1
|
O'Donnell CW, Farelli JD, Belaghzal H, Chen J, Beech L, Sullivan J, Morrison-Smith C, Siecinski S, Katz A, Mildrum S, Gurnani M, Dhanania P, Webb CR, Castello Coatti G, Rumale P, Costa DFG, Gibson MI, Wang YE, Newman JV, McCauley TG. Programmable mRNA therapeutics for controlled epigenomic modulation of single and multiplexed gene expression in diverse diseases. Nat Commun 2025; 16:2517. [PMID: 40082450 PMCID: PMC11906599 DOI: 10.1038/s41467-025-57920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
Pathogenic gene dysregulation can be attributed to chromatin state change that pre-transcriptionally regulates expression. Recent breakthroughs elucidating the rules governing this DNA control layer, an epigenetic code, unlock a modality in precision medicine to target gene dysregulation across myriad diseases. Here we present a modular platform to design programmable mRNA therapeutics, Epigenomic Controllers (EC), that control gene expression through directed epigenetic change. By leveraging natural mechanisms, ECs tune expression levels of one or multiple genes with durable effect of weeks-to-months in female mice following a single dose. We design and characterize ECs to multiple target genes and identify an EC that effectively inhibits the cancer- and inflammatory-disorder-associated multi-gene cluster CXCL1-8. With precision targeting of NF-kB signaling and identification of homologous murine surrogates, ECs significantly reduce neutrophil migration in vivo during acute lung inflammation in female mice. A platform approach to EC design for epigenomic modulation expands treatment frontiers for diverse gene targets, including those considered "undruggable."
Collapse
Affiliation(s)
| | | | | | - Justin Chen
- Omega Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | | | | - Adam Katz
- Omega Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Wang Y, Zhang Y, Kim K, Han J, Okin D, Jiang Z, Yang L, Subramaniam A, Means TK, Nestlé FO, Fitzgerald KA, Randolph GJ, Lesser CF, Kagan JC, Mathis D, Benoist C. A pan-family screen of nuclear receptors in immunocytes reveals ligand-dependent inflammasome control. Immunity 2024; 57:2737-2754.e12. [PMID: 39571575 PMCID: PMC11634661 DOI: 10.1016/j.immuni.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Ligand-dependent transcription factors of the nuclear receptor (NR) family regulate diverse aspects of metazoan biology, enabling communications between distant organs via small lipophilic molecules. Here, we examined the impact of each of 35 NRs on differentiation and homeostatic maintenance of all major immunological cell types in vivo through a "Rainbow-CRISPR" screen. Receptors for retinoic acid exerted the most frequent cell-specific roles. NR requirements varied for resident macrophages of different tissues. Deletion of either Rxra or Rarg reduced frequencies of GATA6+ large peritoneal macrophages (LPMs). Retinoid X receptor alpha (RXRα) functioned conventionally by orchestrating LPM differentiation through chromatin and transcriptional regulation, whereas retinoic acid receptor gamma (RARγ) controlled LPM survival by regulating pyroptosis via association with the inflammasome adaptor ASC. RARγ antagonists activated caspases, and RARγ agonists inhibited cell death induced by several inflammasome activators. Our findings provide a broad view of NR function in the immune system and reveal a noncanonical role for a retinoid receptor in modulating inflammasome pathways.
