1
|
Chen X, Wu Z, Yang Y, Tao Q, Na N, Wan W, Tian C, Gong W, Li Z. The complete mitochondrial genome and phylogenetic analysis of Lotus corniculatus (Fabaceae, Papilionoideae). FRONTIERS IN PLANT SCIENCE 2025; 16:1555595. [PMID: 40134620 PMCID: PMC11933009 DOI: 10.3389/fpls.2025.1555595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
Introduction Lotus corniculatus is a perennial leguminous herb and serves as a high-quality forage, playing a key role in both grassland ecological restoration and the development of grazing livestock farming. Methods In this study, we successfully assembled the L. corniculatus mitochondrial genome and investigated various related aspects, including genomic features, RNA editing sites, codon preference, gene transfer events, and phylogeny. Results and discussion We found that the length of the L. corniculatus mitochondrial genome is 401,301 bp, and its GC content is 45.15%. It consists of 53 genes, comprising 32 protein-coding genes, 3 ribosomal RNA genes, and 18 transfer RNA genes. A total of 146 scattered repeats, 8 tandem repeats, and 124 simple sequence repeats are present in the mitochondrial genome. A thorough examination of all protein-coding genes revealed 485 instances of RNA editing and 9579 codons. Additionally, 57 homologous fragments were identified in L. corniculatus mitochondrial genome and chloroplast genomes, accounting for approximately 4.04% of the L. corniculatus mitochondrial genome. Furthermore, a phylogenetic tree based on mitochondrial genome data from 33 species belonging to four Fabaceae subfamilies and two species from other families validated the evolutionary relationship of Lotus. These findings have significant implications for understanding the organization and evolution of the L. corniculatus mitochondrial genome as well as for the identification of genetic markers. They also offer valuable perspectives relevant to devising strategies for molecular breeding and evolutionary categorization of legumes.
Collapse
Affiliation(s)
- Xiaofei Chen
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Qibo Tao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Na Na
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Wenya Wan
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Wenlong Gong
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| |
Collapse
|
2
|
Gao Z, Cai Y, Long J, Wang B, Huang Z, Gao Y. The Complete Chloroplast Genome and the Phylogenetic Analysis of Fimbristylis littoralis (Cyperaceae) Collected in Cherry Blossom Nursery. Int J Mol Sci 2025; 26:2321. [PMID: 40076940 PMCID: PMC11901024 DOI: 10.3390/ijms26052321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Fimbristylis littoralis, also known as globe fringerush, is one of the most troublesome annual Cyperaceae weeds in dryland fields and nurseries in the Yangtze Plain, Middle and Lower in China. The chloroplast (cp) genome of F. littoralis, and even this genus, has not been studied yet. In this study, the feature of the cp genome of F. littoralis and its phylogenetic relationships has been reported for the first time. It exhibited a typical circular tetramerous structure, with 86 protein-encoding genes. There were 149 simple sequence repeats (SSRs) and 1932 long repeats (LRs) detected. The IR expansion and contraction revealed the uniqueness of F. littoralis because there is a special cross-boundary gene, rps3, located at the LSC/IRb junction. Phylogenetic and divergence time dating analysis showed the close relationship between F. littoralis and the genus Cyperus, as well as many evolutionary directions of Cyperaceae family plants. The most recommended chemical method for removing this weed from nurseries is to spray 13 g ai ha-1 (the amount of active ingredient applied per hectare) of saflufenacil before emergence or 7.5 g ai ha-1 of halosulfuron-methyl after emergence. In conclusion, this study was the first to report the complete cp genome of a plant in the genus Fimbristylis. Our findings also provided valuable biological information for studying the phylogenetic relationships and evolution among the family Cyperaceae.
Collapse
Affiliation(s)
- Zhaoliang Gao
- Forest & Fruit Tree Research Institute, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.G.); (Y.C.)
| | - Yutong Cai
- Forest & Fruit Tree Research Institute, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.G.); (Y.C.)
| | - Jiaqi Long
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.L.); (B.W.)
| | - Bo Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.L.); (B.W.)
| | - Zhaofeng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Gao
- Forest & Fruit Tree Research Institute, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.G.); (Y.C.)
| |
Collapse
|
3
|
Gao K, Guo T, An X. Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa. BMC Genomics 2025; 26:23. [PMID: 39789431 PMCID: PMC11715600 DOI: 10.1186/s12864-024-11184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family. RESULTS Single-molecule real-time (SMRT) sequencing technology was used to sequence, assemble, and annotate the mt genome of P. tomentosa. This genome has a complex structure composed of four circular molecules ranging from 153,004 to 330,873 base pairs (bp). Each of these four circular molecules contains unique gene sequences that constitute the mt genome of P. tomentosa. The mt genome comprises 69 functional genes, including 38 protein-coding genes (PCGs), 26 tRNA genes, and 5 rRNA genes. After removing duplications, 19 different tRNA coding genes remain, though only 10 amino acids can be recognized. The noncoding region constitutes 93.38% of the mt genome, comprising a large number of repetitive sequences, gene spacer regions, and insertion from chloroplast sequences. Specifically, 40 chloroplast-derived sequences, with a total length of 24,381 bp, were identified in P. tomentosa. CONCLUSIONS In the current study, the results provide mitochondrial genomic evidence for the maternal origin of P. tomentosa and enhance understanding of the gene dialog between organelle genomes, contributing to the conservation and utilization of the genetic resources of P. tomentosa.
