1
|
Contreras P, Fica-León V, Navarrete J, Oviedo C. De novo transcriptome assembly and functional annotation supports potential biotechnological applications for the non-model thraustochytrid Ulkenia visurgensis Lng2. Gene 2025; 958:149492. [PMID: 40228758 DOI: 10.1016/j.gene.2025.149492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/19/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Thraustochytrids are heterotrophic marine protists known for their ability to produce valuable lipids such as docosahexaenoic acid (DHA). However, like many non-model organisms, they present challenges for transcriptomic studies due to the limited reliable reference genomes and compatibility with curated protein databases, complicating the respective assembly and annotation. This study presents a de novo transcriptome assembly and functional annotation for the recently isolated thraustochytrid strain Ulkenia visurgensis Lng2 using solely free access software and code available in public domain repositories. The assembled transcriptome presented 45,867 unique gene models, with a total of 66,623 transcripts and a contig N50 of 3162. Functional annotations highlighted high amounts of transcripts related to the biosynthesis of relevant lipidic molecules, as well as stress-adaptive features including catalytic and xenobiotic degrading activity. Likewise, 2381 transcripts were linked to enzymes with potential biotechnological applications. Notably, several transcripts corresponding to uncommon enzymatic activities in thraustochytrids, including laccases, cellulases, and chitinases, were identified. Additionally, evidence for a potential lactamase activity was found, marking the first report of such activity in thraustochytrids. Overall, this study offers a simple free-access procedural strategy for a de novo transcriptome assembly and functional annotation in non-model organisms. These results provide valuable insights into the biotechnological potential of thraustochytrids, while also expanding the limited transcriptomic data available for these protists. Notably, it represents the first transcriptomic analysis of the Ulkenia genus.
Collapse
Affiliation(s)
- Pedro Contreras
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile.
| | - Víctor Fica-León
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile.
| | - José Navarrete
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile.
| | - Claudia Oviedo
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile.
| |
Collapse
|
2
|
Suenaga T, Mitarai Y, Anh TN, Gotoh T, Nishijima W, Nakai S. Draft genome sequence of Aurantiochytrium spp. strains L3W, 9LR, 8W, 10W, and 10LW, a fatty acid-producing thraustochytrids from food wastes. Microbiol Resour Announc 2024; 13:e0065324. [PMID: 39535196 PMCID: PMC11636214 DOI: 10.1128/mra.00653-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
We report draft genome sequences of Aurantiochytrium spp. strains L3W, 9LR, 8W, 10W, and 10LW isolated from coastal environments. The strains were able to produce polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), confirming the metabolic pathways retained in the genomes.
Collapse
Affiliation(s)
- Toshikazu Suenaga
- Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yukine Mitarai
- Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tran Nhat Anh
- Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takehiko Gotoh
- Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Wataru Nishijima
- Environmental Research and Management Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Satoshi Nakai
- Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
3
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
4
|
Liu X, Lyu L, Li J, Sen B, Bai M, Stajich JE, Collier JL, Wang G. Comparative Genomic Analyses of Cellulolytic Machinery Reveal Two Nutritional Strategies of Marine Labyrinthulomycetes Protists. Microbiol Spectr 2023; 11:e0424722. [PMID: 36744882 PMCID: PMC10101102 DOI: 10.1128/spectrum.04247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
Labyrinthulomycetes are a group of ubiquitous and diverse unicellular Stramenopiles and have long been known for their vital role in ocean carbon cycling. However, their ecological function from the perspective of organic matter degradation remains poorly understood. This study reports high-quality genomes of two newly isolated Labyrinthulomycetes strains, namely, Botryochytrium sp. strain S-28 and Oblongichytrium sp. strain S-429, and provides molecular analysis of their ecological functions using comparative genomics and a biochemical assay. Our results suggest that Labyrinthulomycetes may occupy multiple ecological niches in marine ecosystems because of the significant differences in gene function among different genera. Certain strains could degrade wheat bran independently by secreting cellulase. The key glycoside hydrolase families (GH1, GH5, and GH9) related to cellulase and the functional domains of carbohydrate-active enzymes (CAZymes) were more enriched in their genomes. This group can actively participate in marine biochemical cycles as decomposers. In contrast, other strains that could not produce cellulase may thrive as "leftover scavengers" and act as a source of nutrients to the higher-trophic-level plankton. In addition, our findings emphasize the dual roles of endoglucanase, acting as both exo- and endoglucanases, in the process of cellulose degradation. Using genomic, biochemical, and phylogenetic analyses, our study provides a broader insight into the nutritional patterns and ecological functions of Labyrinthulomycetes. IMPORTANCE Unicellular heterotrophic eukaryotes are an important component of marine ecosystems. However, their ecological functions and modes of nutrition remain largely unknown. Our current understanding of marine microbial ecology is incomplete without integrating these heterotrophic microeukaryotes into the food web models. This study focuses on the unicellular fungus-like protists Labyrinthulomycetes and provides two high-quality genomes of cellulase-producing Labyrinthulomycetes. Our study uncovers the basis of their cellulase production by deciphering the results of genomic, biochemical, and phylogenetic analyses. This study instigates a further investigation of the molecular mechanism of organic matter utilization by Labyrinthulomycetes in the world's oceans.
