1
|
Chen C, Zhang Y, Wu H, Qiao J, Caiyin Q. Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems. Microorganisms 2025; 13:1126. [PMID: 40431298 PMCID: PMC12114051 DOI: 10.3390/microorganisms13051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Restriction-modification systems (RMS) are ubiquitous in prokaryotes and serve as primitive immune-like mechanisms that safeguard microbial genomes against foreign genetic elements. Beyond their well-known role in sequence-specific defense, RMS also contribute significantly to genomic stability, drive evolutionary processes, and mitigate the deleterious effects of mutations. This review provides a comprehensive synthesis of current insights into RMS, emphasizing their structural and functional diversity, ecological and evolutionary roles, and expanding applications in biotechnology. By integrating recent advances with an analysis of persisting challenges, we highlight the critical contributions of RMS to both fundamental microbiology and practical applications in biomedicine and industrial biotechnology. Furthermore, we discuss emerging research directions in RMS, particularly in light of novel technologies and the increasing importance of microbial genetics in addressing global health and environmental issues.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Yue Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Hao Wu
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| |
Collapse
|
2
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2025; 9:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Kalia VC, Patel SKS, Gong C, Lee JK. Re-Emergence of Bacteriophages and Their Products as Antibacterial Agents: An Overview. Int J Mol Sci 2025; 26:1755. [PMID: 40004222 PMCID: PMC11855700 DOI: 10.3390/ijms26041755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Microbes possess diverse genetic and metabolic traits that help them withstand adverse conditions. Microbial pathogens cause significant economic losses and around 7.7 million human deaths annually. While antibiotics have historically been a lifesaving treatment, their effectiveness is declining due to antibiotic-resistant strains, prompting the exploration of bacterial predation as an alternative. Bacteriophages (BPhs) have reemerged as antibacterial agents, offering advantages over antibiotics, such as (i) high specificity, (ii) self-replication, and (iii) strong killing capacity. This review explores BPh- and enzyme-based antibacterial strategies for infectious disease treatment, discussing phage-antibiotic synergy, the risks of BPh resistance, and the role of quorum sensing in BPh therapy.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China;
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| |
Collapse
|
4
|
Chaichana N, Yaikhan T, Yingkajorn M, Thepsimanon N, Suwannasin S, Singkhamanan K, Chusri S, Pomwised R, Wonglapsuwan M, Surachat K. First whole genome report of Mangrovibacter phragmitis PSU-3885-11 isolated from a patient in Thailand. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100350. [PMID: 39911356 PMCID: PMC11795813 DOI: 10.1016/j.crmicr.2025.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Mangrovibacter phragmitis is a Gram-negative bacterium typically found in plant roots that supports nitrogen fixation in nutrient-poor environments such as mangrove ecosystems. Although primarily found in environmental niches, an unusual case in Thailand of M. phragmitis strain PSU-3885-11 isolated from the sputum of a 29-year-old female patient with spinal tuberculosis. This isolate was initially misidentified as part of the Enterobacter cloacae complex (ECC) by MALDI-TOF. However, WGS subsequently confirmed its correct identity as M. phragmitis. The genome contains 4,651 coding sequences, along with 72 tRNA genes and 1 tmRNA. Moreover, comparative genomic analysis showed 99.32 % average nucleotide identity (ANI) similar to M. phragmitis MP23, and several antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were identified in the PSU-3885-11 genome which may contribute to its ability to survive in diverse environments, including human hosts. The PSU-3885-11 displayed resistance to beta-lactam antibiotics such as ampicillin and cefotaxime, while remaining sensitive to a wide range of other antibiotics. Key virulence genes including ompA, hcp/tssD, and rpoS, were identified which may play a role in its persistence in human hosts as an opportunistic pathogen. The presence of ribosomally synthesized and post-translationally modified peptides (RiPPs) and bacteriocins indicates the antimicrobial properties that may provide a competitive advantage in both environmental and clinical settings of this strain. Therefore, this study provides valuable insights into the genomic features, antibiotic resistance, and potential pathogenicity of M. phragmitis PSU-3885-11. The findings also emphasize the importance of continued surveillance and genomic analysis of environmental bacteria that may emerge as opportunistic pathogens in human infections.
Collapse
Affiliation(s)
- Nattarika Chaichana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nonthawat Thepsimanon
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Kou X, Yang X, Zheng R. Challenges and opportunities of phage therapy for Klebsiella pneumoniae infections. Appl Environ Microbiol 2024; 90:e0135324. [PMID: 39345202 PMCID: PMC11497816 DOI: 10.1128/aem.01353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Traditional antibiotics have been effective in many cases. However, the rise in multidrug-resistant bacteria has diminished their therapeutic efficacy, signaling the dawn of an era beyond antibiotics. The challenge of multidrug resistance in Klebsiella pneumoniae is particularly critical, with increasing global mortality and resistance rates. Therefore, the development of alternative therapies to antibiotics is urgently needed. Phages, which are natural predators of bacteria, have inherent advantages. However, comprehensive information on K. pneumoniae phages is lacking in current literature. This review aims to analyze and summarize relevant studies, focusing on the present state of phage therapy for K. pneumoniae infections. This includes an examination of treatment methodologies, associated challenges, strategies, new phage technologies, clinical trial safety and efficacy, regulatory issues, and future directions for phage therapy development. Enhancing phage technology is crucial for addressing the evolving threat of multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Xin Kou
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoyu Yang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
- Regenerative Medicine Research Center, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Rui Zheng
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
6
|
Bullen NP, Johnson CN, Andersen SE, Arya G, Marotta SR, Lee YJ, Weigele PR, Whitney JC, Duerkop BA. An enterococcal phage protein inhibits type IV restriction enzymes involved in antiphage defense. Nat Commun 2024; 15:6955. [PMID: 39138193 PMCID: PMC11322646 DOI: 10.1038/s41467-024-51346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in vancomycin-resistant E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.
