| | - Arul S Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA
- Illumina, Foster City, CA, 94404, USA
| | - Steven E Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA.
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA.
| |
Collapse
|
8
|
Lin YJ, Menon AS, Hu Z, Brenner SE. Variant Impact Predictor database (VIPdb), version 2: Trends from 25 years of genetic variant impact predictors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600283. [PMID: 38979289 PMCID: PMC11230257 DOI: 10.1101/2024.06.25.600283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Variant interpretation is essential for identifying patients' disease-causing genetic variants amongst the millions detected in their genomes. Hundreds of Variant Impact Predictors (VIPs), also known as Variant Effect Predictors (VEPs), have been developed for this purpose, with a variety of methodologies and goals. To facilitate the exploration of available VIP options, we have created the Variant Impact Predictor database (VIPdb). Results The Variant Impact Predictor database (VIPdb) version 2 presents a collection of VIPs developed over the past 25 years, summarizing their characteristics, ClinGen calibrated scores, CAGI assessment results, publication details, access information, and citation patterns. We previously summarized 217 VIPs and their features in VIPdb in 2019. Building upon this foundation, we identified and categorized an additional 186 VIPs, resulting in a total of 403 VIPs in VIPdb version 2. The majority of the VIPs have the capacity to predict the impacts of single nucleotide variants and nonsynonymous variants. More VIPs tailored to predict the impacts of insertions and deletions have been developed since the 2010s. In contrast, relatively few VIPs are dedicated to the prediction of splicing, structural, synonymous, and regulatory variants. The increasing rate of citations to VIPs reflects the ongoing growth in their use, and the evolving trends in citations reveal development in the field and individual methods. Conclusions VIPdb version 2 summarizes 403 VIPs and their features, potentially facilitating VIP exploration for various variant interpretation applications. Availability VIPdb version 2 is available at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Yu-Jen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
| | - Arul S. Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Currently at: Illumina, Foster City, California 94404, USA
| | - Steven E. Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Kasturirangan S, Nancarrow DJ, Shah A, Lagisetty KH, Lawrence TS, Beer DG, Ray D. Isoform alterations in the ubiquitination machinery impacting gastrointestinal malignancies. Cell Death Dis 2024; 15:194. [PMID: 38453895 PMCID: PMC10920915 DOI: 10.1038/s41419-024-06575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The advancement of RNAseq and isoform-specific expression platforms has led to the understanding that isoform changes can alter molecular signaling to promote tumorigenesis. An active area in cancer research is uncovering the roles of ubiquitination on spliceosome assembly contributing to transcript diversity and expression of alternative isoforms. However, the effects of isoform changes on functionality of ubiquitination machineries (E1, E2, E3, E4, and deubiquitinating (DUB) enzymes) influencing onco- and tumor suppressor protein stabilities is currently understudied. Characterizing these changes could be instrumental in improving cancer outcomes via the identification of novel biomarkers and targetable signaling pathways. In this review, we focus on highlighting reported examples of direct, protein-coded isoform variation of ubiquitination enzymes influencing cancer development and progression in gastrointestinal (GI) malignancies. We have used a semi-automated system for identifying relevant literature and applied established systems for isoform categorization and functional classification to help structure literature findings. The results are a comprehensive snapshot of known isoform changes that are significant to GI cancers, and a framework for readers to use to address isoform variation in their own research. One of the key findings is the potential influence that isoforms of the ubiquitination machinery have on oncoprotein stability.
Collapse
Affiliation(s)
| | - Derek J Nancarrow
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ayush Shah
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kiran H Lagisetty
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Beer
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipankar Ray
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Xu T, Verhagen MP, Teeuwssen M, Sun W, Joosten R, Sacchetti A, Ewing-Graham PC, Jansen MPHM, Boere IA, Bryce NS, Zeng J, Treutlein HR, Hook J, Hardeman EC, Gunning PW, Fodde R. Tropomyosin1 isoforms underlie epithelial to mesenchymal plasticity, metastatic dissemination, and resistance to chemotherapy in high-grade serous ovarian cancer. Cell Death Differ 2024; 31:360-377. [PMID: 38365970 PMCID: PMC10923901 DOI: 10.1038/s41418-024-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Phenotypic plasticity, defined as the ability of individual cells with stable genotypes to exert different phenotypes upon exposure to specific environmental cues, represent the quintessential hallmark of the cancer cell en route from the primary lesion to distant organ sites where metastatic colonization will occur. Phenotypic plasticity is driven by a broad spectrum of epigenetic mechanisms that allow for the reversibility of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions (EMT/MET). By taking advantage of the co-existence of epithelial and quasi-mesenchymal cells within immortalized cancer cell lines, we have analyzed the role of EMT-related gene isoforms in the regulation of epithelial mesenchymal plasticity (EMP) in high grade serous ovarian cancer. When compared with colon cancer, a distinct spectrum of downstream targets characterizes quasi-mesenchymal ovarian cancer cells, likely to reflect the different modalities of metastasis formation between these two types of malignancy, i.e. hematogenous in colon and transcoelomic in ovarian cancer. Moreover, upstream RNA-binding proteins differentially expressed between epithelial and quasi-mesenchymal subpopulations of ovarian cancer cells were identified that underlie differential regulation of EMT-related isoforms. In particular, the up- and down-regulation of RBM24 and ESRP1, respectively, represent a main regulator of EMT in ovarian cancer cells. To validate the functional and clinical relevance of our approach, we selected and functionally analyzed the Tropomyosin 1 gene (TPM1), encoding for a protein that specifies the functional characteristics of individual actin filaments in contractile cells, among the ovarian-specific downstream AS targets. The low-molecular weight Tpm1.8/9 isoforms are specifically expressed in patient-derived ascites and promote invasion through activation of EMT and Wnt signaling, together with a broad spectrum of inflammation-related pathways. Moreover, Tpm1.8/9 expression confers resistance to taxane- and platinum-based chemotherapy. Small molecule inhibitors that target the Tpm1 isoforms support targeting Tpm1.8/9 as therapeutic targets for the development of future tailor-made clinical interventions.
Collapse
Affiliation(s)
- Tong Xu
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Miriam Teeuwssen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Elisabeth-TweeSteden Ziekenhuis (ETZ), Tilburg, The Netherlands
| | - Wenjie Sun
- Institut Curie, Laboratory of Genetics and Developmental Biology, Paris, France
| | - Rosalie Joosten
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Maurice P H M Jansen
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid A Boere
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole S Bryce
- School of Biomedical Sciences, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Jun Zeng
- Computist Bio-NanoTech, Scoresby, VIC, 3179, Australia
| | - Herbert R Treutlein
- Computist Bio-NanoTech, Scoresby, VIC, 3179, Australia
- Sanoosa Pty. Ltd, Moonee Ponds, VIC, 3039, Australia
| | - Jeff Hook
- School of Biomedical Sciences, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Edna C Hardeman
- School of Biomedical Sciences, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Peter W Gunning
- School of Biomedical Sciences, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Chakkarappan SR, Umadharshini KV, Dhamodharan S, Rose MM, Gopu G, Murugan AK, Inoue I, Munirajan AK. Super enhancer loci of EGFR regulate EGFR variant 8 through enhancer RNA and strongly associate with survival in HNSCCs. Mol Genet Genomics 2024; 299:3. [PMID: 38236481 DOI: 10.1007/s00438-023-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/21/2023] [Indexed: 01/19/2024]
Abstract
Epidermal growth factor receptor (EGFR) has been shown to be overexpressed in human cancers due to mutation, amplification, and epigenetic hyperactivity, which leads to deregulated transcriptional mechanism. Among the eight different EGFR isoforms, the mechanism of regulation of full-length variant 1 is well-known, no studies have examined the function & factors regulating the expression of variant 8. This study aimed to understand the function of EGFR super-enhancer loci and its associated transcription factors regulating the expression of EGFR variant 8. Our study shows that overexpression of variant 8 and its transcription was more prevalent than variant 1 in many cancers and positively correlated with the EGFR-AS1 expression in oral cancer and HNSCC. Notably, individuals overexpressing variant 8 showed shorter overall survival and had a greater connection with other clinical traits than patients with overexpression of variant 1. In this study, TCGA enhancer RNA profiling on the constituent enhancer (CE1 and CE2) region revealed that the multiple enhancer RNAs formed from CE2 by employing CE1 as a promoter. Our bioinformatic analysis further supports the enrichment of enhancer RNA specific chromatin marks H3K27ac, H3K4me1, POL2 and H2AZ on CE2. GeneHancer and 3D chromatin capture analysis showed clustered interactions between CE1, CE2 loci and this interaction may regulates expression of both EGFR-eRNA and variant 8. Moreover, increased expression of SNAI2 and its close relationship to EGFR-AS1 and variant 8 suggest that SNAI2 could regulates variant 8 overexpression by building a MegaTrans complex with both EGFR-eRNA and EGFR-AS1. Our findings show that EGFR variant 8 and its transcriptional regulation & chromatin modification by eRNAs may provide a rationale for targeting RNA splicing in combination with targeted EGFR therapies in cancer.
Collapse
Affiliation(s)
- Sundaram Reddy Chakkarappan
- Department of Health Research, Multi Disciplinary Research Unit (DHR-MRU), Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | | | - Shankar Dhamodharan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Mathew Maria Rose
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | - Govindasamy Gopu
- Department of Surgical Oncology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, 600003, India
| | - Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Arasambattu Kannan Munirajan
- Department of Health Research, Multi Disciplinary Research Unit (DHR-MRU), Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India.