Collapse
Affiliation(s)
- Xiuping Liu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Lu Lyu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Mohan Bai
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, USA
| | - Jackie L. Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Ma W, Liu M, Zhang Z, Xu Y, Huang P, Guo D, Sun X, Huang H. Efficient co-production of EPA and DHA by Schizochytrium sp. via regulation of the polyketide synthase pathway. Commun Biol 2022; 5:1356. [PMID: 36494568 PMCID: PMC9734096 DOI: 10.1038/s42003-022-04334-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Presently, the supply of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) traditionally produced by marine fisheries will be insufficient to meet their market demand in food industry. Thus a sustainable alternative source is urgently required. Schizochytrium sp. is an ideal producer of DHA; however, its ability to co-produce DHA and EPA has not yet been proved. Herein, we first described a cobalamin-independent methionine synthase-like (MetE-like) complex, which contains independent acyltransferase and 3-ketoacyl synthase domains, independent of the traditional polyketide synthase (PKS) system. When the MetE-like complex was activated, the EPA content was increased from 1.26% to 7.63%, which is 6.06-folds higher than that in the inactivated condition. Through lipidomics, we find that EPA is more inclined to be stored as triglyceride. Finally, the EPA production was enhanced from 4.19 to 29.83 (mg/g cell dry weight) using mixed carbon sources, and the final yield reached 2.25 g/L EPA and 9.59 g/L DHA, which means that Schizochytrium sp. has great market potential for co-production of EPA and DHA.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Mengzhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Yingshuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Pengwei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, China.
| |
Collapse
|
6
|
Patel AK, Chauhan AS, Kumar P, Michaud P, Gupta VK, Chang JS, Chen CW, Dong CD, Singhania RR. Emerging prospects of microbial production of omega fatty acids: Recent updates. BIORESOURCE TECHNOLOGY 2022; 360:127534. [PMID: 35777644 DOI: 10.1016/j.biortech.2022.127534] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Healthy foods containing omega-3/omega-6 polyunsaturated fatty acids (PUFAs) have been in great demand because of their unique dietary and health properties. Reduction in chronic inflammatory and autoimmune diseases has shown their therapeutic and health-promoting effects when consumed under recommended ratio 1:1-1:4, however imbalanced ratios (>1:4, high omega-6) enhance these risks. The importance of omega-6 is apparent however microbial production favors larger production of omega-3. Current research focus is prerequisite to designing omega-6 production strategies for better application prospects, for which thraustochytrids could be promising due to higher lipid productivity. This review provides recent updates on essential fatty acids production from potential microbes and their application, especially major insights on omega research, also discussed the novel possible strategies to promote omega-3 and omega-6 accumulation via engineering and omics approaches. It covers strategies to block the conversion of omega-6 into omega-3 by enzyme inhibition, nanoparticle-mediated regulation and/or metabolic flux regulation, etc.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Ajeet Singh Chauhan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Prashant Kumar
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institute Pascal, 63000 Clermont-Ferrand, France
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| |
Collapse
|
7
|
Prabhakaran P, Raethong N, Nazir Y, Halim H, Yang W, Vongsangnak W, Abdul Hamid A, Song Y. Whole Genome Analysis and Elucidation of Docosahexaenoic Acid (DHA) Biosynthetic Pathway in Aurantiochytrium sp. SW1. Gene 2022; 846:146850. [PMID: 36044942 DOI: 10.1016/j.gene.2022.146850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Aurantiochytrium sp., a fungoid marine protist that belongs to Stramenophila has proven its potential in the production of polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acids (DHA). In this study, genomic characterisation of a potential producer for commercial production of DHA, Aurantiochytrium sp. SW1 has been carried out via whole genome sequencing analysis. The genome size of this strain is 60.89 Mb, with a total of 11,588 protein-coding genes. Among these, 9,127 genes could be functionally annotated into a total of 7,248 (62.5%) from UniProt, 6,554 (56.6%) from KEGG and 8,643 (74.6%) genes from eggNOG protein database. The highest proportion of genes belongs to the protein family of metabolism were further assigned into 11 metabolic categories. The highest number of genes belonging to lipid metabolism (321 genes) followed by carbohydrate metabolism (290 genes), metabolism of cofactors and vitamins (197 genes) and amino acid metabolism (188 genes). Further analysis into the biosynthetic pathway for DHA showed evidence of all genes involved in PKS (polyketide synthase)-like PUFA synthase pathway and incomplete fatty acid synthase-elongase/desaturase pathway. Analysis of PUFA synthase showed the presence of up to ten tandem acyl carrier protein (ACP) domains which might have contributed to high DHA production in this organism. In addition, a hybrid system incorporating elements of FAS, Type I PKS and Type II PKS systems were found to be involved in the biosynthetic pathways of fatty acids in Aurantiochytrium sp. SW1. This study delivers an important reference for future research to enhance the lipid, especially DHA production in Aurantiochytrium sp, SW1 and establishment of this strain as an oleaginous thraustochytrid model.
