1
|
Zhang L, Li X, Gao H, Chang W, Li P. Gut microbiota-lncRNA/circRNA crosstalk: implications for different diseases. Crit Rev Microbiol 2025; 51:499-513. [PMID: 38967384 DOI: 10.1080/1040841x.2024.2375516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The gut microbiota features an abundance of diverse microorganisms and represents an important component of human physiology and metabolic homeostasis, indicating their roles in a wide array of physiological and pathological processes in the host. Maintaining balance in the gut microbiota is critical for normal functionality as microbial dysbiosis can lead to the occurrence and development of diseases through various mechanisms. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are non-coding RNAs that perform important regulatory functions for many processes. Furthermore, the gut microbiota and lncRNAs/circRNAs are known to interact in a range of both physiological and pathological activities. In this article, we review existing research relevant to the interaction between the gut microbiota and lncRNAs/circRNAs and investigate the role of their crosstalk in the pathogenesis of different diseases. Studies have shown that, the gut microbiota can target lncRNAs ENO1-IT1, BFAL1, and LINC00152 to regulate colorectal cancer development via various signaling pathways. In addition, the gut microbiota can influence mental diseases and lung tumor metastasis by modulating circRNAs such as circNF1-419, circ_0001239, circHIPK2 and mmu_circ_0000730. These findings provide a theoretical basis for disease prevention and treatment and suggest that gut microbiota-lncRNA/circRNA crosstalk has high clinical value.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Nai S, Song J, Su W, Liu X. Bidirectional Interplay Among Non-Coding RNAs, the Microbiome, and the Host During Development and Diseases. Genes (Basel) 2025; 16:208. [PMID: 40004537 PMCID: PMC11855195 DOI: 10.3390/genes16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
It is widely known that the dysregulation of non-coding RNAs (ncRNAs) and dysbiosis of the gut microbiome play significant roles in host development and the progression of various diseases. Emerging evidence has highlighted the bidirectional interplay between ncRNAs and the gut microbiome. This article aims to review the current understanding of the molecular mechanisms underlying the crosstalk between ncRNAs, especially microRNA (miRNA), and the gut microbiome in the context of development and diseases, such as colorectal cancer, inflammatory bowel diseases, neurological disorders, obesity, and cardiovascular disease. Ultimately, this review seeks to provide a foundation for exploring the potential roles of ncRNAs and gut microbiome interactions as biomarkers and therapeutic targets for clinical diagnosis and treatment, such as ncRNA mimics, antisense oligonucleotides, and small-molecule compounds, as well as probiotics, prebiotics, and diets.
Collapse
Affiliation(s)
| | | | | | - Xiaoqian Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (S.N.); (J.S.); (W.S.)
| |
Collapse
|
3
|
Mach N. The forecasting power of the mucin-microbiome interplay in livestock respiratory diseases. Vet Q 2024; 44:1-18. [PMID: 38606662 PMCID: PMC11018052 DOI: 10.1080/01652176.2024.2340003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.
Collapse
Affiliation(s)
- Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
4
|
Enache RM, Profir M, Roşu OA, Creţoiu SM, Gaspar BS. The Role of Gut Microbiota in the Onset and Progression of Obesity and Associated Comorbidities. Int J Mol Sci 2024; 25:12321. [PMID: 39596385 PMCID: PMC11595101 DOI: 10.3390/ijms252212321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity, a global public health problem, is constantly increasing, so the concerns in preventing and combating it are increasingly focused on the intestinal microbiota. It was found that the microbiota is different in lean people compared to obese individuals, but the exact mechanisms by which energy homeostasis is influenced are still incompletely known. Numerous studies show the involvement of certain bacterial species in promoting obesity and associated diseases such as diabetes, hypertension, cancer, etc. Our aim is to summarize the main findings regarding the influence of several factors such as lifestyle changes, including diet and bariatric surgery, on the diversity of the gut microbiota in obese individuals. The second purpose of this paper is to investigate the potential effect of various microbiota modulation techniques on ameliorating obesity and its comorbidities. A literature search was conducted using the PubMed database, identifying articles published between 2019 and 2024. Most studies identified suggest that obesity is generally associated with alterations of the gut microbiome such as decreased microbial diversity, an increased Firmicutes-to-Bacteroidetes ratio, and increased SCFAs levels. Our findings also indicate that gut microbiota modulation techniques could represent a novel strategy in treating obesity and related metabolic diseases. Although some mechanisms (e.g., inflammation or hormonal regulation) are already considered a powerful connection between gut microbiota and obesity development, further research is needed to enhance the knowledge on this particular topic.
Collapse
Affiliation(s)
- Robert-Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
5
|
Ataollahi Eshkoor S, Fanijavadi S. Dysbiosis-epigenetics-immune system interaction and ageing health problems. J Med Microbiol 2024; 73. [PMID: 39606883 DOI: 10.1099/jmm.0.001921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Background. The growing interest in microbiota-epigenetics-immune system research stems from the understanding that microbiota, a group of micro-organisms colonized in the human body, can influence the gene expression through epigenetic mechanisms and interaction with the immune system. Epigenetics refers to changes in gene activity that are not caused by the alteration in the DNA sequence itself.Discussion. The clinical significance of this research lies in the potential to develop new therapies for diseases linked to the imbalance of these microbial species (dysbiosis), such as cancer and neurodegenerative diseases. The intricate interaction between microbiota and epigenetics involves the production of metabolites and signalling molecules that can impact our health by influencing immune responses, metabolism and inflammation. Understanding these interactions could lead to novel therapeutic strategies targeting microbiota-epigenetic pathways to improve health outcomes.Conclusion. In this context, we aim to review and emphasize the current knowledge and key concepts that link the microbiota to epigenetics and immune system function, exploring their relevance to the development and maintenance of homeostasis and susceptibility to different diseases later in life. We aim to elucidate key concepts concerning the interactions and potential effects among the human gut microbiota, epigenetics, the immune system and ageing diseases linked to dysbiosis.