Collapse
Affiliation(s)
- Nathan P Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Cydney N Johnson
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Shelby E Andersen
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Garima Arya
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Sonia R Marotta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, Ipswich, MA, 01938, USA
| | - Peter R Weigele
- Research Department, New England Biolabs, Ipswich, MA, 01938, USA
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Bullen NP, Johnson CN, Andersen SE, Arya G, Marotta SR, Lee YJ, Weigele PR, Whitney JC, Duerkop BA. An enterococcal phage protein broadly inhibits type IV restriction enzymes involved in antiphage defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567456. [PMID: 38014348 PMCID: PMC10680825 DOI: 10.1101/2023.11.16.567456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.
Collapse
Affiliation(s)
- Nathan P. Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Shelby E. Andersen
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Garima Arya
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Sonia R. Marotta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, Ipswich, MA, USA, 01938
| | - Peter R. Weigele
- Research Department, New England Biolabs, Ipswich, MA, USA, 01938
| | - John C. Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| |
Collapse
|
8
|
Barrio-Pujante A, Bleriot I, Blasco L, Fernández-Garcia L, Pacios O, Ortiz-Cartagena C, Cuenca FF, Oteo-Iglesias J, Tomás M. Regulation of anti-phage defense mechanisms by using cinnamaldehyde as a quorum sensing inhibitor. Front Microbiol 2024; 15:1416628. [PMID: 38989015 PMCID: PMC11233531 DOI: 10.3389/fmicb.2024.1416628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Background Multidrug-resistant bacteria and the shortage of new antibiotics constitute a serious health problem. This problem has led to increased interest in the use of bacteriophages, which have great potential as antimicrobial agents but also carry the risk of inducing resistance. The objective of the present study was to minimize the development of phage resistance in Klebsiella pneumoniae strains by inhibiting quorum sensing (QS) and thus demonstrate the role of QS in regulating defense mechanisms. Results Cinnamaldehyde (CAD) was added to K. pneumoniae cultures to inhibit QS and thus demonstrate the role of the signaling system in regulating the anti-phage defense mechanism. The QS inhibitory activity of CAD in K. pneumoniae was confirmed by a reduction in the quantitative expression of the lsrB gene (AI-2 pathway) and by proteomic analysis. The infection assays showed that the phage was able to infect a previously resistant K. pneumoniae strain in the cultures to which CAD was added. The results were confirmed using proteomic analysis. Thus, anti-phage defense-related proteins from different systems, such as cyclic oligonucleotide-based bacterial anti-phage signaling systems (CBASS), restriction-modification (R-M) systems, clustered regularly interspaced short palindromic repeat-Cas (CRISPR-Cas) system, and bacteriophage control infection (BCI), were present in the cultures with phage but not in the cultures with phage and CAD. When the QS and anti-phage defense systems were inhibited by the combined treatment, proteins related to phage infection and proliferation, such as the tail fiber protein, the cell division protein DamX, and the outer membrane channel protein TolC, were detected. Conclusion Inhibition of QS reduces phage resistance in K. pneumoniae, resulting in the infection of a previously resistant strain by phage, with a significant increase in phage proliferation and a significant reduction in bacterial growth. QS inhibitors could be considered for therapeutic application by including them in phage cocktails or in phage-antibiotic combinations to enhance synergistic effects and reduce the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Antonio Barrio-Pujante
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Lucía Blasco
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Laura Fernández-Garcia
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Olga Pacios
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Concha Ortiz-Cartagena
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Felipe Fernández Cuenca
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla), Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, Madrid, Spain
| | - Jesús Oteo-Iglesias
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, Madrid, Spain
- Laboratorio de Referencia e Investigación de Resistencias a Antibióticos e Infecciones Sanitarias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, Madrid, Spain
| |
Collapse
|
9
|
Mayo-Muñoz D, Pinilla-Redondo R, Camara-Wilpert S, Birkholz N, Fineran PC. Inhibitors of bacterial immune systems: discovery, mechanisms and applications. Nat Rev Genet 2024; 25:237-254. [PMID: 38291236 DOI: 10.1038/s41576-023-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 02/01/2024]
Abstract