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India.
| |
Collapse
|
12
|
Quesnel-Vallières M, Jewell S, Lynch KW, Thomas-Tikhonenko A, Barash Y. MAJIQlopedia: an encyclopedia of RNA splicing variations in human tissues and cancer. Nucleic Acids Res 2024; 52:D213-D221. [PMID: 37953365 PMCID: PMC10767883 DOI: 10.1093/nar/gkad1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Quantification of RNA splicing variations based on RNA-Sequencing can reveal tissue- and disease-specific splicing patterns. To study such splicing variations, we introduce MAJIQlopedia, an encyclopedia of splicing variations that encompasses 86 human tissues and 41 cancer datasets. MAJIQlopedia reports annotated and unannotated splicing events for a total of 486 175 alternative splice junctions in normal tissues and 338 317 alternative splice junctions in cancer. This database, available at https://majiq.biociphers.org/majiqlopedia/, includes a user-friendly interface that provides graphical representations of junction usage quantification for each junction across all tissue or cancer types. To demonstrate case usage of MAJIQlopedia, we review splicing variations in genes WT1, MAPT and BIN1, which all have known tissue or cancer-specific splicing variations. We also use MAJIQlopedia to highlight novel splicing variations in FDX1 and MEGF9 in normal tissues, and we uncover a novel exon inclusion event in RPS6KA6 that only occurs in two cancer types. Users can download the database, request the addition of data to the webtool, or install a MAJIQlopedia server to integrate proprietary data. MAJIQlopedia can serve as a reference database for researchers seeking to understand what splicing variations exist in genes of interest, and those looking to understand tissue- or cancer-specific splice isoform usage.
Collapse
Affiliation(s)
- Mathieu Quesnel-Vallières
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - San Jewell
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yoseph Barash
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Lin T, Guo J, Peng Y, Li M, Liu Y, Yu X, Wu N, Yu W. Pan-cancer transcriptomic data of ABI1 transcript variants and molecular constitutive elements identifies novel cancer metastatic and prognostic biomarkers. Cancer Biomark 2024; 39:49-62. [PMID: 37545215 PMCID: PMC10977443 DOI: 10.3233/cbm-220348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Abelson interactor 1 (ABI1) is associated with the metastasis and prognosis of many malignancies. The association between ABI1 transcript spliced variants, their molecular constitutive exons and exon-exon junctions (EEJs) in 14 cancer types and clinical outcomes remains unsolved. OBJECTIVE To identify novel cancer metastatic and prognostic biomarkers from ABI1 total mRNA, TSVs, and molecular constitutive elements. METHODS Using data from TCGA and TSVdb database, the standard median of ABI1 total mRNA, TSV, exon, and EEJ expression was used as a cut-off value. Kaplan-Meier analysis, Chi-squared test (X2) and Kendall's tau statistic were used to identify novel metastatic and prognostic biomarkers, and Cox regression analysis was performed to screen and identify independent prognostic factors. RESULTS A total of 35 ABI1-related factors were found to be closely related to the prognosis of eight candidate cancer types. A total of 14 ABI1 TSVs and molecular constitutive elements were identified as novel metastatic and prognostic biomarkers in four cancer types. A total of 13 ABI1 molecular constitutive elements were identified as independent prognostic biomarkers in six cancer types. CONCLUSIONS In this study, we identified 14 ABI1-related novel metastatic and prognostic markers and 21 independent prognostic factors in total 8 candidate cancer types.
Collapse
Affiliation(s)
- Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| | - Jingzhu Guo
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Yifan Peng
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Gastrointestinal Cancer Center, Unit III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| | - Xin Yu
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
14
|
Song Y, Zhang C, Omenn GS, O’Meara MJ, Welch JD. Predicting the Structural Impact of Human Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572928. [PMID: 38187531 PMCID: PMC10769328 DOI: 10.1101/2023.12.21.572928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Protein structure prediction with neural networks is a powerful new method for linking protein sequence, structure, and function, but structures have generally been predicted for only a single isoform of each gene, neglecting splice variants. To investigate the structural implications of alternative splicing, we used AlphaFold2 to predict the structures of more than 11,000 human isoforms. We employed multiple metrics to identify splicing-induced structural alterations, including template matching score, secondary structure composition, surface charge distribution, radius of gyration, accessibility of post-translational modification sites, and structure-based function prediction. We identified examples of how alternative splicing induced clear changes in each of these properties. Structural similarity between isoforms largely correlated with degree of sequence identity, but we identified a subset of isoforms with low structural similarity despite high sequence similarity. Exon skipping and alternative last exons tended to increase the surface charge and radius of gyration. Splicing also buried or exposed numerous post-translational modification sites, most notably among the isoforms of BAX. Functional prediction nominated numerous functional differences among isoforms of the same gene, with loss of function compared to the reference predominating. Finally, we used single-cell RNA-seq data from the Tabula Sapiens to determine the cell types in which each structure is expressed. Our work represents an important resource for studying the structure and function of splice isoforms across the cell types of the human body.
Collapse
Affiliation(s)
- Yuxuan Song
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joshua D. Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Tsutsumi K, Nohara A, Tanaka T, Murano M, Miyagaki Y, Ohta Y. FilGAP regulates tumor growth in Glioma through the regulation of mTORC1 and mTORC2. Sci Rep 2023; 13:20956. [PMID: 38065968 PMCID: PMC10709582 DOI: 10.1038/s41598-023-47892-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that forms the two different protein complexes, known as mTORC1 and mTORC2. mTOR signaling is activated in a variety of tumors, including glioma that is one of the malignant brain tumors. FilGAP (ARHGAP24) is a negative regulator of Rac, a member of Rho family small GTPases. In this study, we found that FilGAP interacts with mTORC1/2 and is involved in tumor formation in glioma. FilGAP interacted with mTORC1 via Raptor and with mTORC2 via Rictor and Sin1. Depletion of FilGAP in KINGS-1 glioma cells decreased phosphorylation of S6K and AKT. Furthermore, overexpression of FilGAP increased phosphorylation of S6K and AKT, suggesting that FilGAP activates mTORC1/2. U-87MG, glioblastoma cells, showed higher mTOR activity than KINGS-1, and phosphorylation of S6K and AKT was not affected by suppression of FilGAP expression. However, in the presence of PI3K inhibitors, phosphorylation of S6K and AKT was also decreased in U-87MG by depletion of FilGAP, suggesting that FilGAP may also regulate mTORC2 in U-87MG. Finally, we showed that depletion of FilGAP in KINGS-1 and U-87MG cells significantly reduced spheroid growth. These results suggest that FilGAP may contribute to tumor growth in glioma by regulating mTORC1/2 activities.
Collapse
Affiliation(s)
- Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan.
| | - Ayumi Nohara
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Taiki Tanaka
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Moe Murano
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Yurina Miyagaki
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan.
| |
Collapse
|
16
|
Ang Z, Paruzzo L, Hayer KE, Schmidt C, Torres Diz M, Xu F, Zankharia U, Zhang Y, Soldan S, Zheng S, Falkenstein CD, Loftus JP, Yang SY, Asnani M, King Sainos P, Pillai V, Chong E, Li MM, Tasian SK, Barash Y, Lieberman PM, Ruella M, Schuster SJ, Thomas-Tikhonenko A. Alternative splicing of its 5'-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. Blood 2023; 142:1724-1739. [PMID: 37683180 PMCID: PMC10667349 DOI: 10.1182/blood.2023020400] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant skipping of coding exons in CD19 and CD22 compromises the response to immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5' untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform contained upstream open reading frames and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 postmosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies.
Collapse
Affiliation(s)
- Zhiwei Ang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katharina E. Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Carolin Schmidt
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Manuel Torres Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Feng Xu
- Division of Genomic Diagnostic, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Urvi Zankharia
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Samantha Soldan
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Sisi Zheng
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Joseph P. Loftus
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scarlett Y. Yang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mukta Asnani
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Vinodh Pillai
- Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Emeline Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Marilyn M. Li
- Division of Genomic Diagnostic, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah K. Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Paul M. Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Stephen J. Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
17
|
Franco-Valls H, Tusquets-Uxó E, Sala L, Val M, Peña R, Iaconcig A, Villarino Á, Jiménez-Arriola M, Massó P, Trincado JL, Eyras E, Muro AF, Otero J, García de Herreros A, Baulida J. Formation of an invasion-permissive matrix requires TGFβ/SNAIL1-regulated alternative splicing of fibronectin. Breast Cancer Res 2023; 25:143. [PMID: 37964360 PMCID: PMC10647173 DOI: 10.1186/s13058-023-01736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND As in most solid cancers, the emergence of cells with oncogenic mutations in the mammary epithelium alters the tissue homeostasis. Some soluble factors, such as TGFβ, potently modify the behavior of healthy stromal cells. A subpopulation of cancer-associated fibroblasts expressing a TGFβ target, the SNAIL1 transcription factor, display myofibroblastic abilities that rearrange the stromal architecture. Breast tumors with the presence of SNAIL1 in the stromal compartment, and with aligned extracellular fiber, are associated with poor survival prognoses. METHODS We used deep RNA sequencing and biochemical techniques to study alternative splicing and human tumor databases to test for associations (correlation t-test) between SNAIL1 and fibronectin isoforms. Three-dimensional extracellular matrices generated from fibroblasts were used to study the mechanical properties and actions of the extracellular matrices on tumor cell and fibroblast behaviors. A metastatic mouse model of breast cancer was used to test the action of fibronectin isoforms on lung metastasis. RESULTS In silico studies showed that SNAIL1 correlates with the expression of the extra domain A (EDA)-containing (EDA+) fibronectin in advanced human breast cancer and other types of epithelial cancers. In TGFβ-activated fibroblasts, alternative splicing of fibronectin as well as of 500 other genes was modified by eliminating SNAIL1. Biochemical analyses demonstrated that SNAIL1 favors the inclusion of the EDA exon by modulating the activity of the SRSF1 splicing factor. Similar to Snai1 knockout fibroblasts, EDA- fibronectin fibroblasts produce an extracellular matrix that does not sustain TGFβ-induced fiber organization, rigidity, fibroblast activation, or tumor cell invasion. The presence of EDA+ fibronectin changes the action of metalloproteinases on fibronectin fibers. Critically, in an mouse orthotopic breast cancer model, the absence of the fibronectin EDA domain completely prevents lung metastasis. CONCLUSIONS Our results support the requirement of EDA+ fibronectin in the generation of a metastasis permissive stromal architecture in breast cancers and its molecular control by SNAIL1. From a pharmacological point of view, specifically blocking EDA+ fibronectin deposition could be included in studies to reduce the formation of a pro-metastatic environment.