Collapse
|
6
|
Salmaninejad A, Layeghi SM, Falakian Z, Golestani S, Kobravi S, Talebi S, Yousefi M. An update to experimental and clinical aspects of tumor-associated macrophages in cancer development: hopes and pitfalls. Clin Exp Med 2024; 24:156. [PMID: 39003350 PMCID: PMC11246281 DOI: 10.1007/s10238-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor-associated macrophages (TAMs) represent one of the most abundant tumor-infiltrating stromal cells, and their normal function in tumor microenvironment (TME) is to suppress tumor cells by producing cytokines which trigger both direct cell cytotoxicity and antibody-mediated immune response. However, upon prolonged exposure to TME, the classical function of these so-called M1-type TAMs can be converted to another type, "M2-type," which are recruited by tumor cells so that they promote tumor growth and metastasis. This is the reason why the accumulation of TAMs in TME is correlated with poor prognosis in cancer patients. Both M1- and M2-types have high degree of plasticity, and M2-type cells can be reprogrammed to M1-type for therapeutic purposes. This characteristic introduces TAMs as promising target for developing novel cancer treatments. In addition, inhibition of M2-type cells and blocking their recruitment in TME, as well as their depletion by inducing apoptosis, are other approaches for effective immunotherapy of cancer. In this review, we summarize the potential of TAMs to be targeted for cancer immunotherapy and provide an up-to-date about novel strategies for targeting TAMs.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Falakian
- Department of Laboratory Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Shahin Golestani
- Department of Ophthalmology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Tehran Azad University, Tehran, Iran
| | - Samaneh Talebi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Majumder A, Bano S. How the Western Diet Thwarts the Epigenetic Efforts of Gut Microbes in Ulcerative Colitis and Its Association with Colorectal Cancer. Biomolecules 2024; 14:633. [PMID: 38927037 PMCID: PMC11201633 DOI: 10.3390/biom14060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease in which the immune system attacks the colon, leading to ulcer development, loss of colon function, and bloody diarrhea. The human gut ecosystem consists of almost 2000 different species of bacteria, forming a bioreactor fueled by dietary micronutrients to produce bioreactive compounds, which are absorbed by our body and signal to distant organs. Studies have shown that the Western diet, with fewer short-chain fatty acids (SCFAs), can alter the gut microbiome composition and cause the host's epigenetic reprogramming. Additionally, overproduction of H2S from the gut microbiome due to changes in diet patterns can further activate pro-inflammatory signaling pathways in UC. This review discusses how the Western diet affects the microbiome's function and alters the host's physiological homeostasis and susceptibility to UC. This article also covers the epidemiology, prognosis, pathophysiology, and current treatment strategies for UC, and how they are linked to colorectal cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
8
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
9
|
Zhao J, Wang P, Jiang M, Yan S. Gut microbiota and thyroid-associated ophthalmopathy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1753-1759. [PMID: 38432867 PMCID: PMC10929947 DOI: 10.11817/j.issn.1672-7347.2023.230187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a multifactorial-mediated autoimmune orbital disease with the highest incidence of orbital disease in adults. Due to the complex clinical manifestations and prolonged course,TAO seriously affect the physical and mental health of patients.The pathogenesis of TAO has not been fully elucidated and the treatment lacks specificity. Therefore, in-depth research on the pathogenesis of TAO is to find effective treatments. In recent years, studies have suggested that there is gut microbiota disorder in TAO, and the risk factors of TAO can promote gut microbiota disorder. Disordered gut microbiota can participate in the occurrence and development of TAO via influencing T cell differentiation, mimicking autoantigens, and influencing host non-coding RNA expression. Modulating the gut microbiota also has therapeutic effects on TAO and is a promising therapeutic approach.
Collapse
Affiliation(s)
- Jingxiao Zhao
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000.
| | - Ping Wang
- Department of Endocrinology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Minmin Jiang
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000
| | - Shuxun Yan
- Department of Endocrinology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
10
|
Braun T, Sosnovski KE, Amir A, BenShoshan M, VanDussen KL, Karns R, Levhar N, Abbas-Egbariya H, Hadar R, Efroni G, Castel D, Avivi C, Rosen MJ, Grifiths AM, Walters TD, Mack DR, Boyle BM, Ali SA, Moore SR, Schirmer M, Xavier RJ, Kugathasan S, Jegga AG, Weiss B, Mayer C, Barshack I, Ben-Horin S, Ulitsky I, Beucher A, Ferrer J, Hyams JS, Denson LA, Haberman Y. Mucosal transcriptomics highlight lncRNAs implicated in ulcerative colitis, Crohn's disease, and celiac disease. JCI Insight 2023; 8:e170181. [PMID: 37261910 PMCID: PMC10443795 DOI: 10.1172/jci.insight.170181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023] Open
Abstract
Ulcerative colitis (UC), Crohn's disease (CD), and celiac disease are prevalent intestinal inflammatory disorders with nonsatisfactory therapeutic interventions. Analyzing patient data-driven cohorts can highlight disease pathways and new targets for interventions. Long noncoding RNAs (lncRNAs) are attractive candidates, since they are readily targetable by RNA therapeutics, show relative cell-specific expression, and play key cellular functions. Uniformly analyzing gut mucosal transcriptomics from 696 subjects, we have highlighted lncRNA expression along the gastrointestinal (GI) tract, demonstrating that, in control samples, lncRNAs have a more location-specific expression in comparison with protein-coding genes. We defined dysregulation of lncRNAs in treatment-naive UC, CD, and celiac diseases using independent test and validation cohorts. Using the Predicting Response to Standardized Pediatric Colitis Therapy (PROTECT) inception UC cohort, we defined and prioritized lncRNA linked with UC severity and prospective outcomes, and we highlighted lncRNAs linked with gut microbes previously implicated in mucosal homeostasis. HNF1A-AS1 lncRNA was reduced in all 3 conditions and was further reduced in more severe UC form. Similarly, the reduction of HNF1A-AS1 ortholog in mice gut epithelia showed higher sensitivity to dextran sodium sulfate-induced colitis, which was coupled with alteration in the gut microbial community. These analyses highlight prioritized dysregulated lncRNAs that can guide future preclinical studies for testing them as potential targets.
Collapse
Affiliation(s)
- Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Katya E. Sosnovski
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Marina BenShoshan
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kelli L. VanDussen
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nina Levhar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haya Abbas-Egbariya
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - David Castel
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Camila Avivi
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Michael J. Rosen
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Pediatric IBD and Celiac Disease, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | | | - David R. Mack
- Children’s Hospital of East Ontario, Ottawa, Ontario, Canada
| | | | - Syed Asad Ali
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R. Moore
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | | | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Anil G. Jegga
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Computer Science, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Engineering, Cincinnati, Ohio, USA
| | - Batya Weiss
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Mayer
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shomron Ben-Horin
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Igor Ulitsky
- Departments of Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony Beucher
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jorge Ferrer
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, the Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Spain
| | - Jeffrey S. Hyams
- Connecticut Children’s Medical Center, Hartford, Connecticut, USA
| | - Lee A. Denson
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Upreti D, Rouzer SK, Bowring A, Labbe E, Kumar R, Miranda RC, Mahnke AH. Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure. Front Neurosci 2023; 17:1182635. [PMID: 37397440 PMCID: PMC10308314 DOI: 10.3389/fnins.2023.1182635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Alcohol exposure in adulthood can result in inflammation, malnutrition, and altered gastroenteric microbiota, which may disrupt efficient nutrient extraction. Clinical and preclinical studies have documented convincingly that prenatal alcohol exposure (PAE) also results in persistent inflammation and nutrition deficiencies, though research on the impact of PAE on the enteric microbiota is in its infancy. Importantly, other neurodevelopmental disorders, including autism spectrum and attention deficit/hyperactivity disorders, have been linked to gut microbiota dysbiosis. The combined evidence from alcohol exposure in adulthood and from other neurodevelopmental disorders supports the hypothesis that gut microbiota dysbiosis is likely an etiological feature that contributes to negative developmental, including neurodevelopmental, consequences of PAE and results in fetal alcohol spectrum disorders. Here, we highlight published data that support a role for gut microbiota in healthy development and explore the implication of these studies for the role of altered microbiota in the lifelong health consequences of PAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
12
|
Ahrodia T, Kandiyal B, Das B. Microbiota and epigenetics: Health impact. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:93-117. [PMID: 37225326 DOI: 10.1016/bs.pmbts.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epigenetic changes associated with disease development and progressions are of increasing importance because of their potential diagnostic and therapeutic applications. Several epigenetic changes associated with chronic metabolic disorders have been studied in various diseases. Epigenetic changes are mostly modulated by environmental factors, including the human microbiota living in different parts of our bodies. The microbial structural components and the microbially derived metabolites directly interact with host cells, thereby maintaining homeostasis. Microbiome dysbiosis, on the other hand, is known to produce elevated levels of disease-linked metabolites, which may directly affect a host metabolic pathway or induce epigenetic changes that can lead to disease development. Despite their important role in host physiology and signal transduction, there has been little research into the mechanics and pathways associated with epigenetic modifications. This chapter focuses on the relationship between microbes and their epigenetic effects in diseased pathology, as well as on the regulation and metabolism of the dietary options available to the microbes. Furthermore, this chapter also provides a prospective link between these two important phenomena, termed "Microbiome and Epigenetics."