Collapse
Affiliation(s)
- Pranesha Prabhakaran
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Department of Food Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, UKM Bangi 43600, Malaysia
| | - Hafiy Halim
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Wu Yang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900
| | - Aidil Abdul Hamid
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Malaysia.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China.
| |
Collapse
|
8
|
Rohman FS, Zahan KA, Azmi A, Roslan MFB, Hamid AA, Shoparwe NFB. Optimal Feeding Strategy in Fermentation of Docosahexaenoic Acid Production by Schizochytrium sp. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fakhrony Sholahudin Rohman
- School of Chemical Engineering Universiti Sains Malaysia Engineering Campus, Seri Ampangan Nibong Tebal, Pulau Pinang 14300 Malaysia
- Department of Chemical Engineering Universitas Brawijaya Jalan Mayjen Haryono 167 Malang 65145 Indonesia
| | - Khairul Azly Zahan
- Department of Systems Science, Graduate School of Informatics Kyoto University Kyoto 606-8501 Japan
- Faculty of Engineering Technology Universiti Tun Hussein Onn Malaysia Parit Raja Batu Pahat, Johor 86400 Malaysia
| | - Ashraf Azmi
- School of Chemical Engineering,College of Engineering Universiti Teknologi MARA Shah Alam Selangor 40450 Malaysia
| | | | - Aidil Abdul Hamid
- Department of Biological Sciences and Biotechnology Universiti Kebangsaan Malaysia Bangi, Selangor 43600 Malaysia
| | | |
Collapse
|
9
|
Patchy Blooms and Multifarious Ecotypes of Labyrinthulomycetes Protists and Their Implication in Vertical Carbon Export in the Pelagic Eastern Indian Ocean. Microbiol Spectr 2022; 10:e0014422. [PMID: 35502912 PMCID: PMC9241719 DOI: 10.1128/spectrum.00144-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Labyrinthulomycetes protists are an important heterotrophic component of microeukaryotes in the world’s oceans, but their distribution patterns and ecological roles are poorly understood in pelagic waters. This study employed flow cytometry and high-throughput sequencing to characterize the abundance, diversity, and community structure of Labyrinthulomycetes in the pelagic Eastern Indian Ocean. The total Labyrinthulomycetes abundance varied much more among stations than did the abundance of prokaryotic plankton, reaching over 1,000 cells mL−1 at a few “bloom” stations. The total Labyrinthulomycetes abundance did not decline with depth throughout the whole water column (5 to 2,000 m) like the abundance of prokaryotic plankton did, and the Labyrinthulomycetes average projected biomass over all samples was higher than that of the prokaryotic plankton. However, Labyrinthulomycetes diversity showed obvious vertical variations, with richness, Shannon diversity, and evenness greatest in the upper epipelagic, lower epipelagic, and deep waters, respectively. Many abundant phylotypes were detected across multiple water layers, which aligned with the constant vertical Labyrinthulomycetes biomass, suggesting potential sinking and contribution to the biological pump. Hierarchical clustering revealed distinct ecotypes partitioning by vertical distribution patterns, suggesting their differential roles in the carbon cycle and storage processes. Particularly, most phylotypes showed patchy distributions (occurring in only few samples) as previously found in the coastal waters, but they were less associated with the Labyrinthulomycetes blooms than the prevalent phylotypes. Overall, this study revealed distinct patterns of Labyrinthulomycetes ecotypes and shed light on their importance in the pelagic ocean carbon cycling and sequestration relative to that of the prokaryotic plankton. IMPORTANCE While prokaryotic heterotrophic plankton are well accepted as major players in oceanic carbon cycling, the ecological distributions and functions of their microeukaryotic counterparts in the pelagic ocean remain largely unknown. This study focused on an important group of heterotrophic (mainly osmotrophic) protistan microbes, the Labyrinthulomycetes, whose biomass can surpass that of the prokaryotic plankton in many marine ecosystems, including the bathypelagic ocean. We found patchy horizontal but persistent vertical abundance profiles of the Labyrinthulomycetes protists in the pelagic waters of the Eastern Indian Ocean, which were distinct from the spatial patterns of the prokaryotic plankton. Moreover, multiple Labyrinthulomycetes ecotypes with distinct vertical patterns were detected and, based on the physiologic, metabolic, and genomic understanding of their cultivated relatives, were inferred to play multifaceted key roles in the carbon cycle and sequestration, particularly as contributors to the vertical carbon export from the surface to the dark ocean, i.e., the biological pump.