To contend with the diversity and ubiquity of bacteriophages and other mobile genetic elements, bacteria have developed an arsenal of immune defence mechanisms. Bacterial defences include CRISPR-Cas, restriction-modification and a growing list of mechanistically diverse systems, which constitute the bacterial 'immune system'. As a response, bacteriophages and mobile genetic elements have evolved direct and indirect mechanisms to circumvent or block bacterial defence pathways and ensure successful infection. Recent advances in methodological and computational approaches, as well as the increasing availability of genome sequences, have boosted the discovery of direct inhibitors of bacterial defence systems. In this Review, we discuss methods for the discovery of direct inhibitors, their diverse mechanisms of action and perspectives on their emerging applications in biotechnology and beyond.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Genetics Otago, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
10
|
Orel N, Fadeev E, Herndl GJ, Turk V, Tinta T. Recovering high-quality bacterial genomes from cross-contaminated cultures: a case study of marine Vibrio campbellii. BMC Genomics 2024; 25:146. [PMID: 38321410 PMCID: PMC10845552 DOI: 10.1186/s12864-024-10062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Environmental monitoring of bacterial pathogens is critical for disease control in coastal marine ecosystems to maintain animal welfare and ecosystem function and to prevent significant economic losses. This requires accurate taxonomic identification of environmental bacterial pathogens, which often cannot be achieved by commonly used genetic markers (e.g., 16S rRNA gene), and an understanding of their pathogenic potential based on the information encoded in their genomes. The decreasing costs of whole genome sequencing (WGS), combined with newly developed bioinformatics tools, now make it possible to unravel the full potential of environmental pathogens, beyond traditional microbiological approaches. However, obtaining a high-quality bacterial genome, requires initial cultivation in an axenic culture, which is a bottleneck in environmental microbiology due to cross-contamination in the laboratory or isolation of non-axenic strains. RESULTS We applied WGS to determine the pathogenic potential of two Vibrio isolates from coastal seawater. During the analysis, we identified cross-contamination of one of the isolates and decided to use this dataset to evaluate the possibility of bioinformatic contaminant removal and recovery of bacterial genomes from a contaminated culture. Despite the contamination, using an appropriate bioinformatics workflow, we were able to obtain high quality and highly identical genomes (Average Nucleotide Identity value 99.98%) of one of the Vibrio isolates from both the axenic and the contaminated culture. Using the assembled genome, we were able to determine that this isolate belongs to a sub-lineage of Vibrio campbellii associated with several diseases in marine organisms. We also found that the genome of the isolate contains a novel Vibrio plasmid associated with bacterial defense mechanisms and horizontal gene transfer, which may offer a competitive advantage to this putative pathogen. CONCLUSIONS Our study shows that, using state-of-the-art bioinformatics tools and a sufficient sequencing effort, it is possible to obtain high quality genomes of the bacteria of interest and perform in-depth genomic analyses even in the case of a contaminated culture. With the new isolate and its complete genome, we are providing new insights into the genomic characteristics and functional potential of this sub-lineage of V. campbellii. The approach described here also highlights the possibility of recovering complete bacterial genomes in the case of non-axenic cultures or obligatory co-cultures.
Collapse
Affiliation(s)
- Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| |
Collapse
|
11
|
Gunathilake KMD, Makumi A, Loignon S, Tremblay D, Labrie S, Svitek N, Moineau S. Diversity of Salmonella enterica phages isolated from chicken farms in Kenya. Microbiol Spectr 2024; 12:e0272923. [PMID: 38078723 PMCID: PMC10783031 DOI: 10.1128/spectrum.02729-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Non-typhoidal Salmonella enterica infections are one of the leading causes of diarrhoeal diseases that spread to humans from animal sources such as poultry. Hence, keeping poultry farms free of Salmonella is essential for consumer safety and for a better yield of animal products. However, the emergence of antibiotic resistance due to over usage has sped up the search for alternative biocontrol methods such as the use of bacteriophages. Isolation and characterization of novel bacteriophages are key to adapt phage-based biocontrol applications. Here, we isolated and characterized Salmonella phages from samples collected at chicken farms and slaughterhouses in Kenya. The genomic characterization of these phage isolates revealed that they belong to four ICTV (International Committee on Taxonomy of Viruses) phage genera. All these phages are lytic and possibly suitable for biocontrol applications because no lysogenic genes or virulence factors were found in their genomes. Hence, we recommend further studies on these phages for their applications in Salmonella biocontrol.