Collapse
Affiliation(s)
- Yutao Wang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Yanbo Zhang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kyungsub Kim
- Center for Bacterial Pathogenesis and Department of Microbiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jichang Han
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Okin
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Arum Subramaniam
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Terry K Means
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Frank O Nestlé
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gwendalyn J Randolph
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis and Department of Microbiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
3
|
Zhu D, Wen Y, Tan Y, Chen X, Wu Z. A simple, robust, cost-effective, and low-input ChIP-seq method for profiling histone modifications and Pol II in plants. THE NEW PHYTOLOGIST 2024; 244:1658-1669. [PMID: 39279041 DOI: 10.1111/nph.20125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024]
Abstract
Chromatin immunoprecipitation and sequencing (vs ChIP-seq) is an essential tool for epigenetic and molecular genetic studies. Although being routinely used, ChIP-seq is expensive, requires grams of plant materials, and is challenging for samples that enrich fatty acids such as seeds. Here, we developed an Ultrasensitive Plant ChIP-seq (UP-ChIP) method based on native ChIP-seq combined with Tn5 tagmentation-based library construction strategy. UP-ChIP is generally applicable for profiling both histone modification and Pol II in a wide range of plant samples, such as a single Arabidopsis seedling, a few Arabidopsis seeds, and sorted nuclei. Compared with conventional ChIP-seq, UP-ChIP is much less labor intensive and only consumes 1 μg of antibody and 10 μl of Protein-A/G conjugated beads for each IP and can work effectively with the amount of starting material down to a few milligrams. By performing UP-ChIP in various conditions and genotypes, we showed that UP-ChIP is highly reliable, sensitive, and quantitative for studying histone modifications. Detailed UP-ChIP protocol is provided. We recommend UP-ChIP as an alternative to traditional ChIP-seq for profiling histone modifications and Pol II, offering the advantages of reduced labor intensity, decreased costs, and low-sample input.
Collapse
Affiliation(s)
- Danling Zhu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Research, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Wen
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Research, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yifang Tan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Research, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of System Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Research, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Mononen J, Taipale M, Malinen M, Velidendla B, Niskanen E, Levonen AL, Ruotsalainen AK, Heikkinen S. Genetic variation is a key determinant of chromatin accessibility and drives differences in the regulatory landscape of C57BL/6J and 129S1/SvImJ mice. Nucleic Acids Res 2024; 52:2904-2923. [PMID: 38153160 PMCID: PMC11014276 DOI: 10.1093/nar/gkad1225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Most common genetic variants associated with disease are located in non-coding regions of the genome. One mechanism by which they function is through altering transcription factor (TF) binding. In this study, we explore how genetic variation is connected to differences in the regulatory landscape of livers from C57BL/6J and 129S1/SvImJ mice fed either chow or a high-fat diet. To identify sites where regulatory variation affects TF binding and nearby gene expression, we employed an integrative analysis of H3K27ac ChIP-seq (active enhancers), ATAC-seq (chromatin accessibility) and RNA-seq (gene expression). We show that, across all these assays, the genetically driven (i.e. strain-specific) differences in the regulatory landscape are more pronounced than those modified by diet. Most notably, our analysis revealed that differentially accessible regions (DARs, N = 29635, FDR < 0.01 and fold change > 50%) are almost always strain-specific and enriched with genetic variation. Moreover, proximal DARs are highly correlated with differentially expressed genes. We also show that TF binding is affected by genetic variation, which we validate experimentally using ChIP-seq for TCF7L2 and CTCF. This study provides detailed insights into how non-coding genetic variation alters the gene regulatory landscape, and demonstrates how this can be used to study the regulatory variation influencing TF binding.
Collapse
Affiliation(s)
- Juho Mononen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Mari Taipale
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Marjo Malinen
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu FI- 80101, Finland
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Kouvola FI-45100, Finland
| | - Bharadwaja Velidendla
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Einari Niskanen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
5
|
Crump NT, Smith AL, Godfrey L, Dopico-Fernandez AM, Denny N, Harman JR, Hamley JC, Jackson NE, Chahrour C, Riva S, Rice S, Kim J, Basrur V, Fermin D, Elenitoba-Johnson K, Roeder RG, Allis CD, Roberts I, Roy A, Geng H, Davies JOJ, Milne TA. MLL-AF4 cooperates with PAF1 and FACT to drive high-density enhancer interactions in leukemia. Nat Commun 2023; 14:5208. [PMID: 37626123 PMCID: PMC10457349 DOI: 10.1038/s41467-023-40981-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Aberrant enhancer activation is a key mechanism driving oncogene expression in many cancers. While much is known about the regulation of larger chromosome domains in eukaryotes, the details of enhancer-promoter interactions remain poorly understood. Recent work suggests co-activators like BRD4 and Mediator have little impact on enhancer-promoter interactions. In leukemias controlled by the MLL-AF4 fusion protein, we use the ultra-high resolution technique Micro-Capture-C (MCC) to show that MLL-AF4 binding promotes broad, high-density regions of enhancer-promoter interactions at a subset of key targets. These enhancers are enriched for transcription elongation factors like PAF1C and FACT, and the loss of these factors abolishes enhancer-promoter contact. This work not only provides an additional model for how MLL-AF4 is able to drive high levels of transcription at key genes in leukemia but also suggests a more general model linking enhancer-promoter crosstalk and transcription elongation.