Collapse
Affiliation(s)
- Héctor Franco-Valls
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Elsa Tusquets-Uxó
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona, Spain
| | - Laura Sala
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- National Institutes of Health: Intramural Research Program, Bethesda, MD, USA
| | - Maria Val
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Vall Hebron Institute of Research, Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Álvaro Villarino
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Martín Jiménez-Arriola
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Pere Massó
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Juan L Trincado
- Research Program of Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Eduardo Eyras
- Research Program of Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Jorge Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep Baulida
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain.
| |
Collapse
|
18
|
Li F, Chen D, Sun Q, Wu J, Gan Y, Leong KW, Liang XJ. MDM2-Targeting Reassembly Peptide (TRAP) Nanoparticles for p53-Based Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305164. [PMID: 37474204 DOI: 10.1002/adma.202305164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Gene mutations and functional inhibition are the major obstacles for p53-mediated oncotherapy. For p53-wild-type tumors, the underlying mechanisms of functional inhibition of p53 during oncogenesis are unknown. The results reveal that the expression of the MDM2 inhibitor ARF is inhibited in p53-wild-type tumors, indicating that the restoration of ARF could be a potential oncotherapy strategy for p53-wild-type tumors. Therefore, ARF-mimetic MDM2-targeting reassembly peptide nanoparticles (MtrapNPs) for p53-based tumor therapy is developed. The results elucidated that the MtrapNPs respond to and form a nanofiber structure with MDM2. By trapping MDM2, the MtrapNPs stabilize and activate p53 for the inhibition of p53-wild-type tumors. In most cases, reactivated mutant p53 is inhibited and degraded by MDM2. In the present study, MtrapNPs are used to load and deliver arsenic trioxide, a p53 mutation rescuer, for p53-mutated tumor treatment in both orthotopic and metastatic models, and they exhibit significant therapeutic effects. Therefore, the study provides evidence supporting a link between decreased ARF expression and tumor development in patients with p53-wild-type tumors. Thus, the MDM2-trap strategy, which addresses both the inhibition and mutations of p53, is an efficient strategy for the treatment of p53-mutated tumors.
Collapse
Affiliation(s)
- Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Delin Chen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10033, USA
| | - Qianqian Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, P. R. China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yaling Gan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, 10032, United States
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Menin L, Weber J, Villa S, Martini E, Maspero E, Niño CA, Cancila V, Poli A, Maiuri P, Palamidessi A, Frittoli E, Bianchi F, Tripodo C, Walters KJ, Giavazzi F, Scita G, Polo S. A planar polarized MYO6-DOCK7-RAC1 axis promotes tissue fluidification in mammary epithelia. Cell Rep 2023; 42:113001. [PMID: 37590133 PMCID: PMC10530600 DOI: 10.1016/j.celrep.2023.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Tissue fluidification and collective motility are pivotal in regulating embryonic morphogenesis, wound healing, and tumor metastasis. These processes frequently require that each cell constituent of a tissue coordinates its migration activity and directed motion through the oriented extension of lamellipodium cell protrusions, promoted by RAC1 activity. While the upstream RAC1 regulators in individual migratory cells or leader cells during invasion or wound healing are well characterized, how RAC1 is controlled in follower cells remains unknown. Here, we identify a MYO6-DOCK7 axis essential for spatially restricting RAC1 activity in a planar polarized fashion in model tissue monolayers. The MYO6-DOCK7 axis specifically controls the extension of cryptic lamellipodia required to drive tissue fluidification and cooperative-mode motion in otherwise solid and static carcinoma cell collectives.
Collapse
Affiliation(s)
- Luca Menin
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Janine Weber
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Villa
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Emanuele Martini
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Carlos A Niño
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Human Pathology Section, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Alessandro Poli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Claudio Tripodo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Human Pathology Section, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Giorgio Scita
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy.
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
20
|
Ang Z, Paruzzo L, Hayer KE, Schmidt C, Torres Diz M, Xu F, Zankharia U, Zhang Y, Soldan S, Zheng S, Falkenstein CD, Loftus JP, Yang SY, Asnani M, King Sainos P, Pillai V, Chong E, Li MM, Tasian SK, Barash Y, Lieberman PM, Ruella M, Schuster SJ, Thomas-Tikhonenko A. Alternative splicing of its 5'-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529123. [PMID: 37645778 PMCID: PMC10461923 DOI: 10.1101/2023.02.19.529123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Aberrant skipping of coding exons in CD19 and CD22 compromises responses to immunotherapy for B-cell malignancies. Here, we show that the MS4A1 gene encoding human CD20 also produces several mRNA isoforms with distinct 5' untranslated regions (5'-UTR). Four variants (V1-4) were detectable by RNA-seq in distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant by far. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform was found to contain upstream open reading frames (uORFs) and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching Morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, while V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed CAR T cells were able to kill both V3- and V1-expressing cells, but the bispecific T cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on four post-mosunetuzumab follicular lymphoma relapses and discovered that in two of them downregulation of CD20 was accompanied by the V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies. Key Points In normal & malignant human B cells, CD20 mRNA is alternatively spliced into four 5'-UTR isoforms, some of which are translation-deficient.The balance between translation-deficient and -competent isoforms modulates CD20 protein levels & responses to CD20-directed immunotherapies. Explanation of Novelty We discovered that in normal and malignant B-cells, CD20 mRNA is alternatively spliced to generate four distinct 5'-UTRs, including the longer translation-deficient V1 variant. Cells predominantly expressing V1 were still sensitive to CD20-targeting chimeric antigen receptor T-cells. However, they were resistant to the bispecific anti-CD3/CD20 antibody mosunetuzumab, and the shift to V1 were observed in CD20-negative post-mosunetuzumab relapses of follicular lymphoma.
Collapse
|
21
|
Kim JJ, Sayed ME, Ahn A, Slusher AL, Ying JY, Ludlow AT. Dynamics of TERT regulation via alternative splicing in stem cells and cancer cells. PLoS One 2023; 18:e0289327. [PMID: 37531400 PMCID: PMC10395990 DOI: 10.1371/journal.pone.0289327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Part of the regulation of telomerase activity includes the alternative splicing (AS) of the catalytic subunit telomerase reverse transcriptase (TERT). Although a therapeutic window for telomerase/TERT inhibition exists between cancer cells and somatic cells, stem cells express TERT and rely on telomerase activity for physiological replacement of cells. Therefore, identifying differences in TERT regulation between stem cells and cancer cells is essential for developing telomerase inhibition-based cancer therapies that reduce damage to stem cells. In this study, we measured TERT splice variant expression and telomerase activity in induced pluripotent stem cells (iPSCs), neural progenitor cells (NPCs), and non-small cell lung cancer cells (NSCLC, Calu-6 cells). We observed that a NOVA1-PTBP1-PTBP2 axis regulates TERT alternative splicing (AS) in iPSCs and their differentiation into NPCs. We also found that splice-switching of TERT, which regulates telomerase activity, is induced by different cell densities in stem cells but not cancer cells. Lastly, we identified cell type-specific splicing factors that regulate TERT AS. Overall, our findings represent an important step forward in understanding the regulation of TERT AS in stem cells and cancer cells.
Collapse
Affiliation(s)
- Jeongjin J. Kim
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mohammed E. Sayed
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander Ahn
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aaron L. Slusher
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeffrey Y. Ying
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew T. Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
22
|
Bei Y, He J, Dong X, Wang Y, Wang S, Guo W, Cai C, Xu Z, Wei J, Liu B, Zhang N, Shen P. Targeting CD44 Variant 5 with an Antibody-Drug Conjugate Is an Effective Therapeutic Strategy for Intrahepatic Cholangiocarcinoma. Cancer Res 2023; 83:2405-2420. [PMID: 37205633 PMCID: PMC10345965 DOI: 10.1158/0008-5472.can-23-0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
UNLABELLED Intrahepatic cholangiocarcinoma (ICC) is the second most frequent type of primary liver cancer. ICC is among the deadliest malignancies, highlighting that novel treatments are urgently needed. Studies have shown that CD44 variant isoforms, rather than the CD44 standard isoform, are selectively expressed in ICC cells, providing an opportunity for the development of an antibody-drug conjugate (ADC)-based targeted therapeutic strategy. In this study, we observed the specific expression of CD44 variant 5 (CD44v5) in ICC tumors. CD44v5 protein was expressed on the surface of most ICC tumors (103 of 155). A CD44v5-targeted ADC, H1D8-DC (H1D8-drug conjugate), was developed that comprises a humanized anti-CD44v5 mAb conjugated to the microtubule inhibitor monomethyl auristatin E (MMAE) via a cleavable valine-citrulline-based linker. H1D8-DC exhibited efficient antigen binding and internalization in cells expressing CD44v5 on the cell surface. Because of the high expression of cathepsin B in ICC cells, the drug was preferentially released in cancer cells but not in normal cells, thus inducing potent cytotoxicity at picomolar concentrations. In vivo studies showed that H1D8-DC was effective against CD44v5-positive ICC cells and induced tumor regression in patient-derived xenograft models, whereas no significant adverse toxicities were observed. These data demonstrate that CD44v5 is a bona fide target in ICC and provide a rationale for the clinical investigation of a CD44v5-targeted ADC-based approach. SIGNIFICANCE Elevated expression of CD44 variant 5 in intrahepatic cholangiocarcinoma confers a targetable vulnerability using the newly developed antibody-drug conjugate H1D8-DC, which induces potent growth suppressive effects without significant toxicity.