Collapse
|
10
|
Shah AM, Yang W, Mohamed H, Zhang Y, Song Y. Microbes: A Hidden Treasure of Polyunsaturated Fatty Acids. Front Nutr 2022; 9:827837. [PMID: 35369055 PMCID: PMC8968027 DOI: 10.3389/fnut.2022.827837] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Microbes have gained a lot of attention for their potential in producing polyunsaturated fatty acids (PUFAs). PUFAs are gaining scientific interest due to their important health-promoting effects on higher organisms including humans. The current sources of PUFAs (animal and plant) have associated limitations that have led to increased interest in microbial PUFAs as most reliable alternative source. The focus is on increasing the product value of existing oleaginous microbes or discovering new microbes by implementing new biotechnological strategies in order to compete with other sources. The multidisciplinary approaches, including metabolic engineering, high-throughput screening, tapping new microbial sources, genome-mining as well as co-culturing and elicitation for the production of PUFAs, have been considered and discussed in this review. The usage of agro-industrial wastes as alternative low-cost substrates in fermentation for high-value single-cell oil production has also been discussed. Multidisciplinary approaches combined with new technologies may help to uncover new microbial PUFA sources that may have nutraceutical and biotechnological importance.
Collapse
Affiliation(s)
- Aabid Manzoor Shah
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Wu Yang
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
11
|
Soccol CR, Colonia BSO, de Melo Pereira GV, Mamani LDG, Karp SG, Thomaz Soccol V, Penha RDO, Dalmas Neto CJ, César de Carvalho J. Bioprospecting lipid-producing microorganisms: From metagenomic-assisted isolation techniques to industrial application and innovations. BIORESOURCE TECHNOLOGY 2022; 346:126455. [PMID: 34863851 DOI: 10.1016/j.biortech.2021.126455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, lipid-producing microorganisms have been obtained via conventional bioprospecting based on isolation and screening techniques, demanding time and effort. Thus, high-throughput sequencing combined with conventional microbiological approaches has emerged as an advanced and rapid strategy for recovering novel oleaginous microorganisms from target environments. This review highlights recent developments in lipid-producing microorganism bioprospecting, following (i) from traditional cultivation techniques to state-of-the-art metagenomics approaches; (ii) related topics on workflow, next-generation sequencing platforms, and knowledge bioinformatics; and (iii) biotechnological potential of the production of docosahexaenoic acid (DHA) by Aurantiochytrium limacinum, arachidonic acid (ARA) by Mortierella alpina and biodiesel by Rhodosporidium toruloides. These three species have been shown to be highly promising and studied in research articles, patents and commercialized products. Trends, innovations and future perspectives of these microorganisms are also addressed. Thus, these microbial lipids allow the development of food, feed and biofuels as alternative solutions to animal and vegetable oils.
Collapse
Affiliation(s)
- Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil.
| | | | | | - Luis Daniel Goyzueta Mamani
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Vanete Thomaz Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Rafaela de Oliveira Penha
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Carlos José Dalmas Neto
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Júlio César de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| |
Collapse
|
12
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
13
|
Chen X, Sen B, Zhang S, Bai M, He Y, Wang G. Chemical and Physical Culture Conditions Significantly Influence the Cell Mass and Docosahexaenoic Acid Content of Aurantiochytrium limacinum Strain PKU#SW8. Mar Drugs 2021; 19:671. [PMID: 34940670 PMCID: PMC8708202 DOI: 10.3390/md19120671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Thraustochytrids are well-known unicellular heterotrophic marine protists because of their promising ability to accumulate docosahexaenoic acid (DHA). However, the implications of their unique genomic and metabolic features on DHA production remain poorly understood. Here, the effects of chemical and physical culture conditions on the cell mass and DHA production were investigated for a unique thraustochytrid strain, PKU#SW8, isolated from the seawater of Pearl River Estuary. All the tested fermentation parameters showed a significant influence on the cell mass and concentration and yield of DHA. The addition of monosaccharides (fructose, mannose, glucose, or galactose) or glycerol to the culture medium yielded much higher cell mass and DHA concentrations than that of disaccharides and starch. Similarly, organic nitrogen sources (peptone, yeast extract, tryptone, and sodium glutamate) proved to be beneficial in achieving a higher cell mass and DHA concentration. PKU#SW8 was found to grow and accumulate a considerable amount of DHA over wide ranges of KH2PO4 (0.125-1.0 g/L), salinity (0-140% seawater), pH (3-9), temperature (16-36 °C), and agitation (140-230 rpm). With the optimal culture conditions (glycerol, 20 g/L; peptone, 2.5 g/L; 80% seawater; pH 4.0; 28 °C; and 200 rpm) determined based on the shake-flask experiments, the cell mass and concentration and yield of DHA were improved up to 7.5 ± 0.05 g/L, 2.14 ± 0.03 g/L, and 282.9 ± 3.0 mg/g, respectively, on a 5-L scale fermentation. This study provides valuable information about the fermentation conditions of the PKU#SW8 strain and its unique physiological features, which could be beneficial for strain development and large-scale DHA production.