Collapse
Affiliation(s)
- Kai Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Hangzhou Academy of Forestry and Wetland, Hangzhou, Zhejiang, 310020, China
| | - Xinmin An
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Wang Z, Wang R, Sang Y, Wang T, Su Y, Liao W. Comparative analysis of mitochondrial genomes of invasive weed Mikania micrantha and its indigenous congener Mikania cordata. Int J Biol Macromol 2024; 281:136357. [PMID: 39378918 DOI: 10.1016/j.ijbiomac.2024.136357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/21/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Mikania micrantha and Mikania cordata are two distinct species in China. The former is notorious as one of the top 100 worst invasive species, whereas the latter is an indigenous species harmless to native plants or the environment. They form an ideal congener pair for comparative studies aimed at deeply understanding the invasion mechanisms of the exotic weed. In this study, we have assembled and annotated the mitogenomes of both species using Illumina and PacBio sequencing data and compared their characteristic differences. The complete mitogenome of M. micrantha is a double-stranded DNA with a length of 336,564 bp, while the mitogenome of M. cordata exhibits a branching structure, consisting of two small circular molecules and six linear molecules, with a combined length totaling 335,444 bp. Compared to M. cordata, M. micrantha has less SSRs, tandem repeats, dispersed repeats, mitochondrial protein coding genes (PCGs). The two plants show similar codon usage patterns. This comparative study has revealed the structure and function of the mitogenomes of the two species and laid a solid foundation for investigating the effects of gene loss and duplication on the development of invasive traits in M. micrantha.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ruonan Wang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Yatong Sang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, 518057 Shenzhen, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, 518057 Shenzhen, China.
| | - Wenbo Liao
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| |
Collapse
|
5
|
Hou Z, Wang M, Jiang Y, Xue Q, Liu W, Niu Z, Ding X. Mitochondrial genome insights into the spatio-temporal distribution and genetic diversity of Dendrobium hancockii Rolfe (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1469267. [PMID: 39502918 PMCID: PMC11535511 DOI: 10.3389/fpls.2024.1469267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Introduction With its distinctive evolutionary rate and inheritance patterns separate from the nuclear genome, mitochondrial genome analysis has become a prominent focus of current research. Dendrobium hancockii Rolfe, a species of orchid with both medicinal and horticultural value, will benefit from the application of the fully assembled and annotated mitochondrial genome. This will aid in elucidating its phylogenetic relationships, comparative genomics, and population genetic diversity. Methods Based on sequencing results from Illumina combined with PacBio and Nanopore, the mitochondrial genome map of D. hancockii was constructed. Comparative analysis was conducted from the perspectives of phylogeny across multiple species, selection pressure on protein-coding genes, and homologous segments. The population diversity of D. hancockii was analyzed using single nucleotide polymorphism (SNP) data from the mitochondrial genome and single-copy nuclear genes. Results and discussion This research constructed a circular mitochondrial map for D. hancockii, spanning 523,952 bp, containing 40 unique protein-coding genes, 37 transfer RNA genes, and 4 ribosomal RNA genes. Comparative analysis of mitochondrial genes from 26 land plants revealed a conserved gene cluster, "rpl16-ccmFn-rps3-rps19," particularly within the Dendrobium genus. The mitochondrial genome of D. hancockii exhibits a lower point mutation rate but significant structural variation. Analysis of 103 resequencing samples identified 19,101 SNP sites, dividing D. hancockii into two major groups with limited gene flow between them, as supported by population diversity, genetic structure analysis, principal component analysis, and phylogenetic trees. The geographical distribution and genetic differentiation of D. hancockii into two major groups suggest a clear phytogeographical division, likely driven by ancient geological or climatic events. The close alignment of mitochondrial data with nuclear gene data highlights the potential of the mitochondrial genome for future studies on genetic evolution in this species.