Collapse
Affiliation(s)
- K. M. Damitha Gunathilake
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec city, Quebec, Canada
| | - Angela Makumi
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Stéphanie Loignon
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec city, Quebec, Canada
| | - Denise Tremblay
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec city, Quebec, Canada
| | | | - Nicholas Svitek
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec city, Quebec, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec city, Quebec, Canada
| |
Collapse
|
12
|
Fernandez NL, Chen Z, Fuller DEH, van Gijtenbeek LA, Nye TM, Biteen JS, Simmons LA. DNA Methylation and RNA-DNA Hybrids Regulate the Single-Molecule Localization of a DNA Methyltransferase on the Bacterial Nucleoid. mBio 2023; 14:e0318522. [PMID: 36645292 PMCID: PMC9973331 DOI: 10.1128/mbio.03185-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023] Open
Abstract
Bacterial DNA methyltransferases (MTases) function in restriction modification systems, cell cycle control, and the regulation of gene expression. DnmA is a recently described DNA MTase that forms N6-methyladenosine at nonpalindromic 5'-GACGAG-3' sites in Bacillus subtilis, yet how DnmA activity is regulated is unknown. To address DnmA regulation, we tested substrate binding in vitro and found that DnmA binds poorly to methylated DNA and to an RNA-DNA hybrid with the DNA recognition sequence. Further, DnmA variants with amino acid substitutions that disrupt cognate sequence recognition or catalysis also bind poorly to DNA. Using superresolution fluorescence microscopy and single-molecule tracking of DnmA-PAmCherry, we characterized the subcellular DnmA diffusion and detected its preferential localization to the replisome region and the nucleoid. Under conditions where the chromosome is highly methylated, upon RNA-DNA hybrid accumulation, or with a DnmA variant with severely limited DNA binding activity, DnmA is excluded from the nucleoid, demonstrating that prior methylation or accumulation of RNA-DNA hybrids regulates the association of DnmA with the chromosome in vivo. Furthermore, despite the high percentage of methylated recognition sites and the proximity to putative endonuclease genes conserved across bacterial species, we find that DnmA fails to protect B. subtilis against phage predation, suggesting that DnmA is functionally an orphan MTase involved in regulating gene expression. Our work explores the regulation of a bacterial DNA MTase and identifies prior methylation and RNA-DNA hybrids as regulators of MTase localization. These MTase regulatory features could be common across biology. IMPORTANCE DNA methyltransferases (MTases) influence gene expression, cell cycle control, and host defense through DNA modification. Predicted MTases are pervasive across bacterial genomes, but the vast majority remain uncharacterized. Here, we show that in the soil microorganism Bacillus subtilis, the DNA MTase dnmA and neighboring genes are remnants of a phage defense system that no longer protects against phage predation. This result suggests that portions of the bacterial methylome may originate from inactive restriction modification systems that have maintained methylation activity. Analysis of DnmA movement in vivo shows that active DnmA localizes in the nucleoid, suggesting that DnmA can search for recognition sequences throughout the nucleoid region with some preference for the replisome. Our results further show that prior DNA methylation and RNA-DNA hybrids regulate DnmA dynamics and nucleoid localization, providing new insight into how DNA methylation is coordinated within the cellular environment.
Collapse
Affiliation(s)
- Nicolas L. Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ziyuan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - David E. H. Fuller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Lieke A. van Gijtenbeek
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Taylor M. Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Julie S. Biteen
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Kirillov A, Morozova N, Kozlova S, Polinovskaya V, Smirnov S, Khodorkovskii M, Zeng L, Ispolatov Y, Severinov K. Cells with stochastically increased methyltransferase to restriction endonuclease ratio provide an entry for bacteriophage into protected cell population. Nucleic Acids Res 2022; 50:12355-12368. [PMID: 36477901 PMCID: PMC9757035 DOI: 10.1093/nar/gkac1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The action of Type II restriction-modification (RM) systems depends on restriction endonuclease (REase), which cleaves foreign DNA at specific sites, and methyltransferase (MTase), which protects host genome from restriction by methylating the same sites. We here show that protection from phage infection increases as the copy number of plasmids carrying the Type II RM Esp1396I system is increased. However, since increased plasmid copy number leads to both increased absolute intracellular RM enzyme levels and to a decreased MTase/REase ratio, it is impossible to determine which factor determines resistance/susceptibility to infection. By controlled expression of individual Esp1396I MTase or REase genes in cells carrying the Esp1396I system, we show that a shift in the MTase to REase ratio caused by overproduction of MTase or REase leads, respectively, to decreased or increased protection from infection. Consistently, due to stochastic variation of MTase and REase amount in individual cells, bacterial cells that are productively infected by bacteriophage have significantly higher MTase to REase ratios than cells that ward off the infection. Our results suggest that cells with transiently increased MTase to REase ratio at the time of infection serve as entry points for unmodified phage DNA into protected bacterial populations.
Collapse
Affiliation(s)
- Alexander Kirillov
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia,Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Natalia Morozova
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia,Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Svetlana Kozlova
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Vasilisa Polinovskaya
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Sergey Smirnov
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Lanying Zeng
- Texas A&M University, Department of Biochemistry and Biophysics, Center for Phage Technology, College Station, TX 77843, USA
| | - Yaroslav Ispolatov
- University of Santiago of Chile (USACH), Physics Department, Av. Víctor Jara 3493, Santiago, Chile
| | - Konstantin Severinov
- To whom correspondence should be addressed. Tel: +7 9854570284; Fax: +1 848 445 5735;
| |
Collapse
|
14
|
Structural basis for broad anti-phage immunity by DISARM. Nat Commun 2022; 13:2987. [PMID: 35624106 PMCID: PMC9142583 DOI: 10.1038/s41467-022-30673-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
In the evolutionary arms race against phage, bacteria have assembled a diverse arsenal of antiviral immune strategies. While the recently discovered DISARM (Defense Island System Associated with Restriction-Modification) systems can provide protection against a wide range of phage, the molecular mechanisms that underpin broad antiviral targeting but avoiding autoimmunity remain enigmatic. Here, we report cryo-EM structures of the core DISARM complex, DrmAB, both alone and in complex with an unmethylated phage DNA mimetic. These structures reveal that DrmAB core complex is autoinhibited by a trigger loop (TL) within DrmA and binding to DNA substrates containing a 5′ overhang dislodges the TL, initiating a long-range structural rearrangement for DrmAB activation. Together with structure-guided in vivo studies, our work provides insights into the mechanism of phage DNA recognition and specific activation of this widespread antiviral defense system. DISARM (Defense Island System Associated with Restriction Modification) systems can provide bacteria with protection against a wide range of phage. Here, Bravo et al. determine cryo-EM structures of the core DISARM complex that shed light onto phage DNA recognition and activation of this widespread defense system.