Collapse
Affiliation(s)
- Taruna Ahrodia
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Bharti Kandiyal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
13
|
Arunima A, van Schaik EJ, Samuel JE. The emerging roles of long non-coding RNA in host immune response and intracellular bacterial infections. Front Cell Infect Microbiol 2023; 13:1160198. [PMID: 37153158 PMCID: PMC10160451 DOI: 10.3389/fcimb.2023.1160198] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The long non-coding RNAs (lncRNAs) are evolutionarily conserved classes of non-coding regulatory transcripts of > 200 nucleotides in length. They modulate several transcriptional and post-transcriptional events in the organism. Depending on their cellular localization and interactions, they regulate chromatin function and assembly; and alter the stability and translation of cytoplasmic mRNAs. Although their proposed range of functionality remains controversial, there is increasing research evidence that lncRNAs play a regulatory role in the activation, differentiation and development of immune signaling cascades; microbiome development; and in diseases such as neuronal and cardiovascular disorders; cancer; and pathogenic infections. This review discusses the functional roles of different lncRNAs in regulation of host immune responses, signaling pathways during host-microbe interaction and infection caused by obligate intracellular bacterial pathogens. The study of lncRNAs is assuming significance as it could be exploited for development of alternative therapeutic strategies for the treatment of severe and chronic pathogenic infections caused by Mycobacterium, Chlamydia and Rickettsia infections, as well as commensal colonization. Finally, this review summarizes the translational potential of lncRNA research in development of diagnostic and prognostic tools for human diseases.
Collapse
Affiliation(s)
| | | | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
14
|
Eribo OA, Naidoo CC, Theron G, Walzl G, du Plessis N, Chegou NN. An Archetypical Model for Engrafting Bacteroides fragilis into Conventional Mice Following Reproducible Antibiotic Conditioning of the Gut Microbiota. Microorganisms 2023; 11:microorganisms11020451. [PMID: 36838416 PMCID: PMC9966493 DOI: 10.3390/microorganisms11020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Bacteroides fragilis is a commonly investigated commensal bacterium for its protective role in host diseases. Here, we aimed to develop a reproducible antibiotic-based model for conditioning the gut microbiota and engrafting B. fragilis into a conventional murine host. Initially, we selected different combinations of antibiotics, including metronidazole, imipenem, and clindamycin, and investigated their efficacy in depleting the mouse Bacteroides population. We performed 16S rRNA sequencing of DNA isolated from fecal samples at different time points. The α-diversity was similar in mice treated with metronidazole (MET) and differed only at weeks 1 (p = 0.001) and 3 (p = 0.009) during metronidazole/imipenem (MI) treatment. Bacteroides compositions, during the MET and MI exposures, were similar to the pre-antibiotic exposure states. Clindamycin supplementation added to MET or MI regimens eliminated the Bacteroides population. We next repeated metronidazole/clindamycin (MC) treatment in two additional independent experiments, followed by a B. fragilis transplant. MC consistently and reproducibly eliminated the Bacteroides population. The depleted Bacteroides did not recover in a convalescence period of six weeks post-MC treatment. Finally, B. fragilis was enriched for ten days following engraftment into Bacteroides-depleted mice. Our model has potential use in gut microbiota studies that selectively investigate Bacteroides' role in diseases of interest.
Collapse
Affiliation(s)
- Osagie A. Eribo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Charissa C. Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- Correspondence:
| |
Collapse
|
15
|
Zarei I, Koistinen VM, Kokla M, Klåvus A, Babu AF, Lehtonen M, Auriola S, Hanhineva K. Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition. Sci Rep 2022; 12:15018. [PMID: 36056162 PMCID: PMC9440220 DOI: 10.1038/s41598-022-19327-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.
Collapse
Affiliation(s)
- Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland
| | - Marietta Kokla
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Ambrin Farizah Babu
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland.
| |
Collapse
|
16
|
Saltarella I, Apollonio B, Lamanuzzi A, Desantis V, Mariggiò MA, Desaphy JF, Vacca A, Frassanito MA. The Landscape of lncRNAs in Multiple Myeloma: Implications in the "Hallmarks of Cancer", Clinical Perspectives and Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14081963. [PMID: 35454868 PMCID: PMC9032822 DOI: 10.3390/cancers14081963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an aggressive hematological neoplasia caused by the uncontrolled proliferation of aberrant plasmacells. Neoplastic transformation and progression are driven by a number of biological processes, called ‘hallmarks of cancer’, which are regulated by different molecules, including long non-coding RNAs. A deeper understanding of the mechanisms that regulate MM development and progression will help to improve patients stratification and management, and promote the identification of new therapeutic targets. Abstract Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that are not translated into proteins. Nowadays, lncRNAs are gaining importance as key regulators of gene expression and, consequently, of several biological functions in physiological and pathological conditions, including cancer. Here, we point out the role of lncRNAs in the pathogenesis of multiple myeloma (MM). We focus on their ability to regulate the biological processes identified as “hallmarks of cancer” that enable malignant cell transformation, early tumor onset and progression. The aberrant expression of lncRNAs in MM suggests their potential use as clinical biomarkers for diagnosis, patient stratification, and clinical management. Moreover, they represent ideal candidates for therapeutic targeting.
Collapse
Affiliation(s)
- Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine “Guido Baccelli”, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy; (I.S.); (B.A.); (A.L.); (V.D.); (A.V.)
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy;
| | - Benedetta Apollonio
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine “Guido Baccelli”, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy; (I.S.); (B.A.); (A.L.); (V.D.); (A.V.)
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine “Guido Baccelli”, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy; (I.S.); (B.A.); (A.L.); (V.D.); (A.V.)
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine “Guido Baccelli”, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy; (I.S.); (B.A.); (A.L.); (V.D.); (A.V.)
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy;
| | - Maria Addolorata Mariggiò
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro, I-70124 Bari, Italy;
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy;
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine “Guido Baccelli”, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy; (I.S.); (B.A.); (A.L.); (V.D.); (A.V.)