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK.
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana M Dopico-Fernandez
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicholas Denny
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joseph C Hamley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicole E Jackson
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Catherine Chahrour
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simone Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Damian Fermin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kojo Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Anindita Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
6
|
Salma M, Andrieu-Soler C, Deleuze V, Soler E. High-throughput methods for the analysis of transcription factors and chromatin modifications: Low input, single cell and spatial genomic technologies. Blood Cells Mol Dis 2023; 101:102745. [PMID: 37121019 DOI: 10.1016/j.bcmd.2023.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Genome-wide analysis of transcription factors and epigenomic features is instrumental to shed light on DNA-templated regulatory processes such as transcription, cellular differentiation or to monitor cellular responses to environmental cues. Two decades of technological developments have led to a rich set of approaches progressively pushing the limits of epigenetic profiling towards single cells. More recently, disruptive technologies using innovative biochemistry came into play. Assays such as CUT&RUN, CUT&Tag and variations thereof show considerable potential to survey multiple TFs or histone modifications in parallel from a single experiment and in native conditions. These are in the path to become the dominant assays for genome-wide analysis of TFs and chromatin modifications in bulk, single-cell, and spatial genomic applications. The principles together with pros and cons are discussed.
Collapse
Affiliation(s)
- Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Charlotte Andrieu-Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Virginie Deleuze
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France.
| |
Collapse
|
7
|
Gustafsson C, Hauenstein J, Frengen N, Krstic A, Luc S, Månsson R. T-RHEX-RNAseq - a tagmentation-based, rRNA blocked, random hexamer primed RNAseq method for generating stranded RNAseq libraries directly from very low numbers of lysed cells. BMC Genomics 2023; 24:205. [PMID: 37069502 PMCID: PMC10111750 DOI: 10.1186/s12864-023-09279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND RNA sequencing has become the mainstay for studies of gene expression. Still, analysis of rare cells with random hexamer priming - to allow analysis of a broader range of transcripts - remains challenging. RESULTS We here describe a tagmentation-based, rRNA blocked, random hexamer primed RNAseq approach (T-RHEX-RNAseq) for generating stranded RNAseq libraries from very low numbers of FACS sorted cells without RNA purification steps. CONCLUSION T-RHEX-RNAseq provides an easy-to-use, time efficient and automation compatible method for generating stranded RNAseq libraries from rare cells.
Collapse
Affiliation(s)
- Charlotte Gustafsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 floor 7, Huddinge, SE-141 52, Sweden
| | - Julia Hauenstein
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 floor 7, Huddinge, SE-141 52, Sweden
| | - Nicolai Frengen
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 floor 7, Huddinge, SE-141 52, Sweden
| | - Aleksandra Krstic
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Sidinh Luc
- Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 floor 7, Huddinge, SE-141 52, Sweden.
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
González-García I, García-Clavé E, Cebrian-Serrano A, Le Thuc O, Contreras RE, Xu Y, Gruber T, Schriever SC, Legutko B, Lintelmann J, Adamski J, Wurst W, Müller TD, Woods SC, Pfluger PT, Tschöp MH, Fisette A, García-Cáceres C. Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 2023; 35:438-455.e7. [PMID: 36889283 PMCID: PMC10028007 DOI: 10.1016/j.cmet.2023.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clavé
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jutta Lintelmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive 8, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, LudwigMaximilians Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, 80333 Munich, Germany
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
9
|
Linked-read whole-genome sequencing resolves common and private structural variants in multiple myeloma. Blood Adv 2022; 6:5009-5023. [PMID: 35675515 PMCID: PMC9631623 DOI: 10.1182/bloodadvances.2021006720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/31/2022] [Indexed: 01/18/2023] Open
Abstract
Linked-read WGS can be performed without DNA purification and allows for resolution of the diverse structural variants found in MM. Linked-read WGS can, as a standalone assay, provide comprehensive genetics in myeloma and other diseases with complex genomes.