Collapse
|
15
|
Characterization and complete genome sequence analysis of a newly isolatedphage against Vibrio parahaemolyticus from sick shrimp in Qingdao, China. PLoS One 2022; 17:e0266683. [PMID: 35507581 PMCID: PMC9067683 DOI: 10.1371/journal.pone.0266683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Foodborne diseases have become a serious havoc, where antimicrobial resistance is throwing significant challenges on daily basis. With the increase of drug-resistant bacteria and food-borne infection associated with Vibrio parahaemolyticus, new and effective strategies were needed to control the emergence of vibriosis. Lytic bacteriophages come up as a promising way to resist the pathogenic population in various applications. In this study, a V. parahaemolyticus specific phage vB_VpS_PG28 was isolated from sewage in the seafood market. Results showed vB_VpS_PG28, is strictly a lytic bacteriophage and has a relatively large burst size of 103 plaque-forming units per infected cell. Comparative genomic and bioinformatic analyses proved that vB_VpS_PG28 is a new bacteriophage that had a homologous relation with Vibrio phages of family Siphoviridae, especially with phage VH2_2019, but transmission electron microscopy of vB_VpS_PG28 morphology characterized its morphology is similar to that of Myoviridae family. In silico analysis indicated that the vB_VpS_PG28 genome consists of 82712 bp (48.08% GC content) encoding 114 putative ORFs without tRNA,and any gene associated with resistance or virulence factors has not been found. The bacteriophage in the present study has shown significant outcomes in order to control bacterial growth under in vitro conditions. Thus, we are suggesting a beneficiary agent against foodborne pathogens. Further, to ensure the safe usage of phage oral toxicity testing is recommended.
Collapse
|
16
|
Ramdhan P, Li C. Targeting Viral Methyltransferases: An Approach to Antiviral Treatment for ssRNA Viruses. Viruses 2022; 14:v14020379. [PMID: 35215972 PMCID: PMC8880702 DOI: 10.3390/v14020379] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Methyltransferase enzymes have been associated with different processes within cells and viruses. Specifically, within viruses, methyltransferases are used to form the 5′cap-0 structure for optimal evasion of the host innate immune system. In this paper, we seek to discuss the various methyltransferases that exist within single-stranded RNA (ssRNA) viruses along with their respective inhibitors. Additionally, the importance of motifs such as the KDKE tetrad and glycine-rich motif in the catalytic activity of methyltransferases is discussed.
Collapse
|
17
|
Cai J, Hu Q, Lin H, Zhao J, Jiao H, Wang X. Adiponectin/adiponectin receptors mRNA expression profiles in chickens and their response to feed restriction. Poult Sci 2021; 100:101480. [PMID: 34700095 PMCID: PMC8554277 DOI: 10.1016/j.psj.2021.101480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
Adiponectin (ADPN) is related to fatty acid synthesis and oxidation in mammals. In chickens, the lipid metabolism, structure and sequence of ADPN are different from that in mammals. The aim of this study was to determine the role of ADPN in broilers lipid metabolism by investigating the temporal and spatial expression profiles of ADPN and its receptors, as well as their response to feed restriction. The results showed that the abdominal fat has the highest expression level, followed by the duodenum, glandular stomach, heart, hypothalamus, liver, and skeletal muscle. Broilers have high energy mobilization during their early stage of growth, in which the fat demand in the liver and muscles is high, thus the expression of ADPN and its receptor are also increased. To study the effects of feed restriction on ADPN and lipid metabolism, broilers were fasted for 12 h and refeed for 2 h. The results showed that fasting decreased the concentration of triglyceride (TG) (P < 0.05) and total cholesterol (TCHO) (P < 0.05) in plasma. The mRNA expression of ADPN in the liver (P < 0.05), breast (P < 0.05) and thigh (P < 0.05), and the mRNA expression of ADPNR1 in the liver (P < 0.05) and duodenum (P < 0.05) were significantly increased in the Fasted group. All above phenomena were recovered after refeeding, suggesting that feed restriction may promote the utilization of fatty acids in active metabolism tissues through ADPN, to guarantee the energy homeostasis of the body. However, the AMP-activated protein kinase (AMPK) signaling pathway and hepatic lipid metabolism were not necessary to cause the above changes under this experimental condition.
Collapse
Affiliation(s)
- Jiangxue Cai
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Qingmei Hu
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hai Lin
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Jingpeng Zhao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hongchao Jiao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Xiaojuan Wang
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China.
| |
Collapse
|
18
|
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler DS, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424. [PMID: 34784345 PMCID: PMC8594841 DOI: 10.1371/journal.pbio.3001424] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - David S. Thaler
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, Rockefeller University, New York City, New York, United States of America
| | | |
Collapse
|
19
|
Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns SJJ. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev 2021; 46:6374866. [PMID: 34558600 PMCID: PMC8829019 DOI: 10.1093/femsre/fuab048] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
We are in the midst of a golden age of uncovering defense systems against bacteriophages. Apart from the fundamental interest in these defense systems, and revolutionary applications that have been derived from them (e.g. CRISPR-Cas9 and restriction endonucleases), it is unknown how defense systems contribute to resistance formation against bacteriophages in clinical settings. Bacteriophages are now being reconsidered as therapeutic agents against bacterial infections due the emergence of multidrug resistance. However, bacteriophage resistance through defense systems and other means could hinder the development of successful phage-based therapies. Here, we review the current state of the field of bacteriophage defense, highlight the relevance of bacteriophage defense for potential clinical use of bacteriophages as therapeutic agents and suggest new directions of research.