Collapse
Affiliation(s)
- Yuncheng Bei
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xuhui Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Yuxin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Sijie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wan Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Chengjie Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Pingping Shen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- Shenzhen Research Institute of Nanjing University, Shenzhen, PR China
| |
Collapse
|
23
|
Chintala S, Dankoski MA, Anbarasu A, Ramaiah S, Miryala SK, Katzenellenbogen RA. NFX1-123: A potential therapeutic target in cervical cancer. J Med Virol 2023; 95:e28856. [PMID: 37288708 PMCID: PMC10264143 DOI: 10.1002/jmv.28856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
NFX1-123 is a splice variant isoform of the NFX1 gene. It is highly expressed in cervical cancers caused by HPV, and NFX1-123 is a protein partner with the HPV oncoprotein E6. Together, NFX1-123 and E6 affect cellular growth, longevity, and differentiation. The expression status of NFX1-123 in cancers beyond cervical and head and neck cancers, and its potential as therapeutic target, have not been investigated. TSVdb of TCGA was used to quantify NFX1-123 expression in 24 cancers compared with normal tissues. The NFX1-123 protein structure was predicted and then submitted to retrieve suitable drug molecules. The top four compounds, found to bind in silico to NFX1-123, were tested experimentally to determine their effects on NFX1-123-related cellular growth, survival, and migration. 46% of cancers (11 of 24 had significant differences in NFX1-123 expression, with nine having had greater NFX1-123 expression, when compared with adjacent normal tissues. Bioinformatics and proteomic predictive analysis modeled the three-dimensional structure of NFX1-123, and drug libraries were screened for high-binding affinity compounds using this modeled structure. Seventeen drugs with binding energies ranging from -1.3 to -10 Kcal/mol were identified. The top four compounds were used to treat HPV- and HPV+ cervical cancer cell lines, three of which (Ropitoin, R428 and Ketoconazole) reduced NFX1-123 protein levels, inhibited cellular growth, survival, and migration, and enhanced the cytotoxicity of Cisplatin. These findings highlight cancers expressing high levels of NFX1-123, and drugs that target it, may reduce cellular growth, survival, and migration, making NFX1-123 a potential novel therapeutic target.
Collapse
Affiliation(s)
- Sreenivasulu Chintala
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Maura A. Dankoski
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Anand Anbarasu
- School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, INDIA
| | - Sudha Ramaiah
- School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, INDIA
| | - Sravan Kumar Miryala
- School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, INDIA
| | | |
Collapse
|
24
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
25
|
Ortega-Campos SM, Verdugo-Sivianes EM, Amiama-Roig A, Blanco JR, Carnero A. Interactions of circadian clock genes with the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188900. [PMID: 37105413 DOI: 10.1016/j.bbcan.2023.188900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
The molecular machinery of the circadian clock regulates the expression of many genes and processes in the organism, allowing the adaptation of cellular activities to the daily light-dark cycles. Disruption of the circadian rhythm can lead to various pathologies, including cancer. Thus, disturbance of the normal circadian clock at both genetic and environmental levels has been described as an independent risk factor for cancer. In addition, researchers have proposed that circadian genes may have a tissue-dependent and/or context-dependent role in tumorigenesis and may function both as tumor suppressors and oncogenes. Finally, circadian clock core genes may trigger or at least be involved in different hallmarks of cancer. Hence, expanding the knowledge of the molecular basis of the circadian clock would be helpful to identify new prognostic markers of tumorigenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Sara M Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Amiama-Roig
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - José R Blanco
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
26
|
Wang W, Taufalele PV, Millet M, Homsy K, Smart K, Berestesky ED, Schunk CT, Rowe MM, Bordeleau F, Reinhart-King CA. Matrix stiffness regulates tumor cell intravasation through expression and ESRP1-mediated alternative splicing of MENA. Cell Rep 2023; 42:112338. [PMID: 37027295 PMCID: PMC10551051 DOI: 10.1016/j.celrep.2023.112338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
During intravasation, cancer cells cross the endothelial barrier and enter the circulation. Extracellular matrix stiffening has been correlated with tumor metastatic potential; however, little is known about the effects of matrix stiffness on intravasation. Here, we utilize in vitro systems, a mouse model, specimens from patients with breast cancer, and RNA expression profiles from The Cancer Genome Atlas Program (TCGA) to investigate the molecular mechanism by which matrix stiffening promotes tumor cell intravasation. Our data show that heightened matrix stiffness increases MENA expression, which promotes contractility and intravasation through focal adhesion kinase activity. Further, matrix stiffening decreases epithelial splicing regulatory protein 1 (ESRP1) expression, which triggers alternative splicing of MENA, decreases the expression of MENA11a, and enhances contractility and intravasation. Altogether, our data indicate that matrix stiffness regulates tumor cell intravasation through enhanced expression and ESRP1-mediated alternative splicing of MENA, providing a mechanism by which matrix stiffness regulates tumor cell intravasation.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Paul V Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Martial Millet
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada
| | - Kevin Homsy
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada
| | - Kyra Smart
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Curtis T Schunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew M Rowe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; Département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Québec, QC G1V 0A6, Canada.
| | | |
Collapse
|
27
|
An Y, Fnu G, Xie C, Weber GF. Meta-analysis of Osteopontin splice variants in cancer. BMC Cancer 2023; 23:373. [PMID: 37095438 PMCID: PMC10124019 DOI: 10.1186/s12885-023-10854-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The cytokine Osteopontin is a mediator of tumor progression and cancer metastasis. In 2006, we reported that (in addition to the full-length form -a) splice variants of Osteopontin (forms -b and -c) are produced selectively by transformed cells. Through June 2021, 36 PubMed-indexed journal articles have studied Osteopontin splice variants in various cancer patients. METHODS Applying a categorical approach previously developed by us, here we conduct a meta-analysis of the pertinent literature. We supplement this with evaluation of the relevant entries in the TSVdb database, which focusses on splice variant expression, thus including the additional variants -4 and -5. The analysis covers 5886 patients across 15 tumors from the literature and 10,446 patients across 33 tumors from TSVdb. RESULTS The database yields positive results more frequently than the categorical meta-analysis. The two sources are in agreement on the elevation of OPN-a, OPN-b, and OPN-c in lung cancer and the elevation of OPN-c in breast cancer as compared to healthy tissue. Specific splice variants are associated with grade, stage, or patient survival pertaining to various cancers. CONCLUSIONS There are cases of persisting discrepancies, which require further investigation to clarify the Osteopontin splice variant utilization, so that their diagnostic, prognostic and potentially predictive potential can be brought to fruition.
Collapse
Affiliation(s)
- Yu An
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Gulimirerouzi Fnu
- James L. Winkle College of Pharmacy, College of Pharmacy, University of Cincinnati Academic Health Center, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Georg F Weber
- James L. Winkle College of Pharmacy, College of Pharmacy, University of Cincinnati Academic Health Center, 231 Albert Sabin Way, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Sandilands E, Freckmann EC, Cumming EM, Román-Fernández A, McGarry L, Anand J, Galbraith L, Mason S, Patel R, Nixon C, Cartwright J, Leung HY, Blyth K, Bryant DM. The small GTPase ARF3 controls invasion modality and metastasis by regulating N-cadherin levels. J Cell Biol 2023; 222:e202206115. [PMID: 36880595 PMCID: PMC9997661 DOI: 10.1083/jcb.202206115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 01/20/2023] [Indexed: 03/04/2023] Open
Abstract
ARF GTPases are central regulators of membrane trafficking that control local membrane identity and remodeling facilitating vesicle formation. Unraveling their function is complicated by the overlapping association of ARFs with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and numerous interactors. Through a functional genomic screen of three-dimensional (3D) prostate cancer cell behavior, we explore the contribution of ARF GTPases, GEFs, GAPs, and interactors to collective invasion. This revealed that ARF3 GTPase regulates the modality of invasion, acting as a switch between leader cell-led chains of invasion or collective sheet movement. Functionally, the ability of ARF3 to control invasion modality is dependent on association and subsequent control of turnover of N-cadherin. In vivo, ARF3 levels acted as a rheostat for metastasis from intraprostatic tumor transplants and ARF3/N-cadherin expression can be used to identify prostate cancer patients with metastatic, poor-outcome disease. Our analysis defines a unique function for the ARF3 GTPase in controlling how cells collectively organize during invasion and metastasis.
Collapse
Affiliation(s)
- Emma Sandilands
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Eva C. Freckmann
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Erin M. Cumming
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Alvaro Román-Fernández
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | | | | | | | | | | | | | - Hing Y. Leung
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - David M. Bryant
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| |
Collapse
|
29
|
Wang L, Sun J, Ma S, Xia J, Li X. PredDSMC: A predictor for driver synonymous mutations in human cancers. Front Genet 2023; 14:1164593. [PMID: 37051593 PMCID: PMC10083435 DOI: 10.3389/fgene.2023.1164593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Driver mutations play a critical role in the occurrence and development of human cancers. Most studies have focused on missense mutations that function as drivers in cancer. However, accumulating experimental evidence indicates that synonymous mutations can also act as driver mutations.Methods: Here, we proposed a computational method called PredDSMC to accurately predict driver synonymous mutations in human cancers. We first systematically explored four categories of multimodal features, including sequence features, splicing features, conservation scores, and functional scores. Further feature selection was carried out to remove redundant features and improve the model performance. Finally, we utilized the random forest classifier to build PredDSMC.Results: The results of two independent test sets indicated that PredDSMC outperformed the state-of-the-art methods in differentiating driver synonymous mutations from passenger mutations.Discussion: In conclusion, we expect that PredDSMC, as a driver synonymous mutation prediction method, will be a valuable method for gaining a deeper understanding of synonymous mutations in human cancers.