Multiple myeloma (MM) is an incurable and aggressive plasma cell malignancy characterized by a complex karyotype with multiple structural variants (SVs) and copy-number variations (CNVs). Linked-read whole-genome sequencing (lrWGS) allows for refined detection and reconstruction of SVs by providing long-range genetic information from standard short-read sequencing. This makes lrWGS an attractive solution for capturing the full genomic complexity of MM. Here we show that high-quality lrWGS data can be generated from low numbers of cells subjected to fluorescence-activated cell sorting (FACS) without DNA purification. Using this protocol, we analyzed MM cells after FACS from 37 patients with MM using lrWGS. We found high concordance between lrWGS and fluorescence in situ hybridization (FISH) for the detection of recurrent translocations and CNVs. Outside of the regions investigated by FISH, we identified >150 additional SVs and CNVs across the cohort. Analysis of the lrWGS data allowed for resolution of the structure of diverse SVs affecting the MYC and t(11;14) loci, causing the duplication of genes and gene regulatory elements. In addition, we identified private SVs causing the dysregulation of genes recurrently involved in translocations with the IGH locus and show that these can alter the molecular classification of MM. Overall, we conclude that lrWGS allows for the detection of aberrations critical for MM prognostics and provides a feasible route for providing comprehensive genetics. Implementing lrWGS could provide more accurate clinical prognostics, facilitate genomic medicine initiatives, and greatly improve the stratification of patients included in clinical trials.
Collapse
|
10
|
Fang H, Shao Y, Wu G. Reprogramming of Histone H3 Lysine Methylation During Plant Sexual Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:782450. [PMID: 34917115 PMCID: PMC8669150 DOI: 10.3389/fpls.2021.782450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Plants undergo extensive reprogramming of chromatin status during sexual reproduction, a process vital to cell specification and pluri- or totipotency establishment. As a crucial way to regulate chromatin organization and transcriptional activity, histone modification can be reprogrammed during sporogenesis, gametogenesis, and embryogenesis in flowering plants. In this review, we first introduce enzymes required for writing, recognizing, and removing methylation marks on lysine residues in histone H3 tails, and describe their differential expression patterns in reproductive tissues, then we summarize their functions in the reprogramming of H3 lysine methylation and the corresponding chromatin re-organization during sexual reproduction in Arabidopsis, and finally we discuss the molecular significance of histone reprogramming in maintaining the pluri- or totipotency of gametes and the zygote, and in establishing novel cell fates throughout the plant life cycle. Despite rapid achievements in understanding the molecular mechanism and function of the reprogramming of chromatin status in plant development, the research in this area still remains a challenge. Technological breakthroughs in cell-specific epigenomic profiling in the future will ultimately provide a solution for this challenge.
Collapse
|
11
|
AP-1 is a temporally regulated dual gatekeeper of reprogramming to pluripotency. Proc Natl Acad Sci U S A 2021; 118:2104841118. [PMID: 34088849 DOI: 10.1073/pnas.2104841118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Somatic cell transcription factors are critical to maintaining cellular identity and constitute a barrier to human somatic cell reprogramming; yet a comprehensive understanding of the mechanism of action is lacking. To gain insight, we examined epigenome remodeling at the onset of human nuclear reprogramming by profiling human fibroblasts after fusion with murine embryonic stem cells (ESCs). By assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation sequencing we identified enrichment for the activator protein 1 (AP-1) transcription factor c-Jun at regions of early transient accessibility at fibroblast-specific enhancers. Expression of a dominant negative AP-1 mutant (dnAP-1) reduced accessibility and expression of fibroblast genes, overcoming the barrier to reprogramming. Remarkably, efficient reprogramming of human fibroblasts to induced pluripotent stem cells was achieved by transduction with vectors expressing SOX2, KLF4, and inducible dnAP-1, demonstrating that dnAP-1 can substitute for exogenous human OCT4. Mechanistically, we show that the AP-1 component c-Jun has two unexpected temporally distinct functions in human reprogramming: 1) to potentiate fibroblast enhancer accessibility and fibroblast-specific gene expression, and 2) to bind to and repress OCT4 as a complex with MBD3. Our findings highlight AP-1 as a previously unrecognized potent dual gatekeeper of the somatic cell state.