Collapse
Affiliation(s)
- Julia E Egido
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands.,Fagenbank, Delft, Netherlands
| | - Cristian Aparicio-Maldonado
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands.,Fagenbank, Delft, Netherlands
| |
Collapse
|
20
|
Chen Z, Shen M, Mao C, Wang C, Yuan P, Wang T, Sun D. A Type I Restriction Modification System Influences Genomic Evolution Driven by Horizontal Gene Transfer in Paenibacillus polymyxa. Front Microbiol 2021; 12:709571. [PMID: 34413842 PMCID: PMC8370563 DOI: 10.3389/fmicb.2021.709571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Considered a “Generally Recognized As Safe” (GRAS) bacterium, the plant growth–promoting rhizobacterium Paenibacillus polymyxa has been widely applied in agriculture and animal husbandry. It also produces valuable compounds that are used in medicine and industry. Our previous work showed the presence of restriction modification (RM) system in P. polymyxa ATCC 842. Here, we further analyzed its genome and methylome by using SMRT sequencing, which revealed the presence of a larger number of genes, as well as a plasmid documented as a genomic region in a previous report. A number of mobile genetic elements (MGEs), including 78 insertion sequences, six genomic islands, and six prophages, were identified in the genome. A putative lysozyme-encoding gene from prophage P6 was shown to express lysin which caused cell lysis. Analysis of the methylome and genome uncovered a pair of reverse-complementary DNA methylation motifs which were widespread in the genome, as well as genes potentially encoding their cognate type I restriction-modification system PpoAI. Further genetic analysis confirmed the function of PpoAI as a RM system in modifying and restricting DNA. The average frequency of the DNA methylation motifs in MGEs was lower than that in the genome, implicating a role of PpoAI in restricting MGEs during genomic evolution of P. polymyxa. Finally, comparative analysis of R, M, and S subunits of PpoAI showed that homologs of the PpoAI system were widely distributed in species belonging to other classes of Firmicute, implicating a role of the ancestor of PpoAI in the genomic evolution of species beyond Paenibacillus.
Collapse
Affiliation(s)
- Ziyan Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Minjia Shen
- UMR 9198 Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Chengyao Mao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chenyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics, Hangzhou, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Dimitriu T, Szczelkun MD, Westra ER. Evolutionary Ecology and Interplay of Prokaryotic Innate and Adaptive Immune Systems. Curr Biol 2021; 30:R1189-R1202. [PMID: 33022264 DOI: 10.1016/j.cub.2020.08.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Like many organisms, bacteria and archaea have both innate and adaptive immune systems to defend against infection by viruses and other parasites. Innate immunity most commonly relies on the endonuclease-mediated cleavage of any incoming DNA that lacks a specific epigenetic modification, through a system known as restriction-modification. CRISPR-Cas-mediated adaptive immunity relies on the insertion of short DNA sequences from parasite genomes into CRISPR arrays on the host genome to provide sequence-specific protection. The discovery of each of these systems has revolutionised our ability to carry out genetic manipulations, and, as a consequence, the enzymes involved have been characterised in exquisite detail. In comparison, much less is known about the importance of these two arms of the defence for the ecology and evolution of prokaryotes and their parasites. Here, we review our current ecological and evolutionary understanding of these systems in isolation, and discuss the need to study how innate and adaptive immune responses are integrated when they coexist in the same cell.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| |
Collapse
|
22
|
Zaworski J, McClung C, Ruse C, Weigele PR, Hendrix RW, Ko CC, Edgar R, Hatfull GF, Casjens SR, Raleigh EA. Genome analysis of Salmonella enterica serovar Typhimurium bacteriophage L, indicator for StySA (StyLT2III) restriction-modification system action. G3-GENES GENOMES GENETICS 2021; 11:6044188. [PMID: 33561243 PMCID: PMC8022706 DOI: 10.1093/g3journal/jkaa037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Bacteriophage L, a P22-like phage of Salmonella enterica sv Typhimurium LT2, was important for definition of mosaic organization of the lambdoid phage family and for characterization of restriction-modification systems of Salmonella. We report the complete genome sequences of bacteriophage L cI–40 13–am43 and L cII–101; the deduced sequence of wildtype L is 40,633 bp long with a 47.5% GC content. We compare this sequence with those of P22 and ST64T, and predict 72 Coding Sequences, 2 tRNA genes and 14 intergenic rho-independent transcription terminators. The overall genome organization of L agrees with earlier genetic and physical evidence; for example, no secondary immunity region (immI: ant, arc) or known genes for superinfection exclusion (sieA and sieB) are present. Proteomic analysis confirmed identification of virion proteins, along with low levels of assembly intermediates and host cell envelope proteins. The genome of L is 99.9% identical at the nucleotide level to that reported for phage ST64T, despite isolation on different continents ∼35 years apart. DNA modification by the epigenetic regulator Dam is generally incomplete. Dam modification is also selectively missing in one location, corresponding to the P22 phase-variation-sensitive promoter region of the serotype-converting gtrABC operon. The number of sites for SenLTIII (StySA) action may account for stronger restriction of L (13 sites) than of P22 (3 sites).