Collapse
|
30
|
Chen F, Gurler SB, Novo D, Selli C, Alferez DG, Eroglu S, Pavlou K, Zhang J, Sims AH, Humphreys NE, Adamson A, Campbell A, Sansom OJ, Tournier C, Clarke RB, Brennan K, Streuli CH, Ucar A. RAC1B function is essential for breast cancer stem cell maintenance and chemoresistance of breast tumor cells. Oncogene 2023; 42:679-692. [PMID: 36599922 PMCID: PMC9957727 DOI: 10.1038/s41388-022-02574-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Breast cancer stem cells (BCSC) are presumed to be responsible for treatment resistance, tumor recurrence and metastasis of breast tumors. However, development of BCSC-targeting therapies has been held back by their heterogeneity and the lack of BCSC-selective molecular targets. Here, we demonstrate that RAC1B, the only known alternatively spliced variant of the small GTPase RAC1, is expressed in a subset of BCSCs in vivo and its function is required for the maintenance of BCSCs and their chemoresistance to doxorubicin. In human breast cancer cell line MCF7, RAC1B is required for BCSC plasticity and chemoresistance to doxorubicin in vitro and for tumor-initiating abilities in vivo. Unlike Rac1, Rac1b function is dispensable for normal mammary gland development and mammary epithelial stem cell (MaSC) activity. In contrast, loss of Rac1b function in a mouse model of breast cancer hampers the BCSC activity and increases their chemosensitivity to doxorubicin treatment. Collectively, our data suggest that RAC1B is a clinically relevant molecular target for the development of BCSC-targeting therapies that may improve the effectiveness of doxorubicin-mediated chemotherapy.
Collapse
Affiliation(s)
- Fuhui Chen
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sevim B Gurler
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Novo
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cigdem Selli
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Denis G Alferez
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Secil Eroglu
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kyriaki Pavlou
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Neil E Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cathy Tournier
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Keith Brennan
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
31
|
Labyrinthin Expression Is Associated with Poor Prognosis in Patients with Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15030924. [PMID: 36765881 PMCID: PMC9913764 DOI: 10.3390/cancers15030924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
To determine Labyrinthin (LAB) expression in non-small-cell lung cancer (NSCLC), we immunostained and scored for LAB immunohistochemistry (IHC) expression on sections of tissue microarrays (TMAs) prepared from 256 archival tissue blocks of NSCLC. Propensity-score-weighted Kaplan-Meier curves and weighted Cox models were used to associate LAB expression with overall survival. LAB mRNA expression was assessed in The Cancer Genome Atlas (TCGA) and correlated with clinical phenotype and outcome. Positive LAB IHC expression (>5% of tumor cells) was detected in 208/256 (81.3%) of NSCLC samples, and found in both lung adenocarcinomas (LUAD) and lung squamous cell cancer (LUSC). LAB positivity was associated with poor overall survival (HR = 3.56, 95% CI: 2.3-5.4; p < 0.0001) and high tumor differentiation grade or metastasis compared with negative LAB expression. Univariant and multivariate survival analyses demonstrated LAB expression as an independent prognostic factor for NSCLC patients. LAB RNA expression in TCGA-LUAD was higher in primary and advanced-stage tumors than in normal tissue, and was associated with poorer overall survival. No significant differences or associations were found with LAB RNA expression in TCGA-LUSC. The LAB IHC assay is being used to identify candidate cancer patients for the first-in-human phase I trial evaluating the LAB vaccines (UCDCC#296, NCT051013560).
Collapse
|
32
|
Garcia-Becerra N, Aguila-Estrada MU, Palafox-Mariscal LA, Hernandez-Flores G, Aguilar-Lemarroy A, Jave-Suarez LF. FOXP3 Isoforms Expression in Cervical Cancer: Evidence about the Cancer-Related Properties of FOXP3Δ2Δ7 in Keratinocytes. Cancers (Basel) 2023; 15:cancers15020347. [PMID: 36672296 PMCID: PMC9856939 DOI: 10.3390/cancers15020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common type of cancer among women; the main predisposing factor is persistent infection by high-risk human papillomavirus (hr-HPV), mainly the 16 or 18 genotypes. Both hr-HPVs are known to manipulate the cellular machinery and the immune system to favor cell transformation. FOXP3, a critical transcription factor involved in the biology of regulatory T cells, has been detected as highly expressed in the tumor cells of CC patients. However, its biological role in CC, particularly in the keratinocytes, remained unclarified. Therefore, this work aimed to uncover the effect of FOXP3 on the biology of the tumoral cells. First, public databases were analyzed to identify the FOXP3 expression levels and the transcribed isoforms in CC and normal tissue samples. The study's findings demonstrated an increased expression of FOXP3 in HPV16+ CC samples. Additionally, the FOXP3Δ2 variant was detected as the most frequent splicing isoform in tumoral cells, with a high differential expression level in metastatic samples. However, the analysis of FOXP3 expression in different CC cell lines, HPV+ and HPV-, suggests no relationship between the presence of HPV and FOXP3 expression. Since the variant FOXP3Δ2Δ7 was found highly expressed in the HPV16+ SiHa cell line, a model with constitutive expression of FOXP3Δ2Δ7 was established to evaluate its role in proliferation, migration, and cell division. Finally, RNAseq was performed to identify differentially expressed genes and enriched pathways modulated by FOXP3Δ2Δ7. The exogenous expression of FOXP3Δ2Δ7 promotes cell division, proliferation, and migration. The transcriptomic analyses highlight the upregulation of multiple genes with protumor activities. Moreover, immunological and oncogenic pathways were detected as highly enriched. These data support the hypothesis that FOXP3Δ2Δ7 in epithelial cells induces cancer-related hallmarks and provides information about the molecular events triggered by this isoform, which could be important for developing CC.
Collapse
Affiliation(s)
- Natalia Garcia-Becerra
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Marco Ulises Aguila-Estrada
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luis Arturo Palafox-Mariscal
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Georgina Hernandez-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Correspondence: (A.A.-L.); (L.F.J.-S.)
| | - Luis Felipe Jave-Suarez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Correspondence: (A.A.-L.); (L.F.J.-S.)
| |
Collapse
|
33
|
Ji X, Liu Z, Gao J, Bing X, He D, Liu W, Wang Y, Wei Y, Yin X, Zhang F, Han M, Lu X, Wang Z, Liu Q, Xin T. N 6-Methyladenosine-modified lncRNA LINREP promotes Glioblastoma progression by recruiting the PTBP1/HuR complex. Cell Death Differ 2023; 30:54-68. [PMID: 35871232 PMCID: PMC9883516 DOI: 10.1038/s41418-022-01045-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is acknowledged as the most aggressive primary brain tumor in adults. It is typically characterized by the high heterogeneity which corresponds to extensive genetic mutations and complex alternative splicing (AS) profiles. Known as a major repressive splicing factor in AS, polypyrimidine tract-binding protein 1 (PTBP1) is involved in the exon skipping events of multiple precursor mRNAs (pre-mRNAs) in GBM. However, precise mechanisms that modulate the expression and activity of PTBP1 remain to be elucidated. In present study, we provided evidences for the role of a long intergenic noncoding RNA (LINREP) implicated in the regulation of PTBP1-induced AS. LINREP interacted with PTBP1 and human antigen R (HuR, ELAVL1) protein complex and protected PTBP1 from the ubiquitin-proteasome degradation. Consequently, a broad spectrum of PTBP1-induced spliced variants was generated by exon skipping, especially for the skipping of reticulon 4 (RTN4) exon 3. Interestingly, LINREP also promoted the dissociation of nuclear UPF1 from PTBP1, which increased the binding of PTBP1 to RTN4 transcripts, thus enhancing the skipping of RTN4 exon 3 to some extent. Besides, HuR recruitment was essential for the stabilization of LINREP via a manner dependent on N6-methyladenosine (m6A) formation and identification. Taken together, our results demonstrated the functional significance of LINREP in human GBM for its dual regulation of PTBP1-induced AS and its m6A modification modality, implicating that HuR/LINREP/PTBP1 axis might serve as a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Jiajia Gao
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Wenqing Liu
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Yunda Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China
| | - Yanbang Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xianyong Yin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China
| | - Fenglin Zhang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Min Han
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China
| | - Xiangdong Lu
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zixiao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
34
|
Lin T, Wu N, Guo J, Li M, Zhong Z, Yu W. Establishment of quantitative nested-PCR of Abelson interactor 1 transcript variant-11. Heliyon 2022; 8:e12119. [PMID: 36561701 PMCID: PMC9764186 DOI: 10.1016/j.heliyon.2022.e12119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Abelson interactor 1 (ABI1), which presents 18 Transcript Variants (TSV), plays an important role in CRC metastasis. Different ABI1-TSVs play synergistic or antagonistic roles in the same pathophysiological events. ABI1 Transcript Variant-11 (ABI1-TSV-11) functionally promotes lymph node metastasis of left-sided colorectal cancer (LsCC) and is an independent molecular marker to evaluate the prognosis of patients with LsCC. However, there is still lack of a quick and accurate method to detect the expression of ABI-TSV-11, distinguishing ABI1-TSV-11 from other 17 TSVs. To establish a rapid method specific for ABI1-TSV-11detection, we developed a quantitative nested-PCR method composed of pre-amplification regular PCR using ABI1 universal primer pair and the followed Real Time (RT)-qPCR using ABI1-TSV-11 specific primer pair spanning exon-exon junction. ABI1-TSV-11-overexpressed SW480 and LoVo cell lines were used to verify the quantitative nested-PCR assay, and the sequencing data was used to evaluate the accuracy of ABI1-TSV-11 quantitative nested-PCR assay. The detection limit was 5.24×104 copies/ml. ABI1-TSV-11 quantitative nested-PCR provides a new technical means for the detection of ABI1-TSV-11.