Collapse
|
12
|
Blackburn DM, Lazure F, Soleimani VD. SMART approaches for genome-wide analyses of skeletal muscle stem and niche cells. Crit Rev Biochem Mol Biol 2021; 56:284-300. [PMID: 33823731 DOI: 10.1080/10409238.2021.1908950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Muscle stem cells (MuSCs) also called satellite cells are the building blocks of skeletal muscle, the largest tissue in the human body which is formed primarily of myofibers. While MuSCs are the principal cells that directly contribute to the formation of the muscle fibers, their ability to do so depends on critical interactions with a vast array of nonmyogenic cells within their niche environment. Therefore, understanding the nature of communication between MuSCs and their niche is of key importance to understand how the skeletal muscle is maintained and regenerated after injury. MuSCs are rare and therefore difficult to study in vivo within the context of their niche environment. The advent of single-cell technologies, such as switching mechanism at 5' end of the RNA template (SMART) and tagmentation based technologies using hyperactive transposase, afford the unprecedented opportunity to perform whole transcriptome and epigenome studies on rare cells within their niche environment. In this review, we will delve into how single-cell technologies can be applied to the study of MuSCs and muscle-resident niche cells and the impact this can have on our understanding of MuSC biology and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
13
|
Weichenhan D, Lipka DB, Lutsik P, Goyal A, Plass C. Epigenomic technologies for precision oncology. Semin Cancer Biol 2020; 84:60-68. [PMID: 32822861 DOI: 10.1016/j.semcancer.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Epigenetic patterns in a cell control the expression of genes and consequently determine the phenotype of a cell. Cancer cells possess altered epigenomes which include aberrant patterns of DNA methylation, histone tail modifications, nucleosome positioning and of the three-dimensional chromatin organization within a nucleus. These altered epigenetic patterns are potential useful biomarkers to detect cancer cells and to classify tumor types. In addition, the cancer epigenome dictates the response of a cancer cell to therapeutic intervention and, therefore its knowledge, will allow to predict response to different therapeutic approaches. Here we review the current state-of-the-art technologies that have been developed to decipher epigenetic patterns on the genomic level and discuss how these methods are potentially useful for precision oncology.
Collapse
Affiliation(s)
- Dieter Weichenhan
- German Cancer Research Center Heidelberg, Cancer Epigenomics (B370), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg & German Cancer Research Center, Im Neuenheimer Feld 581, D-69120, Heidelberg, Germany; Faculty of Medicine, Medical Center, Otto-von-Guericke-University, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| | - Pavlo Lutsik
- German Cancer Research Center Heidelberg, Cancer Epigenomics (B370), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | - Ashish Goyal
- German Cancer Research Center Heidelberg, Cancer Epigenomics (B370), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | - Christoph Plass
- German Cancer Research Center Heidelberg, Cancer Epigenomics (B370), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Krausgruber T, Fortelny N, Fife-Gernedl V, Senekowitsch M, Schuster LC, Lercher A, Nemc A, Schmidl C, Rendeiro AF, Bergthaler A, Bock C. Structural cells are key regulators of organ-specific immune responses. Nature 2020; 583:296-302. [PMID: 32612232 PMCID: PMC7610345 DOI: 10.1038/s41586-020-2424-4] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
The mammalian immune system implements a remarkably effective set of mechanisms for fighting pathogens1. Its main components are haematopoietic immune cells, including myeloid cells that control innate immunity, and lymphoid cells that constitute adaptive immunity2. However, immune functions are not unique to haematopoietic cells, and many other cell types display basic mechanisms of pathogen defence3-5. To advance our understanding of immunology outside the haematopoietic system, here we systematically investigate the regulation of immune genes in the three major types of structural cells: epithelium, endothelium and fibroblasts. We characterize these cell types across twelve organs in mice, using cellular phenotyping, transcriptome sequencing, chromatin accessibility profiling and epigenome mapping. This comprehensive dataset revealed complex immune gene activity and regulation in structural cells. The observed patterns were highly organ-specific and seem to modulate the extensive interactions between structural cells and haematopoietic immune cells. Moreover, we identified an epigenetically encoded immune potential in structural cells under tissue homeostasis, which was triggered in response to systemic viral infection. This study highlights the prevalence and organ-specific complexity of immune gene activity in non-haematopoietic structural cells, and it provides a high-resolution, multi-omics atlas of the epigenetic and transcriptional networks that regulate structural cells in the mouse.