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro, I-70124 Bari, Italy;
- Correspondence:
| |
Collapse
|
17
|
Yang F, Yang Y, Chen L, Zhang Z, Liu L, Zhang C, Mai Q, Chen Y, Chen Z, Lin T, Chen L, Guo H, Zhou L, Shen H, Chen X, Liu L, Zhang G, Liao H, Zeng L, Zeng G. The gut microbiota mediates protective immunity against tuberculosis via modulation of lncRNA. Gut Microbes 2022; 14:2029997. [PMID: 35343370 PMCID: PMC8966992 DOI: 10.1080/19490976.2022.2029997] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut-lung axis has been implicated as a potential therapeutic target in lung disorders. While increasing evidence suggests that gut microbiota plays a critical role in regulating host immunity and contributing to tuberculosis (TB) development and progression, the underlying mechanisms whereby gut microbiota may impact TB outcomes are not fully understood. Here, we found that broad-spectrum antibiotics treatment increased susceptibility to Mycobacterium tuberculosis (M. tuberculosis) infection and modulated pulmonary inflammatory responses in mouse M. tuberculosis infection model. We then identified a commensal gut bacteria-regulated lncRNA, termed lncRNA-CGB, which was down-regulated by dysbiosis of gut microbiota during TB infection. Furthermore, we found that Bacteroides fragilis (B. fragilis) was a direct regulator of lncRNA-CGB, and oral administration of B. fragilis enhanced expression of lncRNA-CGB and promoted anti-TB immunity. Genomic knock-out of lncRNA-CGB led to reduced IFN-γ expression and impaired anti-TB immunity, therefore leading to detrimental effects on M. tuberculosis infection. Mechanistically, lncRNA-CGB interacted with EZH2 and negatively regulated H3K27 tri-methylation (H3K27Me3) epigenetic programming, leading to enhanced IFN-γ expression. Thus, this work not only uncovered previously unrecognized importance of gut bacteria-lncRNA-EZH2-H3K27Me3 axis in conferring immune protection against TB but also identified a potential new paradigm to develop a microbiota-based treatment against TB and potentially other diseases.
Collapse
Affiliation(s)
- Fang Yang
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina
| | - Yi Yang
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina
| | - Lingming Chen
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina
| | - Zhiyi Zhang
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina
| | - Linna Liu
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina,Linna Liu Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunmin Zhang
- Drepartment of Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Picu, GuangzhouChina
| | - Qiongdan Mai
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina
| | - Yiwei Chen
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina
| | - Zixu Chen
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina
| | - Tao Lin
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina
| | - Liang Chen
- Guangdong Center for Tuberculosis Control, National Clinical Research Center for Tuberculosis, GuangzhouChina
| | - Huixin Guo
- Guangdong Center for Tuberculosis Control, National Clinical Research Center for Tuberculosis, GuangzhouChina
| | - Lin Zhou
- Guangdong Center for Tuberculosis Control, National Clinical Research Center for Tuberculosis, GuangzhouChina
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, GuangdongChina
| | - Lei Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People’s Hospital, National Clinical Research Center for Tuberculosis, Southern University of Science and Technology, National Clinical Research Center for Tuberculosis, Shenzhen, China
| | - Guoliang Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People’s Hospital, National Clinical Research Center for Tuberculosis, Southern University of Science and Technology, National Clinical Research Center for Tuberculosis, Shenzhen, China
| | - Hongying Liao
- De
partment of Thoracic Surgery, Thoracic Cancer Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Hongying Liao Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingchan Zeng
- Clinical Research Center, Department of Medical Records Management, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China,Lingchan Zeng Clinical Research Center, Department of Medical Records Management, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gucheng Zeng
- Department of Microbiology Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, GuangzhouChina,CONTACT Gucheng Zeng Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education
| |
Collapse
|
18
|
Peltier DC, Roberts A, Reddy P. LNCing RNA to immunity. Trends Immunol 2022; 43:478-495. [DOI: 10.1016/j.it.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
|
19
|
Donda K, Torres BA, Maheshwari A. Non-coding RNAs in Neonatal Necrotizing Enterocolitis. NEWBORN 2022; 1:120-130. [PMID: 35754997 PMCID: PMC9219563 DOI: 10.5005/jp-journals-11002-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Keyur Donda
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, United States of America
| | - Benjamin A Torres
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
20
|
Abstract
The gastrointestinal tract is continuously exposed to trillions of commensal microbes, collectively termed the microbiota, which are environmental stimuli that can direct health and disease within the host. In addition to well-established bacterial sensing pathways, microbial signals are also integrated through epigenetic modifications that calibrate the transcriptional program of host cells without altering the underlying genetic code. Microbiota-sensitive epigenetic changes include modifications to the DNA or histones, as well as regulation of non-coding RNAs. While microbiota-sensitive epigenetic mechanisms have been described in both local intestinal cells and as well in peripheral tissues, further research is required to fully decipher the complex relationship between the host and microbiota. This Review highlights current understandings of epigenetic regulation by gut microbiota and important implications of these findings in guiding therapeutic approaches to prevent or combat diseases driven by impaired microbiota-host interactions.
Collapse
Affiliation(s)
- Vivienne Woo
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,CONTACT Theresa Alenghat Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
21
|
Li Y, Chen Z, Han J, Ma X, Zheng X, Chen J. Functional and Therapeutic Significance of Tumor-Associated Macrophages in Colorectal Cancer. Front Oncol 2022; 12:781233. [PMID: 35186730 PMCID: PMC8847181 DOI: 10.3389/fonc.2022.781233] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The role of the tumor microenvironment (TME) in the progression of colorectal cancer (CRC) and its acquisition of resistance to treatment become the research hotspots. As an important component of TME, the tumor-associated macrophages (TAMs) regulate multiple critical oncogenic processes, namely, occurrence, proliferation, metastasis, and drug resistance in CRC. In this review, we have discussed the functional and therapeutic significance of TAMs in CRC. M1 macrophages act as the tumor suppressor while M2 macrophages promote CRC. The polarization of TAMs is mainly regulated by the pathways such as NFKB1 pathways, STAT3 pathways, WNT5A pathways, and PI3K pathways in CRC. Furthermore, the M2 polarization of TAMs is not only controllable but also reversible. Finally, we provide insights into the TAMs-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yitong Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Zhenmei Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jiahao Han
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiaochen Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xin Zheng
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Cheng Z, Zhang L, Yang L, Chu H. The critical role of gut microbiota in obesity. Front Endocrinol (Lausanne) 2022; 13:1025706. [PMID: 36339448 PMCID: PMC9630587 DOI: 10.3389/fendo.2022.1025706] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a global epidemic characterized by energy disequilibrium, metabolic disorder, fat mass development, and chronic low-grade inflammation, which significantly affects the health state of individuals of all ages and strains the socioeconomic system. The prevalence of obesity is rising at alarming rates and its etiology involves complicated interplay of diet, genetic, and environmental factors. The gut microbiota, as an important constituent of environmental factors, has been confirmed to correlate with the onset and progression of obesity. However, the specific relationship between obesity and the gut microbiota, and its associated mechanisms, have not been fully elucidated. In this review, we have summarized that the microbial diversity was significantly decreased and the Firmicutes/Bacteroidetes ratio was significantly increased in obesity. The altered gut microbiota and associated metabolites contributed to the progression of the disease by disrupting energy homeostasis, promoting lipid synthesis and storage, modulating central appetite and feeding behavior, as well as triggering chronic inflammation, and that the intentional manipulation of gut microbiota held promise as novel therapies for obesity, including probiotics, prebiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
| | | | - Ling Yang
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| | - Huikuan Chu
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| |
Collapse
|
23
|
Nair J, Maheshwari A. Non-coding RNAs in Necrotizing Enterocolitis- A New Frontier? Curr Pediatr Rev 2022; 18:25-32. [PMID: 34727861 DOI: 10.2174/1573396317666211102093646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
With the recognition that only 2% of the human genome encodes for a protein, a large part of the "non-coding" portion is now being evaluated for a regulatory role in cellular processes. These non-coding RNAs (ncRNAs) are subdivided based on the size of the nucleotide transcript into microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), but most of our attention has been focused on the role of microRNAs (miRNAs) in human health and disease. Necrotizing enterocolitis (NEC), an inflammatory bowel necrosis affecting preterm infants, has a multifactorial, unclear etiopathogenesis, and we have no specific biomarkers for diagnosis or the impact of directed therapies. The information on ncRNAs, in general, and particularly in NEC, is limited. Increasing information from other inflammatory bowel disorders suggests that these transcripts may play an important role in intestinal inflammation. Here, we review ncRNAs for definitions, classifications, and possible roles in prematurity and NEC using some preliminary information from our studies and from an extensive literature search in multiple databases including PubMed, EMBASE, and Science Direct. miRNAs will be described in another manuscript in this series, hence in this manuscript we mainly focus on lncRNAs.