Collapse
Affiliation(s)
- Julie Zaworski
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Colleen McClung
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Cristian Ruse
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Peter R Weigele
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert Edgar
- Bioengineering Department, University of Pittsburgh, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.,School of Biological Science, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
23
|
Callens M, Pradier L, Finnegan M, Rose C, Bedhomme S. Read between the lines: Diversity of non-translational selection pressures on local codon usage. Genome Biol Evol 2021; 13:6263832. [PMID: 33944930 PMCID: PMC8410138 DOI: 10.1093/gbe/evab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Protein coding genes can contain specific motifs within their nucleotide sequence that function as a signal for various biological pathways. The presence of such sequence motifs within a gene can have beneficial or detrimental effects on the phenotype and fitness of an organism, and this can lead to the enrichment or avoidance of this sequence motif. The degeneracy of the genetic code allows for the existence of alternative synonymous sequences that exclude or include these motifs, while keeping the encoded amino acid sequence intact. This implies that locally, there can be a selective pressure for preferentially using a codon over its synonymous alternative in order to avoid or enrich a specific sequence motif. This selective pressure could -in addition to mutation, drift and selection for translation efficiency and accuracy- contribute to shape the codon usage bias. In this review, we discuss patterns of avoidance of (or enrichment for) the various biological signals contained in specific nucleotide sequence motifs: transcription and translation initiation and termination signals, mRNA maturation signals, and antiviral immune system targets. Experimental data on the phenotypic or fitness effects of synonymous mutations in these sequence motifs confirm that they can be targets of local selection pressures on codon usage. We also formulate the hypothesis that transposable elements could have a similar impact on codon usage through their preferred integration sequences. Overall, selection on codon usage appears to be a combination of a global selection pressure imposed by the translation machinery, and a patchwork of local selection pressures related to biological signals contained in specific sequence motifs.
Collapse
Affiliation(s)
- Martijn Callens
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Léa Pradier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Michael Finnegan
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Caroline Rose
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Stéphanie Bedhomme
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| |
Collapse
|
24
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
25
|
Murray E, Draper LA, Ross RP, Hill C. The Advantages and Challenges of Using Endolysins in a Clinical Setting. Viruses 2021; 13:v13040680. [PMID: 33920965 PMCID: PMC8071259 DOI: 10.3390/v13040680] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-resistant pathogens are increasingly more prevalent and problematic. Traditional antibiotics are no longer a viable option for dealing with these multidrug-resistant microbes and so new approaches are needed. Bacteriophage-derived proteins such as endolysins could offer one effective solution. Endolysins are bacteriophage-encoded peptidoglycan hydrolases that act to lyse bacterial cells by targeting their cell’s wall, particularly in Gram-positive bacteria due to their naturally exposed peptidoglycan layer. These lytic enzymes have received much interest from the scientific community in recent years for their specificity, mode of action, potential for engineering, and lack of resistance mechanisms. Over the past decade, a renewed interest in endolysin therapy has led to a number of successful applications. Recombinant endolysins have been shown to be effective against prominent pathogens such as MRSA, Listeria monocytogenes, Staphylococcus strains in biofilm formation, and Pseudomonas aeruginosa. Endolysins have also been studied in combination with other antimicrobials, giving a synergistic effect. Although endolysin therapy comes with some regulatory and logistical hurdles, the future looks promising, with the emergence of engineered “next-generation” lysins. This review will focus on the likelihood that endolysins will become a viable new antimicrobial therapy and the challenges that may have to be overcome along the way.
Collapse
Affiliation(s)
- Ellen Murray
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland; (E.M.); (L.A.D.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Lorraine A. Draper
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland; (E.M.); (L.A.D.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland; (E.M.); (L.A.D.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland; (E.M.); (L.A.D.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- Correspondence: ; Tel.: +353-21-4901373
| |
Collapse
|
26
|
Ben-Assa N, Coyne MJ, Fomenkov A, Livny J, Robins WP, Muniesa M, Carey V, Carasso S, Gefen T, Jofre J, Roberts RJ, Comstock LE, Geva-Zatorsky N. Analysis of a phase-variable restriction modification system of the human gut symbiont Bacteroides fragilis. Nucleic Acids Res 2020; 48:11040-11053. [PMID: 33045731 PMCID: PMC7641763 DOI: 10.1093/nar/gkaa824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022] Open
Abstract
The genomes of gut Bacteroidales contain numerous invertible regions, many of which contain promoters that dictate phase-variable synthesis of surface molecules such as polysaccharides, fimbriae, and outer surface proteins. Here, we characterize a different type of phase-variable system of Bacteroides fragilis, a Type I restriction modification system (R-M). We show that reversible DNA inversions within this R-M locus leads to the generation of eight specificity proteins with distinct recognition sites. In vitro grown bacteria have a different proportion of specificity gene combinations at the expression locus than bacteria isolated from the mammalian gut. By creating mutants, each able to produce only one specificity protein from this region, we identified the R-M recognition sites of four of these S-proteins using SMRT sequencing. Transcriptome analysis revealed that the locked specificity mutants, whether grown in vitro or isolated from the mammalian gut, have distinct transcriptional profiles, likely creating different phenotypes, one of which was confirmed. Genomic analyses of diverse strains of Bacteroidetes from both host-associated and environmental sources reveal the ubiquity of phase-variable R-M systems in this phylum.