Collapse
Affiliation(s)
- Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China,Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People's Hospital, Beijing 100044, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China,Corresponding author.
| |
Collapse
|
35
|
Wang R, Qin Z, Luo H, Pan M, Liu M, Yang P, Shi T. Prognostic value of PNN in prostate cancer and its correlation with therapeutic significance. Front Genet 2022; 13:1056224. [PMID: 36468018 PMCID: PMC9708726 DOI: 10.3389/fgene.2022.1056224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 10/11/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy. New biomarkers are in demand to facilitate the management. The role of the pinin protein (encoded by PNN gene) in PCa has not been thoroughly explored yet. Using The Cancer Genome Atlas (TCGA-PCa) dataset validated with Gene Expression Omnibus (GEO) and protein expression data retrieved from the Human Protein Atlas, the prognostic and diagnostic values of PNN were studied. Highly co-expressed genes with PNN (HCEG) were constructed for pathway enrichment analysis and drug prediction. A prognostic signature based on methylation status using HCEG was constructed. Gene set enrichment analysis (GSEA) and the TISIDB database were utilised to analyse the associations between PNN and tumour-infiltrating immune cells. The upregulated PNN expression in PCa at both transcription and protein levels suggests its potential as an independent prognostic factor of PCa. Analyses of the PNN's co-expression network indicated that PNN plays a role in RNA splicing and spliceosomes. The prognostic methylation signature demonstrated good performance for progression-free survival. Finally, our results showed that the PNN gene was involved in splicing-related pathways in PCa and identified as a potential biomarker for PCa.
Collapse
Affiliation(s)
- Ruisong Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Changde, Hunan, China
| | - Ziyi Qin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Huiling Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Meisen Pan
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Changde, Hunan, China
- Medical College, Hunan University of Arts and Science, Changde, Hunan, China
| | - Mingyao Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
- Hunan Provincial Ley Laboratory for Molecular Immunity Techonology of Aquatic Animal Diseases, Changde, China
| | - Tieliu Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
| |
Collapse
|
36
|
de Melo ALL, Linder A, Sundfeldt K, Lindquist D, Hedman H. Single-molecule array assay reveals the prognostic impact of plasma LRIG1 in ovarian carcinoma. Acta Oncol 2022; 61:1425-1433. [PMID: 36326616 DOI: 10.1080/0284186x.2022.2140016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ovarian carcinoma is the eighth most common cause of cancer death in women worldwide. The disease is predominantly diagnosed at a late stage. This contributes to high recurrence rates, eventually leading to the development of treatment-resistant disease. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) is a transmembrane protein that functions as a tumor suppressor and regulator of growth factor signaling. LRIG1 levels have not been investigated in human plasma previously. MATERIALS AND METHODS A quantitative LRIG1-specific single molecule array assay was developed and validated. LRIG1 levels were quantified in plasma samples from 486 patients with suspicious ovarian masses. RESULTS Among women with ovarian carcinoma, LRIG1 levels were significantly elevated compared to women with benign or borderline type tumors. High LRIG1 plasma levels were associated with worse overall survival and shorter disease-free survival both in the group of all malignant cases and among the stage 3 cases only. LRIG1 was an independent prognostic factor in patients with stage 3 ovarian carcinoma. CONCLUSION LRIG1 plasma levels were elevated in patients with ovarian carcinoma, and high levels were associated with poor prognosis, suggesting that LRIG1 might be an etiologic factor and a potentially useful biomarker in ovarian carcinoma.
Collapse
Affiliation(s)
| | - Anna Linder
- Sahlgrenska Center for Cancer research, Department of Gynecology and Obstetrics, Institute of clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer research, Department of Gynecology and Obstetrics, Institute of clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - David Lindquist
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
Slusher AL, Kim JJJ, Ribick M, Pollens-Voigt J, Bankhead A, Palmbos PL, Ludlow AT. Intronic Cis-Element DR8 in hTERT Is Bound by Splicing Factor SF3B4 and Regulates hTERT Splicing in Non-Small Cell Lung Cancer. Mol Cancer Res 2022; 20:1574-1588. [PMID: 35852380 PMCID: PMC9532359 DOI: 10.1158/1541-7786.mcr-21-0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/14/2021] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Splicing of the hTERT gene to produce the full-length (FL) transcript is necessary for telomerase enzyme activity and telomere-dependent cellular immortality in the majority of human tumors, including non-small cell lung cancer (NSCLC) cells. The molecular machinery to splice hTERT to the FL isoform remains mostly unknown. Previously, we reported that an intron 8 cis-element termed "direct repeat 8" (DR8) promotes FL hTERT splicing, telomerase, and telomere length maintenance when bound by NOVA1 and PTBP1 in NSCLC cells. However, some NSCLC cells and patient tumor samples lack NOVA1 expression. This leaves a gap in knowledge about the splicing factors and cis-elements that promote telomerase in the NOVA1-negative context. We report that DR8 regulates FL hTERT splicing in the NOVA1-negative and -positive lung cancer contexts. We identified splicing factor 3b subunit 4 (SF3B4) as an RNA trans-factor whose expression is increased in lung adenocarcinoma (LUAD) tumors compared with adjacent normal tissue and predicts poor LUAD patient survival. In contrast to normal lung epithelial cells, which continued to grow with partial reductions of SF3B4 protein, SF3B4 knockdown reduced hTERT splicing, telomerase activity, telomere length, and cell growth in lung cancer cells. SF3B4 was also demonstrated to bind the DR8 region of hTERT pre-mRNA in both NOVA1-negative and -positive NSCLC cells. These findings provide evidence that DR8 is a critical binding hub for trans-factors to regulate FL hTERT splicing in NSCLC cells. These studies help define mechanisms of gene regulation important to the generation of telomerase activity during carcinogenesis. IMPLICATIONS Manipulation of a core spliceosome protein reduces telomerase/hTERT splicing in lung cancer cells and results in slowed cancer cell growth and cell death, revealing a potential therapeutic strategy.
Collapse
Affiliation(s)
- Aaron L. Slusher
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeongjin JJ Kim
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark Ribick
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Armand Bankhead
- Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Phillip L. Palmbos
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Andrew T. Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
38
|
Chang A, Chakiryan NH, Du D, Stewart PA, Zhang Y, Tian Y, Soupir AC, Bowers K, Fang B, Morganti A, Teer JK, Kim Y, Spiess PE, Chahoud J, Noble JD, Putney RM, Berglund AE, Robinson TJ, Koomen JM, Wang L, Manley BJ. Proteogenomic, Epigenetic, and Clinical Implications of Recurrent Aberrant Splice Variants in Clear Cell Renal Cell Carcinoma. Eur Urol 2022; 82:354-362. [PMID: 35718636 PMCID: PMC11075093 DOI: 10.1016/j.eururo.2022.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alternative mRNA splicing can be dysregulated in cancer, resulting in the generation of aberrant splice variants (SVs). Given the paucity of actionable genomic mutations in clear cell renal cell carcinoma (ccRCC), aberrant SVs may be an avenue to novel mechanisms of pathogenesis. OBJECTIVE To identify and characterize aberrant SVs enriched in ccRCC. DESIGN, SETTING, AND PARTICIPANTS Using RNA-seq data from the Cancer Cell Line Encyclopedia, we identified neojunctions uniquely expressed in ccRCC. Candidate SVs were then checked for expression across normal tissue in the Genotype-Tissue Expression Project and primary tumor tissue from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and our institutional Total Cancer Care database. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Clinicopathologic, genomic, and survival data were available for all cohorts. Epigenetic data were available for the TCGA and CPTAC cohorts. Proteomic data were available for the CPTAC cohort. The association of aberrant SV expression with these variables was examined using the Kruskal-Wallis test, pairwise t test, Spearman correlation test, and Cox regression analysis. RESULTS AND LIMITATIONS Our pipeline identified 16 ccRCC-enriched SVs. EGFR, HPCAL1-SV and RNASET2-SV expression was negatively correlated with gene-specific CpG methylation. We derived a survival risk score based primarily on the expression of five SVs (RNASET2, FGD1, PDZD2, COBLL1, and PTPN14), which was consistent and applicable across multiple cohorts on multivariate analysis. The splicing factor RBM4, which modulates splicing of HIF-1α, exhibited significantly lower expression at the protein level in the high-risk group, as defined by our SV-based score. CONCLUSIONS We describe 16 aberrant SVs enriched in ccRCC, many of which are associated with disease biology and/or clinical outcomes. This study provides a novel strategy for identifying and characterizing disease-specific aberrant SVs. PATIENT SUMMARY We describe a method to identify disease targets and biomarkers using transcriptomic analysis beyond somatic mutations or gene expression. Kidney tumors express unique splice variants that may provide additional prognostic information following surgery.