Collapse
Affiliation(s)
- Jayasree Nair
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
García-Padilla C, Domínguez JN, Lodde V, Munk R, Abdelmohsen K, Gorospe M, Jiménez-Sábado V, Ginel A, Hove-Madsen L, Aránega AE, Franco D. Identification of atrial-enriched lncRNA Walras linked to cardiomyocyte cytoarchitecture and atrial fibrillation. FASEB J 2022; 36:e22051. [PMID: 34861058 PMCID: PMC8684585 DOI: 10.1096/fj.202100844rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway. In silico analyses of annotated lncRNAs in the vicinity of the Pitx2, Wnt8 and Wnt11 chromosomal loci identified five novel lncRNAs with differential expression during cardiac development. Importantly, three of them, Walaa, Walras, and Wallrd, are evolutionarily conserved in humans and displayed preferential atrial expression during embryogenesis. In addition, Walrad displayed moderate expression during embryogenesis but was more abundant in the right atrium. Walaa, Walras and Wallrd were distinctly regulated by Pitx2, Wnt8, and Wnt11, and Wallrd was severely elevated in conditional atrium-specific Pitx2-deficient mice. Furthermore, pro-arrhythmogenic and pro-hypertrophic substrate administration to primary cardiomyocyte cell cultures consistently modulate expression of these lncRNAs, supporting distinct modulatory roles of the AF cardiovascular risk factors in the regulation of these lncRNAs. Walras affinity pulldown assays revealed its association with distinct cytoplasmic and nuclear proteins previously involved in cardiac pathophysiology, while loss-of-function assays further support a pivotal role of this lncRNA in cytoskeletal organization. We propose that lncRNAs Walaa, Walras and Wallrd, distinctly regulated by Pitx2>Wnt>miRNA signaling and pro-arrhythmogenic and pro-hypertrophic factors, are implicated in atrial arrhythmogenesis, and Walras additionally in cardiomyocyte cytoarchitecture.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N. Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Valeria Lodde
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | | | - Antonino Ginel
- Department Cardiac Surgery, Hospital de Sant Pau, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- CIBERCV, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain,Biomedical Research Institute Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Amelia E. Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
25
|
Xu W, Liu R, Dai Y, Hong S, Dong H, Wang H. The Role of p38γ in Cancer: From review to outlook. Int J Biol Sci 2021; 17:4036-4046. [PMID: 34671218 PMCID: PMC8495394 DOI: 10.7150/ijbs.63537] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023] Open
Abstract
p38γ is a member of the p38 Mitogen Activated Protein Kinases (p38 MAPKs). It contains four subtypes in mammalian cells encoded by different genes including p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). Recent studies revealed that p38γ may exhibit a crucial role in tumorigenesis and cancer aggressiveness. Despite the large number of published literatures, further researches are demanded to clarify its role in cancer development, the tissue-specific function and associated novel treatment strategies. In this article, we provide the latest view on the connection between p38γ and malignant tumors, highlighting the function of p38γ. The clinical value of p38γ is also discussed, helping the translation into the remarkable therapeutic strategy in tumor diseases.
Collapse
Affiliation(s)
- Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Rui Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shaocheng Hong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huke Dong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
26
|
Coley EJL, Hsiao EY. Malnutrition and the microbiome as modifiers of early neurodevelopment. Trends Neurosci 2021; 44:753-764. [PMID: 34303552 DOI: 10.1016/j.tins.2021.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
Malnutrition refers to a dearth, excess, or altered differential ratios of calories, macronutrients, or micronutrients. Malnutrition, particularly during early life, is a pressing global health and socioeconomic burden that is increasingly associated with neurodevelopmental impairments. Understanding how perinatal malnutrition influences brain development is crucial to uncovering fundamental mechanisms for establishing behavioral neurocircuits, with the potential to inform public policy and clinical interventions for neurodevelopmental conditions. Recent studies reveal that the gut microbiome can mediate dietary effects on host physiology and that the microbiome modulates the development and function of the nervous system. This review discusses evidence that perinatal malnutrition alters brain development and examines the maternal and neonatal microbiome as a potential contributing factor.
Collapse
Affiliation(s)
- Elena J L Coley
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Wu Y, Wang CZ, Wan JY, Yao H, Yuan CS. Dissecting the Interplay Mechanism between Epigenetics and Gut Microbiota: Health Maintenance and Disease Prevention. Int J Mol Sci 2021; 22:6933. [PMID: 34203243 PMCID: PMC8267743 DOI: 10.3390/ijms22136933] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota exists throughout the full life cycle of the human body, and it has been proven to have extensive impacts on health and disease. Accumulating evidence demonstrates that the interplay between gut microbiota and host epigenetics plays a multifaceted role in health maintenance and disease prevention. Intestinal microflora, along with their metabolites, could regulate multiple epigenetic pathways; e.g., DNA methylation, miRNA, or histone modification. Moreover, epigenetic factors can serve as mediators to coordinate gut microbiota within the host. Aiming to dissect this interplay mechanism, the present review summarizes the research profile of gut microbiota and epigenetics in detail, and further interprets the biofunctions of this interplay, especially the regulation of intestinal inflammation, the improvement of metabolic disturbances, and the inhibition of colitis events. This review provides new insights into the interplay of epigenetics and gut microbiota, and attempts to reveal the mysteries of health maintenance and disease prevention from this new perspective.
Collapse
Affiliation(s)
- Yuqi Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; (C.-Z.W.); (C.-S.Y.)
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haiqiang Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; (C.-Z.W.); (C.-S.Y.)
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
28
|
LncRNA: A Potential Research Direction in Intestinal Barrier Function. Dig Dis Sci 2021; 66:1400-1408. [PMID: 32591966 DOI: 10.1007/s10620-020-06417-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides and play important roles in a variety of diseases. LncRNAs are involved in many biologic processes including cell differentiation, development, and apoptosis. The intestinal barrier is considered one of the most important protective barriers in humans. Severe damage or dysfunction of the intestinal barrier may be associated with the occurrence and development of many diseases, such as inflammatory bowel disease and ulcerative colitis. LncRNAs have been found to be associated with intestinal barrier function in some studies, which are at an early stage. In this review, we introduce the roles of LncRNAs in the intestinal barrier and investigate the possibility of lncRNAs as a research field in the intestinal barrier.