Collapse
Affiliation(s)
- Xiaohong Chen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Sai Zhang
- Polar Research Institute of China, Shanghai 200136, China;
| | - Mohan Bai
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yaodong He
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Bai M, Xie N, He Y, Li J, Collier JL, Hunt DE, Johnson ZI, Jiao N, Wang G. Vertical community patterns of Labyrinthulomycetes protists reveal their potential importance in the oceanic biological pump. Environ Microbiol 2021; 24:1703-1713. [PMID: 34390610 DOI: 10.1111/1462-2920.15709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023]
Abstract
The biological pump plays a vital role in exporting organic particles into the deep ocean for long-term carbon sequestration. However, much remains unknown about some of its key microbial players. In this study, Labyrinthulomycetes protists (LP) were used to understand the significance of heterotrophic microeukaryotes in the transport of particulate organic matter from the surface to the dark ocean. Unlike the sharp vertical decrease of prokaryotic biomass, the LP biomass only slightly decreased with depth and eventually exceeded prokaryotic biomass in the bathypelagic layer. Sequencing identified high diversity of the LP communities with a dominance of Aplanochytrium at all depths. Notably, ASVs that were observed in the surface layer comprised ~20% of ASVs and ~60% of sequences in each of the deeper (including bathypelagic) layers, suggesting potential vertical export of the LP populations to the deep ocean. Further analyses of the vertical patterns of the 50 most abundant ASVs revealed niche partitioning of LP phylotypes in the pelagic ocean, including those that could decompose organic detritus and/or facilitate the formation of fast-sinking particles. Overall, this study presents several lines of evidence that the LP can be an important component of the biological pump through their multiple ecotypes in the pelagic ocean.
Collapse
Affiliation(s)
- Mohan Bai
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ningdong Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11794-5000, USA
| | - Dana E Hunt
- Marine Laboratory, Duke University, Beaufort, NC, 28516, USA.,Biology Department, Duke University, Durham, NC, 27708, USA
| | - Zackary I Johnson
- Marine Laboratory, Duke University, Beaufort, NC, 28516, USA.,Biology Department, Duke University, Durham, NC, 27708, USA
| | - Nianzhi Jiao
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
Tan MH, Loke S, Croft LJ, Gleason FH, Lange L, Pilgaard B, Trevathan-Tackett SM. First Genome of Labyrinthula sp., an Opportunistic Seagrass Pathogen, Reveals Novel Insight into Marine Protist Phylogeny, Ecology and CAZyme Cell-Wall Degradation. MICROBIAL ECOLOGY 2021; 82:498-511. [PMID: 33410934 DOI: 10.1007/s00248-020-01647-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Labyrinthula spp. are saprobic, marine protists that also act as opportunistic pathogens and are the causative agents of seagrass wasting disease (SWD). Despite the threat of local- and large-scale SWD outbreaks, there are currently gaps in our understanding of the drivers of SWD, particularly surrounding Labyrinthula spp. virulence and ecology. Given these uncertainties, we investigated the Labyrinthula genus from a novel genomic perspective by presenting the first draft genome and predicted proteome of a pathogenic isolate Labyrinthula SR_Ha_C, generated from a hybrid assembly of Nanopore and Illumina sequences. Phylogenetic and cross-phyla comparisons revealed insights into the evolutionary history of Stramenopiles. Genome annotation showed evidence of glideosome-type machinery and an apicoplast protein typically found in protist pathogens and parasites. Proteins involved in Labyrinthula SR_Ha_C's actin-myosin mode of transport, as well as carbohydrate degradation were also prevalent. Further, CAZyme functional predictions revealed a repertoire of enzymes involved in breakdown of cell-wall and carbohydrate storage compounds common to seagrasses. The relatively low number of CAZymes annotated from the genome of Labyrinthula SR_Ha_C compared to other Labyrinthulea species may reflect the conservative annotation parameters, a specialized substrate affinity and the scarcity of characterized protist enzymes. Inherently, there is high probability for finding both unique and novel enzymes from Labyrinthula spp. This study provides resources for further exploration of Labyrinthula spp. ecology and evolution, and will hopefully be the catalyst for new hypothesis-driven SWD research revealing more details of molecular interactions between the Labyrinthula genus and its host substrate.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Bio21 Institute, Melbourne, Victoria, Australia
| | - Stella Loke
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Laurence J Croft