Collapse
Affiliation(s)
- Andrew Chang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Nicholas H Chakiryan
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yonghong Zhang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alex C Soupir
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kiah Bowers
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Bin Fang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ashley Morganti
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jerald D Noble
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ryan M Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Timothy J Robinson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Brandon J Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
39
|
Jacquemin G, Wurmser A, Huyghe M, Sun W, Homayed Z, Merle C, Perkins M, Qasrawi F, Richon S, Dingli F, Arras G, Loew D, Vignjevic D, Pannequin J, Fre S. Paracrine signalling between intestinal epithelial and tumour cells induces a regenerative programme. eLife 2022; 11:e76541. [PMID: 35543624 PMCID: PMC9094746 DOI: 10.7554/elife.76541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Tumours are complex ecosystems composed of different types of cells that communicate and influence each other. While the critical role of stromal cells in affecting tumour growth is well established, the impact of mutant cancer cells on healthy surrounding tissues remains poorly defined. Here, using mouse intestinal organoids, we uncover a paracrine mechanism by which intestinal cancer cells reactivate foetal and regenerative YAP-associated transcriptional programmes in neighbouring wildtype epithelial cells, rendering them adapted to thrive in the tumour context. We identify the glycoprotein thrombospondin-1 (THBS1) as the essential factor that mediates non-cell-autonomous morphological and transcriptional responses. Importantly, Thbs1 is associated with bad prognosis in several human cancers. This study reveals the THBS1-YAP axis as the mechanistic link mediating paracrine interactions between epithelial cells in intestinal tumours.
Collapse
Affiliation(s)
- Guillaume Jacquemin
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
- Sorbonne University, UPMC University of Paris VIParisFrance
| | - Annabelle Wurmser
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Mathilde Huyghe
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Wenjie Sun
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Zeinab Homayed
- IGF, University of Montpellier, CNRS, INSERMMontpellierFrance
| | - Candice Merle
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Meghan Perkins
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Fairouz Qasrawi
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR 144ParisFrance
| | - Florent Dingli
- Institut Curie, PSL Research University, Laboratory of Mass Spectrometry and ProteomicsParisFrance
| | - Guillaume Arras
- Institut Curie, PSL Research University, Laboratory of Mass Spectrometry and ProteomicsParisFrance
| | - Damarys Loew
- Institut Curie, PSL Research University, Laboratory of Mass Spectrometry and ProteomicsParisFrance
| | | | - Julie Pannequin
- IGF, University of Montpellier, CNRS, INSERMMontpellierFrance
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| |
Collapse
|
40
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
41
|
Bushel PR, Ward J, Burkholder A, Li J, Anchang B. Mitochondrial-nuclear epistasis underlying phenotypic variation in breast cancer pathology. Sci Rep 2022; 12:1393. [PMID: 35082309 PMCID: PMC8791930 DOI: 10.1038/s41598-022-05148-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
The interplay between genes harboring single nucleotide polymorphisms (SNPs) is vital to better understand underlying contributions to the etiology of breast cancer. Much attention has been paid to epistasis between nuclear genes or mutations in the mitochondrial genome. However, there is limited understanding about the epistatic effects of genetic variants in the nuclear and mitochondrial genomes jointly on breast cancer. We tested the interaction of germline SNPs in the mitochondrial (mtSNPs) and nuclear (nuSNPs) genomes of female breast cancer patients in The Cancer Genome Atlas (TCGA) for association with morphological features extracted from hematoxylin and eosin (H&E)-stained pathology images. We identified 115 significant (q-value < 0.05) mito-nuclear interactions that increased nuclei size by as much as 12%. One interaction between nuSNP rs17320521 in an intron of the WSC Domain Containing 2 (WSCD2) gene and mtSNP rs869096886, a synonymous variant mapped to the mitochondrially-encoded NADH dehydrogenase 4 (MT-ND4) gene, was confirmed in an independent breast cancer data set from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). None of the 10 mito-nuclear interactions identified from non-diseased female breast tissues from the Genotype-Expression (GTEx) project resulted in an increase in nuclei size. Comparisons of gene expression data from the TCGA breast cancer patients with the genotype homozygous for the minor alleles of the SNPs in WSCD2 and MT-ND4 versus the other genotypes revealed core transcriptional regulator interactions and an association with insulin. Finally, a Cox proportional hazards ratio = 1.7 (C.I. 0.98-2.9, p-value = 0.042) and Kaplan-Meier plot suggest that the TCGA female breast cancer patients with low gene expression of WSCD2 coupled with large nuclei have an increased risk of mortality. The intergenomic dependency between the two variants may constitute an inherent susceptibility of a more severe form of breast cancer and points to genetic targets for further investigation of additional determinants of the disease.
Collapse
Affiliation(s)
- Pierre R Bushel
- Massive Genome Informatics Group, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - James Ward
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
- Kelly Government Solutions, Research Triangle Park, NC, 27709, USA
| | - Adam Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jianying Li
- Massive Genome Informatics Group, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
- Kelly Government Solutions, Research Triangle Park, NC, 27709, USA
| | - Benedict Anchang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
42
|
Uceda-Castro R, van Asperen JV, Vennin C, Sluijs JA, van Bodegraven EJ, Margarido AS, Robe PAJ, van Rheenen J, Hol EM. GFAP splice variants fine-tune glioma cell invasion and tumour dynamics by modulating migration persistence. Sci Rep 2022; 12:424. [PMID: 35013418 PMCID: PMC8748899 DOI: 10.1038/s41598-021-04127-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
Glioma is the most common form of malignant primary brain tumours in adults. Their highly invasive nature makes the disease incurable to date, emphasizing the importance of better understanding the mechanisms driving glioma invasion. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocyte- and neural stem cell-derived gliomas. Glioma malignancy is associated with changes in GFAP alternative splicing, as the canonical isoform GFAPα is downregulated in higher-grade tumours, leading to increased dominance of the GFAPδ isoform in the network. In this study, we used intravital imaging and an ex vivo brain slice invasion model. We show that the GFAPδ and GFAPα isoforms differentially regulate the tumour dynamics of glioma cells. Depletion of either isoform increases the migratory capacity of glioma cells. Remarkably, GFAPδ-depleted cells migrate randomly through the brain tissue, whereas GFAPα-depleted cells show a directionally persistent invasion into the brain parenchyma. This study shows that distinct compositions of the GFAPnetwork lead to specific migratory dynamics and behaviours of gliomas.
Collapse
Affiliation(s)
- Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Emma J van Bodegraven
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Andreia S Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
43
|
Iscan E, Karakülah G, Ekin U, Ozturk M, Uzuner H, Suner A. TAp73α is Upregulated in the Most Common Human Cancers. Mol Biol 2022. [DOI: 10.1134/s0026893322020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Missaghian P, Dierker T, Khosrowabadi E, Axling F, Eriksson I, Ghanem A, Kusche-Gullberg M, Kellokumpu S, Kjellén L. OUP accepted manuscript. Glycobiology 2022; 32:518-528. [PMID: 35137078 PMCID: PMC9132247 DOI: 10.1093/glycob/cwac004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
NDST1 (glucosaminyl N-deacetylase/N-sulfotransferase) is a key enzyme in heparan sulfate (HS) biosynthesis, where it is responsible for HS N-deacetylation and N-sulfation. In addition to the full length human enzyme of 882 amino acids, here designated NDST1A, a shorter form containing 825 amino acids (NDST1B) is synthesized after alternative splicing of the NDST1 mRNA. NDST1B is mostly expressed at a low level, but increased amounts are seen in several types of cancer where it is associated with shorter survival. In this study, we aimed at characterizing the enzymatic properties of NDST1B and its effect on HS biosynthesis. Purified recombinant NDST1B lacked both N-deacetylase and N-sulfotransferase activities. Interestingly, HEK293 cells overexpressing NDST1B synthesized HS with reduced sulfation and altered domain structure. Fluorescence resonance energy transfer-microscopy demonstrated that both NDST1A and NDST1B had the capacity to interact with the HS copolymerase subunits EXT1 and EXT2 and also to form NDST1A/NDST1B dimers. Since lysates from cells overexpressing NDST1B contained less NDST enzyme activity than control cells, we suggest that NDST1B works in a dominant negative manner, tentatively by replacing the active endogenous NDST1 in the enzyme complexes taking part in biosynthesis.
Collapse
Affiliation(s)
- Parisa Missaghian
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, Aapistie 7A, 90220 Oulu, Finland
| | - Fredrik Axling
- Department of Surgical Sciences, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | - Inger Eriksson
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Abdurrahman Ghanem
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | | | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Aapistie 7A, 90220 Oulu, Finland
| | - Lena Kjellén
- Corresponding author: Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, 751 23 Uppsala, Sweden.
| |
Collapse
|
45
|
Chintala S, Quist KM, Gonzalez-DeWhitt PA, Katzenellenbogen RA. High expression of NFX1-123 in HPV positive head and neck squamous cell carcinomas. Head Neck 2022; 44:177-188. [PMID: 34693597 PMCID: PMC8688290 DOI: 10.1002/hed.26906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND High-risk human papillomaviruses (HR HPV) cause nearly all cervical cancers and, in the United States, the majority of head and neck cancers (HNSCCs). NFX1-123 is overexpressed in cervical cancers, and NFX1-123 partners with the HR HPV type 16 E6 oncoprotein to affect multiple growth, differentiation, and immune response genes. However, neither the expression of NFX1-123 nor the levels of these genes have been investigated in HPV positive (HPV+) or negative (HPV-) HNSCCs. METHODS The Cancer Genome Atlas Splicing Variants Database and HNSCC cell lines were used to quantify expression of NFX1-123 and cellular genes increased in cervical cancers. RESULTS NFX1-123 was increased in HPV+ HNSCCs compared to HPV- HNSCCs. LCE1B, KRT16, SPRR2G, and FBN2 were highly expressed in HNSCCs compared to normal tissues. Notch1 and CCNB1IP1 had greater expression in HPV+ HNSCCs compared to HPV- HNSCCs. CONCLUSION NFX1-123 and a subset of its known targets were increased in HPV+ HNSCCs.