Collapse
Affiliation(s)
- Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Fife-Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Senekowitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Amelie Nemc
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Schmidl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - André F Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Contreras RE, Schriever SC, Pfluger PT. Physiological and Epigenetic Features of Yoyo Dieting and Weight Control. Front Genet 2019; 10:1015. [PMID: 31921275 PMCID: PMC6917653 DOI: 10.3389/fgene.2019.01015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity and being overweight have become a worldwide epidemic affecting more than 1.9 billion adults and 340 million children. Efforts to curb this global health burden by developing effective long-term non-surgical weight loss interventions continue to fail due to weight regain after weight loss. Weight cycling, often referred to as Yoyo dieting, is driven by physiological counter-regulatory mechanisms that aim at preserving energy, i.e. decreased energy expenditure, increased energy intake, and impaired brain-periphery communication. Models based on genetically determined set points explained some of the weight control mechanisms, but exact molecular underpinnings remained elusive. Today, gene–environment interactions begin to emerge as likely drivers for the obesogenic memory effect associated with weight cycling. Here, epigenetic mechanisms, including histone modifications and DNA methylation, appear as likely factors that underpin long-lasting deleterious adaptations or an imprinted obesogenic memory to prevent weight loss maintenance. The first part summarizes our current knowledge on the physiology of weight cycling by discussing human and murine studies on the Yoyo-dieting phenomenon and physiological adaptations associated with weight loss and weight re-gain. The second part provides an overview on known associations between obesity and epigenetic modifications. We further interrogate the roles of epigenetic mechanisms in the CNS control of cognitive functions as well as reward and addictive behaviors, and subsequently discuss whether such mechanisms play a role in weight control. The final two parts describe major opportunities and challenges associated with studying epigenetic mechanisms in the CNS with its highly heterogenous cell populations, and provide a summary of recent technological advances that will help to delineate whether an obese memory is based upon epigenetic mechanisms.
Collapse
Affiliation(s)
- Raian E Contreras
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
16
|
Org T, Hensen K, Kreevan R, Mark E, Sarv O, Andreson R, Jaakma Ü, Salumets A, Kurg A. Genome-wide histone modification profiling of inner cell mass and trophectoderm of bovine blastocysts by RAT-ChIP. PLoS One 2019; 14:e0225801. [PMID: 31765427 PMCID: PMC6876874 DOI: 10.1371/journal.pone.0225801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/12/2019] [Indexed: 12/29/2022] Open
Abstract
Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) has revolutionized our understanding of chromatin-related biological processes. The method, however, requires thousands of cells and has therefore limited applications in situations where cell numbers are limited. Here we describe a novel method called Restriction Assisted Tagmentation Chromatin Immunoprecipitation (RAT-ChIP) that enables global histone modification profiling from as few as 100 cells. The method is simple, cost-effective and takes a single day to complete. We demonstrate the sensitivity of the method by deriving the first genome-wide maps of histone H3K4me3 and H3K27me3 modifications of inner cell mass and trophectoderm of bovine blastocyst stage embryos.