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Frank H Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby, Copenhagen, Denmark
| | - Bo Pilgaard
- Protein Chemistry and Enzyme Technology, Department of Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stacey M Trevathan-Tackett
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
16
|
Shi Y, Chen Z, Li Y, Cao X, Yang L, Xu Y, Li Z, He N. Function of ORFC of the polyketide synthase gene cluster on fatty acid accumulation in Schizochytrium limacinum SR21. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:163. [PMID: 34301326 PMCID: PMC8305795 DOI: 10.1186/s13068-021-02014-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND As a potential source of polyunsaturated fatty acids (PUFA), Schizochytrium sp. has been widely used in industry for PUFA production. Polyketide synthase (PKS) cluster is supposed to be the primary way of PUFA synthesis in Schizochytrium sp. As one of three open reading frames (ORF) in the PKS cluster, ORFC plays an essential role in fatty acid biosynthesis. However, the function of domains in ORFC in the fatty acid synthesis of Schizochytrium sp. remained unclear. RESULTS In this study, heterologous expression and overexpression were carried out to study the role of ORFC and its domains in fatty acid accumulation. Firstly, ORFC was heterologously expressed in yeast which increased the PUFA content significantly. Then, the dehydratase (DH) and enoyl reductase (ER) domains located on ORFC were overexpressed in Schizochytrium limacinum SR21, respectively. Fatty acids profile analysis showed that the contents of PUFA and saturated fatty acid were increased in the DH and ER overexpression strains, respectively. This indicated that the DH and ER domains played distinct roles in lipid accumulation. Metabolic and transcriptomic analysis revealed that the pentose phosphate pathway and triacylglycerol biosynthesis were enhanced, while the tricarboxylic acid cycle and fatty acids oxidation were weakened in DH-overexpression strain. However, the opposite effect was found in the ER-overexpression strain. CONCLUSION Therefore, ORFC was required for the biosynthesis of fatty acid. The DH domain played a crucial role in PUFA synthesis, whereas the ER domain might be related to saturated fatty acids (SFA) synthesis in Schizochytrium limacinum SR21. This research explored the role of ORFC in the PKS gene cluster in Schizochytrium limacinum and provided potential genetic modification strategies for improving lipid production and regulating PUFA and SFA content.
Collapse
Affiliation(s)
- Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Yixin Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
17
|
Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids. Mar Drugs 2021; 19:md19070386. [PMID: 34356811 PMCID: PMC8303828 DOI: 10.3390/md19070386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 01/20/2023] Open
Abstract
Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4-63.9 μg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 μg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were β-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A β-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16.
Collapse
|
18
|
Chang M, Zhang T, Li L, Lou F, Ma M, Liu R, Jin Q, Wang X. Choreography of multiple omics reveals the mechanism of lipid turnover in Schizochytrium sp. S31. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Chen X, He Y, Ye H, Xie Y, Sen B, Jiao N, Wang G. Different carbon and nitrogen sources regulated docosahexaenoic acid (DHA) production of Thraustochytriidae sp. PKU#SW8 through a fully functional polyunsaturated fatty acid (PUFA) synthase gene (pfaB). BIORESOURCE TECHNOLOGY 2020; 318:124273. [PMID: 33099103 DOI: 10.1016/j.biortech.2020.124273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Docosahexaenoic acid (DHA, C22:6) production in thraustochytrids is known to be mediated independently through polyunsaturated fatty acid (PUFA) synthase and fatty acid synthase systems. This study elucidates the unresolved effects of different carbon and nitrogen sources on the functionality of PUFA synthase subunit B (pfaB) and corresponding DHA production in Thraustochytriidae sp. PKU#SW8. Carbon and nitrogen sources showed significant effect on the pfaB gene expression and DHA production patterns, but these patterns did not correspond with each other, suggesting the strong role of substrates in differential induction of the two synthase systems. Nitrogen starvation increased DHA yield in parallel with upregulated gene expression, showing strong indication of PUFA synthase activity in N-deficient culture. The fully functional catalytic activity of PfaB subunit from strain PKU#SW8 in a heterologous host was also demonstrated. This study provides the direct evidence of pfaB gene actively for DHA biosynthesis in Thraustochytriidae sp. PKU#SW8.