Collapse
Affiliation(s)
| | | | | | - Rachel A. Katzenellenbogen
- Correspondence: Rachel A. Katzenellenbogen, Indiana University School of Medicine, Herman B. Wells Center for Pediatric Research, 1044 W. Walnut Street, R4 366, Indianapolis, IN 46202, 317-278-0107,
| |
Collapse
|
46
|
Xu W, Anwaier A, Liu W, Tian X, Zhu WK, Wang J, Qu Y, Zhang H, Ye D. Systematic Genome-Wide Profiles Reveal Alternative Splicing Landscape and Implications of Splicing Regulator DExD-Box Helicase 21 in Aggressive Progression of Adrenocortical Carcinoma. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:243-256. [PMID: 36939770 PMCID: PMC9590509 DOI: 10.1007/s43657-021-00026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
Alternative splicing (AS) in the tumor biological process has provided a novel perspective on carcinogenesis. However, the clinical significance of individual AS patterns of adrenocortical carcinoma (ACC) has been underestimated, and in-depth investigations are lacking. We selected 76 ACC samples from the Cancer Genome Atlas (TCGA) SpliceSeq and SpliceAid2 databases, and 39 ACC samples from Fudan University Shanghai Cancer Center (FUSCC). Prognosis-related AS events (PASEs) and survival analysis were evaluated based on prediction models constructed by machine-learning algorithm. In total, 23,984 AS events and 3,614 PASEs were detected in the patients with ACC. The predicted risk score of each patient suggested that eight PASEs groups were significantly correlated with the clinical outcomes of these patients (p < 0.001). Prognostic models produced AUC values of 0.907 in all PASEs' groups. Eight splicing factors (SFs), including BAG2, CXorf56, DExD-Box Helicase 21 (DDX21), HSPB1, MBNL3, MSI1, RBMXL2, and SEC31B, were identified in regulatory networks of ACC. DDX21 was identified and validated as a novel clinical promoter and therapeutic target in 115 patients with ACC from TCGA and FUSCC cohorts. In conclusion, the strict standards used in this study ensured the systematic discovery of profiles of AS events using genome-wide cohorts. Our findings contribute to a comprehensive understanding of the landscape and underlying mechanism of AS, providing valuable insights into the potential usages of DDX21 for predicting prognosis for patients with ACC. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-021-00026-x.
Collapse
Affiliation(s)
- Wenhao Xu
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Aihetaimujiang Anwaier
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wangrui Liu
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Xi Tian
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wen-Kai Zhu
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jian Wang
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Yuanyuan Qu
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Hailiang Zhang
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Dingwei Ye
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
47
|
Sonntag R, Penners C, Kohlhepp M, Haas U, Lambertz D, Kroh A, Cramer T, Ticconi F, Costa IG, Tacke F, Gassler N, Trautwein C, Liedtke C. Cyclin E1 in Murine and Human Liver Cancer: A Promising Target for Therapeutic Intervention during Tumour Progression. Cancers (Basel) 2021; 13:5680. [PMID: 34830835 PMCID: PMC8616292 DOI: 10.3390/cancers13225680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclin E1 (CCNE1) is a regulatory subunit of Cyclin-dependent kinase 2 (CDK2) and is thought to control the transition of quiescent cells into cell cycle progression. Recently, we identified CCNE1 and CDK2 as key factors for the initiation of hepatocellular carcinoma (HCC). In the present study, we dissected the contributions of CCNE1 and CDK2 for HCC progression in mice and patients. Therefore, we generated genetically modified mice allowing inducible deletion of Ccne1 or Cdk2. After initiation of HCC, using the hepatocarcinogen diethylnitrosamine (DEN), we deleted Ccne1 or Cdk2 and subsequently analysed HCC progression. The relevance of CCNE1 or CDK2 for human HCC progression was investigated by in silico database analysis. Interventional deletion of Ccne1, but not of Cdk2, substantially reduced the HCC burden in mice. Ccne1-deficient HCCs were characterised by attenuated proliferation, impaired DNA damage response and downregulation of markers for stemness and microinvasion. Additionally, the tumour microenvironment of Ccne1-deficient mice showed a reduction in immune mediators, myeloid cells and cancer-associated fibroblasts. In sharp contrast, Cdk2 was dispensable for HCC progression in mice. In agreement with our mouse data, CCNE1 was overexpressed in HCC patients independent of risk factors, and associated with reduced disease-free survival, a common signature for enhanced chromosomal instability, proliferation, dedifferentiation and invasion. However, CDK2 lacked diagnostic or prognostic value in HCC patients. In summary, CCNE1 drives HCC progression in a CDK2-independent manner in mice and man. Therefore, interventional inactivation of CCNE1 represents a promising strategy the treatment of liver cancer.
Collapse
Affiliation(s)
- Roland Sonntag
- Department of Internal Medicine III, University Hospital RWTH, 52074 Aachen, Germany; (C.P.); (U.H.); (D.L.); (C.T.)
| | - Christian Penners
- Department of Internal Medicine III, University Hospital RWTH, 52074 Aachen, Germany; (C.P.); (U.H.); (D.L.); (C.T.)
| | - Marlene Kohlhepp
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité University Medicine Berlin, 13353 Berlin, Germany; (M.K.); (F.T.)
| | - Ute Haas
- Department of Internal Medicine III, University Hospital RWTH, 52074 Aachen, Germany; (C.P.); (U.H.); (D.L.); (C.T.)
| | - Daniela Lambertz
- Department of Internal Medicine III, University Hospital RWTH, 52074 Aachen, Germany; (C.P.); (U.H.); (D.L.); (C.T.)
| | - Andreas Kroh
- Department of General, Visceral and Transplantation Surgery, University Hospital RWTH, 52074 Aachen, Germany; (A.K.); (T.C.)
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, University Hospital RWTH, 52074 Aachen, Germany; (A.K.); (T.C.)
- Department of Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- ESCAM—European Surgery Center Aachen Maastricht, 52074 Aachen, Germany
- ESCAM—European Surgery Center Aachen Maastricht, 6200 MD Maastricht, The Netherlands
| | - Fabio Ticconi
- IZKF Research Group Computational Biology and Bioinformatics, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany; (F.T.); (I.G.C.)
| | - Ivan G. Costa
- IZKF Research Group Computational Biology and Bioinformatics, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany; (F.T.); (I.G.C.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité University Medicine Berlin, 13353 Berlin, Germany; (M.K.); (F.T.)
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine University Hospital Jena, 07747 Jena, Germany;
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH, 52074 Aachen, Germany; (C.P.); (U.H.); (D.L.); (C.T.)
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH, 52074 Aachen, Germany; (C.P.); (U.H.); (D.L.); (C.T.)
| |
Collapse
|
48
|
Lianto P, Hutchinson SA, Moore JB, Hughes TA, Thorne JL. Characterization and prognostic value of LXR splice variants in triple-negative breast cancer. iScience 2021; 24:103212. [PMID: 34755086 PMCID: PMC8560626 DOI: 10.1016/j.isci.2021.103212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 09/29/2021] [Indexed: 01/17/2023] Open
Abstract
Activity of liver x receptor (LXR), the homeostatic regulator of cholesterol metabolism, is elevated in triple-negative breast cancer (BCa) relative to other BCa subtypes, driving drug resistance and metastatic gene signatures. The loci encoding LXRα and LXRβ produce multiple alternatively spliced proteins, but the true range of variants and their relevance to cancer remain poorly defined. Here, we report seven LXR splice variants, three of which have not previously been reported and five that were prognostic for disease-free survival. Expression of full-length LXRα splice variants was associated with poor prognosis, consistent with a role as an oncogenic driver of triple-negative tumor pathophysiology. Contrary to this was the observation that high expression of truncated LXRα splice variants or any LXRβ splice variant was associated with longer survival. These findings indicate that LXR isoform abundance is an important aspect of understanding the link between dysregulated cholesterol metabolism and cancer pathophysiology.
Collapse
Affiliation(s)
- Priscilia Lianto
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | | | - J. Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | | | - James L. Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
49
|
Ouyang J, Zhang Y, Xiong F, Zhang S, Gong Z, Yan Q, He Y, Wei F, Zhang W, Zhou M, Xiang B, Wang F, Li X, Li Y, Li G, Zeng Z, Guo C, Xiong W. The role of alternative splicing in human cancer progression. Am J Cancer Res 2021; 11:4642-4667. [PMID: 34765285 PMCID: PMC8569372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023] Open
Abstract
In eukaryotes, alternative splicing refers to a process via which a single precursor RNA (pre-RNA) is transcribed into different mature RNAs. Thus, alternative splicing enables the translation of a limited number of coding genes into a large number of proteins with different functions. Although, alternative splicing is common in normal cells, it also plays an important role in cancer development. Alteration in splicing mechanisms and even the participation of non-coding RNAs may cause changes in the splicing patterns of cancer-related genes. This article reviews the latest research on alternative splicing in cancer, with a view to presenting new strategies and guiding future studies related to pathological mechanisms associated with cancer.
Collapse
Affiliation(s)
- Jiawei Ouyang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Yijie Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Qijia Yan
- Department of Stomatology, Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Fang Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Wenling Zhang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston 77030, TX, USA
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| |
Collapse
|
50
|
A ligand-insensitive UNC5B splicing isoform regulates angiogenesis by promoting apoptosis. Nat Commun 2021; 12:4872. [PMID: 34381052 PMCID: PMC8358048 DOI: 10.1038/s41467-021-24998-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B’s necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis. UNC5B is a Netrin-1 receptor expressed in endothelial cells that in the absence of ligand induces apoptosis. Here the authors identify an UNC5B splicing isoform that is insensitive to the pro-survival ligand Netrin-1 and is required for apoptosis-dependent blood vessel development.
Collapse
|