Collapse
|
29
|
Host genetics influences the relationship between the gut microbiome and psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110153. [PMID: 33130294 DOI: 10.1016/j.pnpbp.2020.110153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
The gut microbiome is associated with psychiatric disorders; however, the molecular mechanisms mediating this association are poorly understood. The ability of host genetics to modulate the gut microbiome may be an important factor in understanding the association. In this study, we aimed to evaluate the role of genetic variants associated with the gut microbiome in the susceptibility of individuals to four psychiatric disorders: schizophrenia (SCZ), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and major depressive disorder (MDD). A total of 201 host genetic markers associated with microbiome outcomes and reported in available genome-wide association studies (GWAS) were included in the analyses. We searched for these variants in the summary statistics of the largest GWAS on these disorders to date, which were published by the Psychiatric Genomic Consortium, and performed gene-based and gene set association analyses. Two variants were significantly associated with ASD (rs9401458 and rs9401452) and one with MDD (rs75036654). For the gene-based association analysis, eight genes were associated with SCZ (ASIC2, KCND3, ITSN1, SIPA1L3, RBMS3, BANK1, CSMD1, and LHFPL3), one with MDD (ACTL8), two with ADHD (C14orf39 and FBXL17), and one with ASD (PINX). The gene set comprising 83 genes was associated with SCZ (p = 0.047). These findings suggest that genes related to microbiome composition may affect the susceptibility of individuals to psychiatric disorders, mainly schizophrenia. Although less robust, the associations with ASD, ADHD, and MDD cannot be discarded.
Collapse
|
30
|
Yan Q, Chen BJ, Hu S, Qi SL, Li LY, Yang JF, Zhou H, Yang CC, Chen LJ, Du J. Emerging role of RNF2 in cancer: From bench to bedside. J Cell Physiol 2021; 236:5453-5465. [PMID: 33400276 DOI: 10.1002/jcp.30260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/03/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023]
Abstract
RNF2 (also known as ding, Ring1B or Ring2) is a member of the Ring finger protein family, which functions as E3 ubiquitin ligase for monoubiquitination of histone H2A at lysine 119 (H2AK119ub). RNF2 gene is located at the 1q25.3 site of human chromosome and the coding region is composed of 9 exons, encoding 336 amino acids in total. Many studies have demonstrated that overexpressed RNF2 was involved in the pathological progression of multiple cancers and has an impact on their clinical features. For instance, the upregulated expression level of RNF2 is positively correlated with the occurrence and progression of hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, pancreatic cancer, gastric cancer, and bladder urothelial carcinoma, as well as with the radioresistance of lung cancer and chemoresistance of ovarian cancer. This review provides an up-to-date perspective on the relationship between RNF2 and several cancers and highlights recent studies on RNF2 regulation. In particular, the relevant cellular signaling pathways and potential clinical value of RNF2 in cancers are also discussed, suggesting its potential as an epigenetic biomarker and therapeutic target for these cancers.
Collapse
Affiliation(s)
- Qi Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bang-Jie Chen
- First Clinical Medical College of Anhui Medical university, Hefei, China
| | - Shuang Hu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shun-Li Qi
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang-Yun Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun-Fa Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hong Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chen-Chen Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li-Jian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Malmuthuge N, Guan LL. Noncoding RNAs: Regulatory Molecules of Host-Microbiome Crosstalk. Trends Microbiol 2021; 29:713-724. [PMID: 33419590 DOI: 10.1016/j.tim.2020.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Recent emerging evidence has revealed that regulatory noncoding RNAs (microRNAs, circular RNAs) modulate host-microbe interactions and they have been proposed as potential biomarkers of the host's response to microbiome-linked pathologies such as cancers, obesity, and neurodegenerative diseases. Interactions between microRNAs and circular RNAs, however, increase the complexity of the mechanisms that modulate host-microbe interactions. Current knowledge on these noncoding RNAs (ncRNAs) is mainly generated from well controlled germ-free or knockout (small) animal models. Application of such knowledge to effective modulation outcomes in humans (and livestock) is challenging due to the complex nature of microbiome-linked pathologies in larger outbred animals that constantly interact with the changing environment. This review critically discusses the findings of regulatory noncoding RNAs and their roles in microbiome-linked pathologies in small and large animals and provides insights on their roles as potential therapeutic agents to improve human (and livestock) health.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1 Ave S, Lethbridge, Alberta, Canada T1J 4B1
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
32
|
Hung FY, Chen C, Yen MR, Hsieh JWA, Li C, Shih YH, Chen FF, Chen PY, Cui Y, Wu K. The expression of long non-coding RNAs is associated with H3Ac and H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex in Arabidopsis. NAR Genom Bioinform 2020; 2:lqaa066. [PMID: 33575615 PMCID: PMC7671367 DOI: 10.1093/nargab/lqaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
In recent years, eukaryotic long non-coding RNAs (lncRNAs) have been identified as important factors involved in a wide variety of biological processes, including histone modification, alternative splicing and transcription enhancement. The expression of lncRNAs is highly tissue-specific and is regulated by environmental stresses. Recently, a large number of plant lncRNAs have been identified, but very few of them have been studied in detail. Furthermore, the mechanism of lncRNA expression regulation remains largely unknown. Arabidopsis HISTONE DEACETYLASE 6 (HDA6) and LSD1-LIKE 1/2 (LDL1/2) can repress gene expression synergistically by regulating H3Ac/H3K4me. In this research, we performed RNA-seq and ChIP-seq analyses to further clarify the function of HDA6-LDL1/2. Our results indicated that the global expression of lncRNAs is increased in hda6/ldl1/2 and that this increased lncRNA expression is particularly associated with H3Ac/H3K4me2 changes. In addition, we found that HDA6-LDL1/2 is important for repressing lncRNAs that are non-expressed or show low-expression, which may be strongly associated with plant development. GO-enrichment analysis also revealed that the neighboring genes of the lncRNAs that are upregulated in hda6/ldl1/2 are associated with various developmental processes. Collectively, our results revealed that the expression of lncRNAs is associated with H3Ac/H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex.
Collapse
Affiliation(s)
- Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| | - Chen Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3 Canada
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Chenlong Li
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3 Canada
| | - Yuan-Hsin Shih
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| | - Fang-Fang Chen
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3 Canada
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| |
Collapse
|
33
|
Celiker C, Kalkan R. Genetic and epigenetic perspective of microbiota. Appl Microbiol Biotechnol 2020; 104:8221-8229. [PMID: 32857199 DOI: 10.1007/s00253-020-10849-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiota has an extremely important role within the body and it is necessary for the regulation of the metabolism of the host and also for the development of metabolic diseases such as obesity. Here, we show several different factors leading to obesity such as epigenetic changes and how they result in differences to occur in the gut microbiota, along with gut dysbiosis which is caused by disturbances in the microbiota homeostasis. Several studies have been explained in this paper, providing evidence in how these findings can actually decrease the susceptibility of obesity, whether it be by changing an individual's diet pattern or observing the epigenetic changes which are taking place. KEY POINTS: • The microbiota depends on an individual's diet, lifestyle, environment, genetics and epigenetic profile. • Changes of the gut microbiota can increase obesity susceptibility. • Non-coding RNA has an important role in the metabolic homeostasis in check so if a disturbance occurs it can lead to resistance to obesity.