Collapse
Affiliation(s)
- Xiaohong Chen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huike Ye
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yunxuan Xie
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Nanzhi Jiao
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute for Ocean Technology of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
20
|
Liang L, Zheng X, Fan W, Chen D, Huang Z, Peng J, Zhu J, Tang W, Chen Y, Xue T. Genome and Transcriptome Analyses Provide Insight Into the Omega-3 Long-Chain Polyunsaturated Fatty Acids Biosynthesis of Schizochytrium limacinum SR21. Front Microbiol 2020; 11:687. [PMID: 32373097 PMCID: PMC7179369 DOI: 10.3389/fmicb.2020.00687] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Schizochytrium sp. is the best natural resource for omega-3 long-chain polyunsaturated fatty acids. We report a high-quality genome sequence of Schizochytrium limacinum SR21, which has a 63 Mb genome size, with a contig N50 of 2.67 Mb and 6,838 protein-coding genes. Phylogenomic and comparative genomic analyses revealed that DHA-producing Schizochytrium and Aurantiochytrium strains were highly similar and possessed similar genes. Analysis of the fatty acid synthase (FAS) for LC-PUFAs production results in the annotation of all genes in map00062 and map01212. A gene cluster and 10 ORFs related to PKS pathway were found in the genome. 1,402 differentially expressed genes (DEGs) of the treated groups (0.5 g/L yeast extract) were identified by comparing with the control groups (1.0 g/L yeast extract) at 36 h. A weighted gene coexpression network analysis revealed that 2 of 7 modules correlated highly with the fatty acid and DHA contents. The DEGs and transcription factors were significantly correlated with fatty acid biosynthesis, including MYB, Zinc Finger and ACOX. The results showed that these hub genes are regulated by genes involved in fatty acid biosynthesis pathways. The results providing an important reference for further research on promoting fatty acid and DHA accumulation in S. limacinum SR21.
Collapse
Affiliation(s)
- Limin Liang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenfang Fan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiangtao Peng
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Weiqi Tang
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
21
|
Comparative Transcriptomic Analysis Uncovers Genes Responsible for the DHA Enhancement in the Mutant Aurantiochytrium sp. Microorganisms 2020; 8:microorganisms8040529. [PMID: 32272666 PMCID: PMC7232246 DOI: 10.3390/microorganisms8040529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/17/2022] Open
Abstract
Docosahexaenoic acid (DHA), a n-3 long-chain polyunsaturated fatty acid, is critical for physiological activities of the human body. Marine eukaryote Aurantiochytrium sp. is considered a promising source for DHA production. Mutational studies have shown that ultraviolet (UV) irradiation (50 W, 30 s) could be utilized as a breeding strategy for obtaining high-yield DHA-producing Aurantiochytrium sp. After UV irradiation (50 W, 30 s), the mutant strain X2 which shows enhanced lipid (1.79-fold, 1417.37 mg/L) and DHA (1.90-fold, 624.93 mg/L) production, was selected from the wild Aurantiochytrium sp. Instead of eicosapentaenoic acid (EPA), 9.07% of docosapentaenoic acid (DPA) was observed in the mutant strain X2. The comparative transcriptomic analysis showed that in both wild type and mutant strain, the fatty acid synthesis (FAS) pathway was incomplete with key desaturases, but genes related to the polyketide synthase (PKS) pathway were observed. Results presented that mRNA expression levels of CoAT, AT, ER, DH, and MT down-regulated in wild type but up-regulated in mutant strain X2, corresponding to the increased intercellular DHA accumulation. These findings indicated that CoAT, AT, ER, DH, and MT can be exploited for high DHA yields in Aurantiochytrium.
Collapse
|
22
|
Zhu X, Li S, Liu L, Li S, Luo Y, Lv C, Wang B, Cheng CHK, Chen H, Yang X. Genome Sequencing and Analysis of Thraustochytriidae sp. SZU445 Provides Novel Insights into the Polyunsaturated Fatty Acid Biosynthesis Pathway. Mar Drugs 2020; 18:md18020118. [PMID: 32085426 PMCID: PMC7073664 DOI: 10.3390/md18020118] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Thraustochytriidae sp. have broadly gained attention as a prospective resource for the production of omega-3 fatty acids production in significant quantities. In this study, the whole genome of Thraustochytriidae sp. SZU445, which produces high levels of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA), was sequenced and subjected to protein annotation. The obtained clean reads (63.55 Mb in total) were assembled into 54 contigs and 25 scaffolds, with maximum and minimum lengths of 400 and 0.0054 Mb, respectively. A total of 3513 genes (24.84%) were identified, which could be classified into six pathways and 44 pathway groups, of which 68 genes (1.93%) were involved in lipid metabolism. In the Gene Ontology database, 22,436 genes were annotated as cellular component (8579 genes, 38.24%), molecular function (5236 genes, 23.34%), and biological process (8621 genes, 38.42%). Four enzymes corresponding to the classic fatty acid synthase (FAS) pathway and three enzymes corresponding to the classic polyketide synthase (PKS) pathway were identified in Thraustochytriidae sp. SZU445. Although PKS pathway-associated dehydratase and isomerase enzymes were not detected in Thraustochytriidae sp. SZU445, a putative DHA- and DPA-specific fatty acid pathway was identified.