Collapse
Affiliation(s)
- Tõnis Org
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| | - Kati Hensen
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Kreevan
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Elina Mark
- Chair of Animal Breeding and Biotechnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Olav Sarv
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Reidar Andreson
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ülle Jaakma
- Chair of Animal Breeding and Biotechnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ants Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Rauschmeier R, Gustafsson C, Reinhardt A, A-Gonzalez N, Tortola L, Cansever D, Subramanian S, Taneja R, Rossner MJ, Sieweke MH, Greter M, Månsson R, Busslinger M, Kreslavsky T. Bhlhe40 and Bhlhe41 transcription factors regulate alveolar macrophage self-renewal and identity. EMBO J 2019; 38:e101233. [PMID: 31414712 DOI: 10.15252/embj.2018101233] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Tissues in multicellular organisms are populated by resident macrophages, which perform both generic and tissue-specific functions. The latter are induced by signals from the microenvironment and rely on unique tissue-specific molecular programs requiring the combinatorial action of tissue-specific and broadly expressed transcriptional regulators. Here, we identify the transcription factors Bhlhe40 and Bhlhe41 as novel regulators of alveolar macrophages (AMs)-a population that provides the first line of immune defense and executes homeostatic functions in lung alveoli. In the absence of these factors, AMs exhibited decreased proliferation that resulted in a severe disadvantage of knockout AMs in a competitive setting. Gene expression analyses revealed a broad cell-intrinsic footprint of Bhlhe40/Bhlhe41 deficiency manifested by a downregulation of AM signature genes and induction of signature genes of other macrophage lineages. Genome-wide characterization of Bhlhe40 DNA binding suggested that these transcription factors directly repress the expression of lineage-inappropriate genes in AMs. Taken together, these results identify Bhlhe40 and Bhlhe41 as key regulators of AM self-renewal and guardians of their identity.
Collapse
Affiliation(s)
- René Rauschmeier
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Charlotte Gustafsson
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noelia A-Gonzalez
- Institute of Immunology, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Luigi Tortola
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sethuraman Subramanian
- CNRS, INSERM, CIML, Aix Marseille University, Marseille, France.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Moritz J Rossner
- Department of Psychiatry, Molecular Neurobiology, Ludwig Maximilian University, Munich, Germany
| | - Michael H Sieweke
- CNRS, INSERM, CIML, Aix Marseille University, Marseille, France.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Robert Månsson
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Taras Kreslavsky
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.,Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Jönsson ME, Ludvik Brattås P, Gustafsson C, Petri R, Yudovich D, Pircs K, Verschuere S, Madsen S, Hansson J, Larsson J, Månsson R, Meissner A, Jakobsson J. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat Commun 2019; 10:3182. [PMID: 31320637 PMCID: PMC6639357 DOI: 10.1038/s41467-019-11150-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/20/2019] [Indexed: 01/14/2023] Open
Abstract
DNA methylation contributes to the maintenance of genomic integrity in somatic cells, in part through the silencing of transposable elements. In this study, we use CRISPR-Cas9 technology to delete DNMT1, the DNA methyltransferase key for DNA methylation maintenance, in human neural progenitor cells (hNPCs). We observe that inactivation of DNMT1 in hNPCs results in viable, proliferating cells despite a global loss of DNA CpG-methylation. DNA demethylation leads to specific transcriptional activation and chromatin remodeling of evolutionarily young, hominoid-specific LINE-1 elements (L1s), while older L1s and other classes of transposable elements remain silent. The activated L1s act as alternative promoters for many protein-coding genes involved in neuronal functions, revealing a hominoid-specific L1-based transcriptional network controlled by DNA methylation that influences neuronal protein-coding genes. Our results provide mechanistic insight into the role of DNA methylation in silencing transposable elements in somatic human cells, as well as further implicating L1s in human brain development and disease. DNA methylation plays an important role in silencing transposable elements. Here the authors find that loss of DNMT1 and DNA methylation leads to transcriptional activation and chromatin remodelling of evolutionarily young—hominoid-specific —LINE-1 elements which then act as alternative promoters for neuronal genes.