Collapse
Affiliation(s)
- Cigdem Celiker
- Department of Molecular Biology and Genetics, Arts and Science Faculty, Near East University, 99138, Nicosia, Cyprus
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus. .,DESAM Institute, Near East University, 99138, Nicosia, Cyprus.
| |
Collapse
|
34
|
Ling B, Yao M, Li G, Liu J, Liu B, Wang W, Jiang B. Clinical significance of ring finger protein 2 high expression in skin squamous cell carcinoma. Oncol Lett 2020; 20:1111-1118. [PMID: 32724350 PMCID: PMC7377046 DOI: 10.3892/ol.2020.11666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Although ring finger protein 2 (RNF2) serves an important role in the occurrence, development and regulation of various types of cancer, RNF2 expression in skin squamous cell carcinoma (SCC) remains unknown. The aim of the present study was to investigate the role of RNF2 expression in SCC and adjacent tissues from patients. The protein and gene expression levels of RNF2 in SCC and adjacent tissues were detected by immunohistochemistry (IHC), western blot analysis and semi-quantitative reverse transcription (RT) PCR. Single factor analysis was used to study the association between RNF2 expression level and the clinicopathological characteristics of patients with SCC. Multifactor Cox survival analysis was used to examine the association between RNF2 expression and the overall survival rate of postoperative patients with SCC. The results from IHC staining demonstrated that the positive expression rate of RNF2 was 84.68% (210/248) and 56.05% (139/248) in SCC and in adjacent tissues, respectively. Furthermore, results from western blot analysis demonstrated that RNF2 protein expression in SCC tissues was significantly higher compared with that in the adjacent tissues (P<0.05). The positive rate of RNF2 mRNA in SCC was 81.05% (201/248), which was significantly higher compared with that in the adjacent tissues 54.44% (135/248; P<0.05). Furthermore, RNF2 protein and gene expression levels were associated with tumor diameter, tumor stage, tumor metastasis and the degree of tumor differentiation in patients with SCC. Patients exhibiting higher RNF2 protein expression in SCC tissues had a significantly shorter disease-specific survival rate compared with patients with low RNF2 expression. In addition, RNF2 protein expression, tumor diameter, tumors site and tumor stage were independent factors affecting the overall survival rate of postoperative patients. High protein and gene expression levels of RNF2 in SCC tissues may be associated with the occurrence and development of SCC and prognosis of patients. The results form this study may serve the development of novel therapeutic options and diagnostic strategies for patients with SCC.
Collapse
Affiliation(s)
- Bai Ling
- Department of Pharmacy, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224005, P.R. China
| | - Ming Yao
- Department of Dermatology, Yancheng Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Yancheng, Jiangsu 224000, P.R. China
| | - Gongqi Li
- Department of Clinical Laboratory, Linyi Traditional Hospital, Linyi, Shandong 276003, P.R. China
| | - Jun Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu 214005, P.R. China
| | - Bin Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu 214005, P.R. China
| | - Wei Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224005, P.R. China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
35
|
Chen L, Bao Y, Jiang S, Zhong XB. The Roles of Long Noncoding RNAs HNF1α-AS1 and HNF4α-AS1 in Drug Metabolism and Human Diseases. Noncoding RNA 2020; 6:E24. [PMID: 32599764 PMCID: PMC7345002 DOI: 10.3390/ncrna6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNAs with a length of over 200 nucleotides that do not have protein-coding abilities. Recent studies suggest that lncRNAs are highly involved in physiological functions and diseases. lncRNAs HNF1α-AS1 and HNF4α-AS1 are transcripts of lncRNA genes HNF1α-AS1 and HNF4α-AS1, which are antisense lncRNA genes located in the neighborhood regions of the transcription factor (TF) genes HNF1α and HNF4α, respectively. HNF1α-AS1 and HNF4α-AS1 have been reported to be involved in several important functions in human physiological activities and diseases. In the liver, HNF1α-AS1 and HNF4α-AS1 regulate the expression and function of several drug-metabolizing cytochrome P450 (P450) enzymes, which also further impact P450-mediated drug metabolism and drug toxicity. In addition, HNF1α-AS1 and HNF4α-AS1 also play important roles in the tumorigenesis, progression, invasion, and treatment outcome of several cancers. Through interacting with different molecules, including miRNAs and proteins, HNF1α-AS1 and HNF4α-AS1 can regulate their target genes in several different mechanisms including miRNA sponge, decoy, or scaffold. The purpose of the current review is to summarize the identified functions and mechanisms of HNF1α-AS1 and HNF4α-AS1 and to discuss the future directions of research of these two lncRNAs.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Suzhen Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, China
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| |
Collapse
|
36
|
Abstract
Less than 2% of mammalian genomes code for proteins, but 'the majority of its bases can be found in primary transcripts' - a phenomenon termed the pervasive transcription, which was first reported in 2007. Even though most of the transcripts do not code for proteins, they play a variety of biological functions, with regulation of gene expression appearing as the most common one. Those transcripts are divided into two groups based on their length: small non-coding RNAs, which are maximally 200 bp long, and long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides. The advances in next-generation sequencing methods provided a new possibility of investigating the full set of RNA molecules in the cell. In this review, we summarized the current state of knowledge on lncRNAs in three major livestock species - Sus scrofa, Bos taurus and Gallus gallus, based on the literature and the content of biological databases. In the NONCODE database, the largest number of identified lncRNA transcripts is available for pigs, but cattle have the largest number of lncRNA genes. Poultry is represented by less than a half of records. Genomic annotation of lncRNAs showed that the majority of them are assigned to introns (pig, poultry) or intergenic (cattle). The comparison with well-annotated human and mouse genomes indicates that such annotation is a result of lack of proper lncRNA annotation data. Since lncRNAs play an important role in genomic studies, their characterization in farm animals' genomes is critical in bridging the gap between genotype and phenotype.
Collapse
|
37
|
Sharma M, Li Y, Stoll ML, Tollefsbol TO. The Epigenetic Connection Between the Gut Microbiome in Obesity and Diabetes. Front Genet 2020; 10:1329. [PMID: 32010189 PMCID: PMC6974692 DOI: 10.3389/fgene.2019.01329] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases are becoming an alarming health issue due to elevated incidences of these diseases over the past few decades. Various environmental factors are associated with a number of metabolic diseases and often play a crucial role in this process. Amongst the factors, diet is the most important factor that can regulate these diseases via modulation of the gut microbiome. The gut microbiome participates in multiple metabolic processes in the human body and is mainly responsible for regulation of host metabolism. The alterations in function and composition of the gut microbiota have been known to be involved in the pathogenesis of metabolic diseases via induction of epigenetic changes such as DNA methylation, histone modifications and regulation by noncoding RNAs. These induced epigenetic modifications can also be regulated by metabolites produced by the gut microbiota including short-chain fatty acids, folates, biotin and trimethylamine-N-oxide. In addition, studies have elucidated the potential role of these microbial-produced metabolites in the pathophysiology of obesity and diabetes. Hence, this review focuses on the interactions between the gut microbiome and epigenetic processes in the regulation and development of obesity and diabetes, which may have potential as a novel preventive or therapeutic approach for several metabolic and other human diseases.