Collapse
Affiliation(s)
- Nadav Ben-Assa
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Technion Integrated Cancer Center (TICC), Haifa, 3525422 Israel
| | - Michael J Coyne
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William P Robins
- Department of Microbiology, Harvard Medical School, Boston, 02115, MA, USA
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Avda. Diagonal 643 08028 Barcelona Spain
| | - Vincent Carey
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shaqed Carasso
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Technion Integrated Cancer Center (TICC), Haifa, 3525422 Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Technion Integrated Cancer Center (TICC), Haifa, 3525422 Israel
| | - Juan Jofre
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Avda. Diagonal 643 08028 Barcelona Spain
| | | | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Technion Integrated Cancer Center (TICC), Haifa, 3525422 Israel.,Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholar, MaRS Centre, West Tower 661 University Ave., Suite 505 Toronto, ON M5G 1M1, Canada
| |
Collapse
|
27
|
Structure of the space of taboo-free sequences. J Math Biol 2020; 81:1029-1057. [PMID: 32940748 PMCID: PMC7560954 DOI: 10.1007/s00285-020-01535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/19/2020] [Indexed: 11/29/2022]
Abstract
Models of sequence evolution typically assume that all sequences are possible. However, restriction enzymes that cut DNA at specific recognition sites provide an example where carrying a recognition site can be lethal. Motivated by this observation, we studied the set of strings over a finite alphabet with taboos, that is, with prohibited substrings. The taboo-set is referred to as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {T}$$\end{document}T and any allowed string as a taboo-free string. We consider the so-called Hamming graph \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma _n(\mathbb {T})$$\end{document}Γn(T), whose vertices are taboo-free strings of length n and whose edges connect two taboo-free strings if their Hamming distance equals one. Any (random) walk on this graph describes the evolution of a DNA sequence that avoids taboos. We describe the construction of the vertex set of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma _n(\mathbb {T})$$\end{document}Γn(T). Then we state conditions under which \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma _n(\mathbb {T})$$\end{document}Γn(T) and its suffix subgraphs are connected. Moreover, we provide an algorithm that determines if all these graphs are connected for an arbitrary \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {T}$$\end{document}T. As an application of the algorithm, we show that about \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$87\%$$\end{document}87% of bacteria listed in REBASE have a taboo-set that induces connected taboo-free Hamming graphs, because they have less than four type II restriction enzymes. On the other hand, four properly chosen taboos are enough to disconnect one suffix subgraph, and consequently connectivity of taboo-free Hamming graphs could change depending on the composition of restriction sites.
Collapse
|
28
|
Zarai Y, Zafrir Z, Siridechadilok B, Suphatrakul A, Roopin M, Julander J, Tuller T. Evolutionary selection against short nucleotide sequences in viruses and their related hosts. DNA Res 2020; 27:dsaa008. [PMID: 32339222 PMCID: PMC7320823 DOI: 10.1093/dnares/dsaa008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Viruses are under constant evolutionary pressure to effectively interact with the host intracellular factors, while evading its immune system. Understanding how viruses co-evolve with their hosts is a fundamental topic in molecular evolution and may also aid in developing novel viral based applications such as vaccines, oncologic therapies, and anti-bacterial treatments. Here, based on a novel statistical framework and a large-scale genomic analysis of 2,625 viruses from all classes infecting 439 host organisms from all kingdoms of life, we identify short nucleotide sequences that are under-represented in the coding regions of viruses and their hosts. These sequences cannot be explained by the coding regions' amino acid content, codon, and dinucleotide frequencies. We specifically show that short homooligonucleotide and palindromic sequences tend to be under-represented in many viruses probably due to their effect on gene expression regulation and the interaction with the host immune system. In addition, we show that more sequences tend to be under-represented in dsDNA viruses than in other viral groups. Finally, we demonstrate, based on in vitro and in vivo experiments, how under-represented sequences can be used to attenuated Zika virus strains.
Collapse
Affiliation(s)
- Yoram Zarai
- Biomedical Engineering Department, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zohar Zafrir
- Biomedical Engineering Department, Tel Aviv University, Tel Aviv 69978, Israel
- SynVaccine Ltd., Ramat Hachayal, Tel Aviv, Israel
| | | | - Amporn Suphatrakul
- National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand
| | - Modi Roopin
- Biomedical Engineering Department, Tel Aviv University, Tel Aviv 69978, Israel
- SynVaccine Ltd., Ramat Hachayal, Tel Aviv, Israel
| | - Justin Julander
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Tamir Tuller
- Biomedical Engineering Department, Tel Aviv University, Tel Aviv 69978, Israel
- SynVaccine Ltd., Ramat Hachayal, Tel Aviv, Israel
| |
Collapse
|