Collapse
Affiliation(s)
- Marie E Jönsson
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, BMC A11, Lund University, 221 84, Lund, Sweden
| | - Per Ludvik Brattås
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, BMC A11, Lund University, 221 84, Lund, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, 141 52, Stockholm, Sweden
| | - Rebecca Petri
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, BMC A11, Lund University, 221 84, Lund, Sweden
| | - David Yudovich
- Division of Molecular Medicine and Gene Therapy, Department of Laboratory Medicine and Lund Stem Cell Center, BMC A12, Lund University, 221 84, Lund, Sweden
| | - Karolina Pircs
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, BMC A11, Lund University, 221 84, Lund, Sweden
| | - Shana Verschuere
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, BMC A11, Lund University, 221 84, Lund, Sweden
| | - Sofia Madsen
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, BMC A11, Lund University, 221 84, Lund, Sweden
| | - Jenny Hansson
- Laboratory of Proteomic Hematology, Department of Laboratory Medicine and Lund Stem Cell Center, BMC B12, Lund University, 221 84, Lund, Sweden
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Department of Laboratory Medicine and Lund Stem Cell Center, BMC A12, Lund University, 221 84, Lund, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, 141 52, Stockholm, Sweden
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Johan Jakobsson
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, BMC A11, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
19
|
Peng A, Li Z, Zhang Y, Feng D, Hao B. [The improvewment of DNA library construction in non-crosslinked chromatin immunoprecipitation coupled with next-generation sequencing]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:692-698. [PMID: 31270048 DOI: 10.12122/j.issn.1673-4254.2019.06.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To optimize DNA library construction in non-crosslinked chromatin immunoprecipitation coupled with next-generation sequencing (Native ChIP-seq) to obtain high-quality Native ChIP-seq data. METHODS Human nasopharyngeal carcinoma HONE1 cell lysate was digested with MNase for release of the nucleosomes, and the histone-DNA complexes were immunoprecipitated with specific antibodies. The protein component in the precipitate was digested with proteinase K followed by DNA purification; the DNA library was constructed for sequence analysis. RESULTS Compared with the conventional DNA library construction, Tn5 transposase method allowed direct enrichment of the target DNA after Tn5 fragmentation, which was simple, time-saving and more efficient. The IGV visualized map showed that the information obtained by the two library construction methods was consistent. The sequencing data obtained by the two methods revealed more signal enrichment with Tn5 transposase library construction than with the conventional approach. H3K4me3 ChIP results showed a good reproducibility after Tn5 transposase library construction with a signal-to-noise ratio above 50%. CONCLUSIONS Tn5 transposase method improves the efficiency of DNA library construction and the results of subsequent sequence analysis, and is especially suitable for detecting histone modification in the DNA to provide a better technical option for epigenetic studies.
Collapse
Affiliation(s)
- Anghui Peng
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Zhaoqiang Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Delong Feng
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Bingtao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Bouderlique T, Peña-Pérez L, Kharazi S, Hils M, Li X, Krstic A, De Paepe A, Schachtrup C, Gustafsson C, Holmberg D, Schachtrup K, Månsson R. The Concerted Action of E2-2 and HEB Is Critical for Early Lymphoid Specification. Front Immunol 2019; 10:455. [PMID: 30936870 PMCID: PMC6433000 DOI: 10.3389/fimmu.2019.00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
The apparition of adaptive immunity in Gnathostomata correlates with the expansion of the E-protein family to encompass E2-2, HEB, and E2A. Within the family, E2-2 and HEB are more closely evolutionarily related but their concerted action in hematopoiesis remains to be explored. Here we show that the combined disruption of E2-2 and HEB results in failure to express the early lymphoid program in Common lymphoid precursors (CLPs) and a near complete block in B-cell development. In the thymus, Early T-cell progenitors (ETPs) were reduced and T-cell development perturbed, resulting in reduced CD4 T- and increased γδ T-cell numbers. In contrast, hematopoietic stem cells (HSCs), erythro-myeloid progenitors, and innate immune cells were unaffected showing that E2-2 and HEB are dispensable for the ancestral hematopoietic lineages. Taken together, this E-protein dependence suggests that the appearance of the full Gnathostomata E-protein repertoire was critical to reinforce the gene regulatory circuits that drove the emergence and expansion of the lineages constituting humoral immunity.
Collapse
Affiliation(s)
- Thibault Bouderlique
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Peña-Pérez
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shabnam Kharazi
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Hils
- Faculty of Medicine & Faculty of Biology, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Xiaoze Li
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ayla De Paepe
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian Schachtrup
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Charlotte Gustafsson
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dan Holmberg
- Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Kristina Schachtrup
- Faculty of Medicine & Faculty of Biology, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Robert Månsson
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|