Collapse
Affiliation(s)
- Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew L Stoll
- Division of Pediatric Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Hippocampus-specific regulation of long non-coding RNA and mRNA expression in germ-free mice. Funct Integr Genomics 2019; 20:355-365. [PMID: 31677064 DOI: 10.1007/s10142-019-00716-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Gut microbiota can affect multiple brain functions and cause behavioral alterations through the microbiota-gut-brain axis. In our previous study, we found that the absence of gut microbiota can influence the expression of microRNAs and mRNAs in the hippocampal region of the germ-free (GF) mice. Long non-coding RNAs (lncRNAs) are increasingly being recognized as an important functional transcriptional regulator in the brain. In the present study, we aim to identify possible biological pathways and functional networks for lncRNA-associated transcript of the gut microbiota in relation to the brain function. The profiles of lncRNA and mRNA from specific pathogen-free (SPF), colonized GF (CGF), and GF mice were generated using the Agilent Mouse LncRNA Array v2.0. Differentially expressed (DE) lncRNAs and mRNAs were identified, and lncRNA target genes were also predicted. Ingenuity pathway analysis (IPA) was performed to analyze related signaling pathways and biological functions associated with these dysregulated mRNAs and target genes. Validation with quantitative real-time PCR was performed on several key genes. Compared with SPF mice a total of 2230 DE lncRNAs were found in GF mice. Among these, 1355 were upregulated and 875 were downregulated. After comparing the target genes of DE lncRNAs with mRNA datasets, 669 overlapping genes were identified. IPA core analyses revealed that most of these genes were highly associated with cardiac hypertrophy, nuclear factors of activated T cells (NFAT) gonadotropin-releasing hormone (GnRH), calcium, and cAMP-response element-binding protein (CREB) signaling pathways. Additionally, mRNA expression levels of APP, CASP9, IGFBP2, PTGDS, and TGFBR2 genes that are involved in central nervous system functions were significantly changed in the GF mouse hippocampus. Through this study, for the first time, we describe the effect of gut microbiota on the hippocampal lncRNA regulation. This will help in enhancing the overall knowledge about microbiota-gut-brain axis.
Collapse
|
39
|
Allen J, Sears CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med 2019; 11:11. [PMID: 30803449 PMCID: PMC6388476 DOI: 10.1186/s13073-019-0621-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the number of studies investigating the impact of the gut microbiome in colorectal cancer (CRC) has risen sharply. As a result, we now know that various microbes (and microbial communities) are found more frequently in the stool and mucosa of individuals with CRC than healthy controls, including in the primary tumors themselves, and even in distant metastases. We also know that these microbes induce tumors in various mouse models, but we know little about how they impact colon epithelial cells (CECs) directly, or about how these interactions might lead to modifications at the genetic and epigenetic levels that trigger and propagate tumor growth. Rates of CRC are increasing in younger individuals, and CRC remains the second most frequent cause of cancer-related deaths globally. Hence, a more in-depth understanding of the role that gut microbes play in CRC is needed. Here, we review recent advances in understanding the impact of gut microbes on the genome and epigenome of CECs, as it relates to CRC. Overall, numerous studies in the past few years have definitively shown that gut microbes exert distinct impacts on DNA damage, DNA methylation, chromatin structure and non-coding RNA expression in CECs. Some of the genes and pathways that are altered by gut microbes relate to CRC development, particularly those involved in cell proliferation and WNT signaling. We need to implement more standardized analysis strategies, collate data from multiple studies, and utilize CRC mouse models to better assess these effects, understand their functional relevance, and leverage this information to improve patient care.
Collapse
Affiliation(s)
- Jawara Allen
- Department of Medicine, Johns Hopkins University School of Medicine, Orleans Street, Baltimore, MD, 21231, USA
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Orleans Street, Baltimore, MD, 21231, USA. .,Bloomberg-Kimmel Institute for Immunotherapy and Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, North Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
40
|
Zhou Y, Xu Z, Yu Y, Cao J, Qiao Y, Qiao H, Suo G. Comprehensive analysis of the lncRNA-associated ceRNA network identifies neuroinflammation biomarkers for Alzheimer's disease. Mol Omics 2019; 15:459-469. [DOI: 10.1039/c9mo00129h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating evidence has highlighted the important roles of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yuanshuai Zhou
- Jiangsu Key Lab of Medical Optics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Jiangsu
- China
| | - Zhongjuan Xu
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| | - Yanzhen Yu
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| | - Junjun Cao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| | - Yong Qiao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| | - Hong Qiao
- Department of Molecular Biosciences
- the University of Texas at Austin
- Austin
- USA
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| |
Collapse
|
41
|
Cheng YW, Chen YM, Zhao QQ, Zhao X, Wu YR, Chen DZ, Liao LD, Chen Y, Yang Q, Xu LY, Li EM, Xu JZ. Long Read Single-Molecule Real-Time Sequencing Elucidates Transcriptome-Wide Heterogeneity and Complexity in Esophageal Squamous Cells. Front Genet 2019; 10:915. [PMID: 31636653 PMCID: PMC6787290 DOI: 10.3389/fgene.2019.00915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/29/2019] [Indexed: 02/05/2023] Open
Abstract
Esophageal squamous cell carcinoma is a leading cause of cancer death. Mapping the transcriptional landscapes such as isoforms, fusion transcripts, as well as long noncoding RNAs have played a central role to understand the regulating mechanism during malignant processes. However, canonical methods such as short-read RNA-seq are difficult to define the entire polyadenylated RNA molecules. Here, we combined single-molecule real-time sequencing with RNA-seq to generate high-quality long reads and to survey the transcriptional program in esophageal squamous cells. Compared with the recent annotations of human transcriptome (Ensembl 38 release 91), single-molecule real-time data identified many unannotated transcripts, novel isoforms of known genes and an expanding repository of long intergenic noncoding RNAs (lincRNAs). By integrating with annotation of lincRNA catalog, 1,521 esophageal-cancer-specific lincRNAs were defined from single-molecule real-time reads. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that these lincRNAs and their target genes are involved in a variety of cancer signaling pathways. Isoform usage analysis revealed the shifted alternative splicing patterns, which can be recaptured from clinical samples or supported by previous studies. Utilizing vigorous searching criteria, we also detected multiple transcript fusions, which are not documented in current gene fusion database or readily identified from RNA-seq reads. Two novel fusion transcripts were verified based on real-time PCR and Sanger sequencing. Overall, our long-read single-molecule sequencing largely expands current understanding of full-length transcriptome in esophageal cells and provides novel insights on the transcriptional diversity during oncogenic transformation.
Collapse
Affiliation(s)
- Yin-Wei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou, China
| | - Yun-Mei Chen
- Tianjin Novogene Bioinformatics Technology Co., Ltd, Tianjin, China
| | - Qian-Qian Zhao
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou, China
| | - Xing Zhao
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou, China
| | - Ya-Ru Wu
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou, China
| | - Dan-Ze Chen
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- China Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Yang Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Qian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- China Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
- *Correspondence: Li-Yan Xu, ; En-Min Li, ; Jian-Zhen Xu,
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- *Correspondence: Li-Yan Xu, ; En-Min Li, ; Jian-Zhen Xu,
| | - Jian-Zhen Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou, China
- *Correspondence: Li-Yan Xu, ; En-Min Li, ; Jian-Zhen Xu,
| |
Collapse
|
42
|
Spichak S, Guzzetta KE, O’Leary OF, Clarke G, Dinan TG, Cryan JF. Without a bug’s life: Germ-free rodents to interrogate microbiota-gut-neuroimmune interactions. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ddmod.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|