Collapse
Affiliation(s)
- Xingyu Zhu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Liangxu Liu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Siting Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Chuhan Lv
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Boyu Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Christopher H. K. Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
- Correspondence:
| |
Collapse
|
23
|
Yang X, Li S, Li S, Liu L, Hu Z. De Novo
Transcriptome Analysis of Polyunsaturated Fatty Acid Metabolism in Marine Protist
Thraustochytriidae
sp. PKU#Mn16. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and OceanographyShenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanographyShenzhen University Shenzhen 518055 China
- Longhua Innovation Institute for BiotechnologyShenzhen University Shenzhen 518060 China
| | - Siting Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and OceanographyShenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanographyShenzhen University Shenzhen 518055 China
- Longhua Innovation Institute for BiotechnologyShenzhen University Shenzhen 518060 China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and OceanographyShenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanographyShenzhen University Shenzhen 518055 China
- Longhua Innovation Institute for BiotechnologyShenzhen University Shenzhen 518060 China
| | - Liangxu Liu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and OceanographyShenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanographyShenzhen University Shenzhen 518055 China
- Longhua Innovation Institute for BiotechnologyShenzhen University Shenzhen 518060 China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and OceanographyShenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanographyShenzhen University Shenzhen 518055 China
- Longhua Innovation Institute for BiotechnologyShenzhen University Shenzhen 518060 China
| |
Collapse
|
24
|
A thraustochytrid-specific lipase/phospholipase with unique positional specificity contributes to microbial competition and fatty acid acquisition from the environment. Sci Rep 2019; 9:16357. [PMID: 31705036 PMCID: PMC6841712 DOI: 10.1038/s41598-019-52854-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 01/29/2023] Open
Abstract
Thraustochytrids are heterotrophic marine protists that are considered as important decomposers in the marine ecosystem; however, how they digest and uptake lipid nutrients from the environment is largely unknown. Genomic clustering analysis using thraustochytrid draft genome databases revealed that novel proteins with a Lipase_3 domain are commonly present in thraustochytrids, including Aurantiochytrium limacinum. After heterologous expression and His tag-based purification, protein ID: 145138 was identified as lipase/phospholipase capable of hydrolyzing triacylglycerol (TG) and phosphatidylcholine (PC). 145138 was secreted into the medium, and deletion of the 145138 gene in A. limacinum reduced the degradation of extracellular lipids. Fatty acids generated by 145138 were reused for the biosynthesis of PC and TG, and 145138 allowed A. limacinum to survive in the medium containing TG as a sole carbon source. 145138 hydrolyzed all the acyl-ester linkages of TG; however, the enzyme showed strict positional specificity toward phospholipids, generating 2-acyl lysophospholipids. The 2-acyl lysophospholipids showed stronger antimicrobial activity compared with 1-acyl lysophospholipids. These results suggested that 145138 is a bifunctional enzyme that contributes to the acquisition of lipid nutrients from the environment, as well as to generate antimicrobial lysophospholipids that are beneficial for competition with bacteria over lipid nutrients in the marine environment.
Collapse
|
25
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
26
|
Nutahara E, Abe E, Uno S, Ishibashi Y, Watanabe T, Hayashi M, Okino N, Ito M. The glycerol-3-phosphate acyltransferase PLAT2 functions in the generation of DHA-rich glycerolipids in Aurantiochytrium limacinum F26-b. PLoS One 2019; 14:e0211164. [PMID: 30699157 PMCID: PMC6353168 DOI: 10.1371/journal.pone.0211164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/08/2019] [Indexed: 11/18/2022] Open
Abstract
Thraustochytrids possess docosahexaenoic acid (DHA, 22:6n-3) as acyl chain(s) of triacylglycerol (TG) and phosphatidylcholine (PC), some of which contain multiple DHAs. However, little is known about how these DHA-rich glycerolipids are produced in thraustochytrids. In this study, we identified PLAT2 in Aurantiochytrium limacinum F26-b as a glycerol-3-phosphate (G3P) acyltransferase (GPAT) by heterologous expression of the gene in budding yeast. Subsequently, we found that GPAT activity was reduced by disruption of the PLAT2 gene in A. limacinum, resulting in a decrease in DHA-containing lysophosphatidic acid (LPA 22:6). Conversely, overexpression of PLAT2 increased both GPAT activity and LPA 22:6. These results indicate that PLAT2 is a GPAT that transfers DHA to G3P in vivo as well as in vitro. Overexpression of the PLAT2 gene increased the production of a two DHA-containing diacylglycerol (DG 44:12), followed by an increase in the three DHA-containing TG (TG 66:18), two-DHA-containing TG (TG 60:12), and two DHA-containing PC (PC 44:12). However, overexpression of PLAT2 did not increase DHA-free DG (DG32:0), which was preferentially converted to three 16:0-containing TG (TG 48:0) but not two 16:0-containing PC (PC 32:0). Collectively, we revealed that DHA-rich glycerolipids are produced from a precursor, LPA 22:6, which is generated by incorporating DHA to G3P by PLAT2 in the A. limacinum.
Collapse
Affiliation(s)
- Eri Nutahara
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Eriko Abe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Shinya Uno
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Takashi Watanabe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1–1 Gakuen-Kibanadai-Nishi, Miyazaki, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
- Innovative Bio-architecture Center, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|