Collapse
Affiliation(s)
- Zhenyu Hou
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Mengting Wang
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Yu Jiang
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Qingyun Xue
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Wei Liu
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Zhitao Niu
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Xiaoyu Ding
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| |
Collapse
|
6
|
Xiao W, Wu X, Zhou X, Zhang J, Huang J, Dai X, Ren H, Xu D. Assembly and comparative analysis of the first complete mitochondrial genome of zicaitai ( Brassica rapa var. Purpuraria): insights into its genetic architecture and evolutionary relationships. FRONTIERS IN PLANT SCIENCE 2024; 15:1475064. [PMID: 39450086 PMCID: PMC11499134 DOI: 10.3389/fpls.2024.1475064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Introduction Zicaitai (Brassica rapa var. purpuraria) is a Brassica variety renowned for its distinctive taste and rich nutritional profile. In recent years, the mitochondrial genomes of several Brassica species have been documented, but the mitogenome of Zicaitai remains unreported. Methods In this study, we characterized the Zicaitai mitogenome achieved through the assembly of sequencing reads derived from both the Oxford Nanopore and Illumina platforms. A detailed comparative analysis was carried out with other Brassica species to draw comparisons and contrasts. In-depth analyses of codon usage patterns, instances of RNA editing, and the prevalence of sequence repeats within the mitogenome were also conducted to gain a more nuanced understanding of its genetic architecture. A phylogenetic analysis was performed, utilizing the coding sequences (CDS) from the mitochondrial genome of Zicaitai and that of 20 closely related species/varieties to trace evolutionary connections. Results The Zicaitai mitogenome is characterized by a circular structure spanning 219,779 base pairs, and it encompasses a total of 59 genes. This gene set includes 33 protein-coding genes, 23 tRNA genes, and 3 rRNA genes, providing a rich foundation for further genomic study. An analysis of the Ka/Ks ratios for 30 protein-coding genes shared by the mitogenomes of Zicaitai and seven other Brassica species revealed that most of these genes had undergone purifying selection. Additionally, the study explored the migration of genes between the chloroplast and nuclear genomes and the mitogenome, offering insights into the dynamics of genetic exchange within the Brassica genus. Discussion The collective results in this study will serve as a foundational resource, aiding future evolutionary studies focused on B. rapa, and contributing to a broader understanding of the complexities of plant evolution.
Collapse
Affiliation(s)
- Wanyu Xiao
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Xian Wu
- Northeast Agricultural University, Harbin, China
| | - Xianyu Zhou
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jing Zhang
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jianghua Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiuchun Dai
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Hailong Ren
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Donglin Xu
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| |
Collapse
|
7
|
Doré G, Barloy D, Barloy-Hubler F. De Novo Hybrid Assembly Unveils Multi-Chromosomal Mitochondrial Genomes in Ludwigia Species, Highlighting Genomic Recombination, Gene Transfer, and RNA Editing Events. Int J Mol Sci 2024; 25:7283. [PMID: 39000388 PMCID: PMC11242644 DOI: 10.3390/ijms25137283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Biological invasions have been identified as the fifth cause of biodiversity loss, and their subsequent dispersal represents a major ecological challenge. The aquatic invasive species Ludwigia grandiflora subsp. hexapetala (Lgh) and Ludwigia peploides subsp. montevidensis (Lpm) are largely distributed in aquatic environments in North America and in Europe. However, they also present worrying terrestrial forms that are able to colonize wet meadows. To comprehend the mechanisms of the terrestrial adaptation of Lgh and Lpm, it is necessary to develop their genomic resources, which are currently poorly documented. We performed de novo assembly of the mitogenomes of Lgh and Lpm through hybrid assemblies, combining short reads (SR) and/or long reads (LR) before annotating both mitogenomes. We successfully assembled the mitogenomes of Lgh and Lpm into two circular molecules each, resulting in a combined total length of 711,578 bp and 722,518 bp, respectively. Notably, both the Lgh and Lpm molecules contained plastome-origin sequences, comprising 7.8% of the mitochondrial genome length. Additionally, we identified recombinations that were mediated by large repeats, suggesting the presence of multiple alternative conformations. In conclusion, our study presents the first high-quality mitogenomes of Lpm and Lgh, which are the only ones in the Myrtales order found as two circular molecules.
Collapse
Affiliation(s)
- Guillaume Doré
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, INRAE, IFREMER, 35042 Rennes, France
| | - Dominique Barloy
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, INRAE, IFREMER, 35042 Rennes, France
| | | |
Collapse
|
8
|
Yu X, Ma Z, Liu S, Duan Z. Analysis of the Rhodomyrtus tomentosa mitochondrial genome: Insights into repeat-mediated recombination and intra-cellular DNA transfer. Gene 2024; 909:148288. [PMID: 38367854 DOI: 10.1016/j.gene.2024.148288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Plant mitochondrial genomes participate in encoding proteins crucial to the major producers of ATP in the cell and replication and heredity of their own DNA. The sequences and structure of the plant mitochondrial genomes profoundly impact these fundamental processes, and studies of plant mitochondrial genomes are needed. We reported the complete sequences of the Rhodomyrtus tomentosa mitochondrial genome here, totaling 400,482 bp. Nanopore ONT reads and PCR amplification provided evidence for recombination mediated by the eight repeat pairs for the R. tomentosa mitochondrial genome. Thirty-eight genes were identified in the R. tomentosa mitochondrial genome. Comparative analyses of the mitochondrial genome and plastome and PCR amplification suggest that five fragments of mitochondrial plastid DNA were unfunctional sequences resulting from intracellular gene transfer. Phylogenetic analysis based on each and all of the 27 mitochondrial protein-coding genes of nine Myrtales species revealed that R. tomentosa always clustered with other species of Myrtaceae. This study uncovered the enormous complexity of the R. tomentosa mitochondrial genome, the active repeat-mediated recombinations, the presence of mitochondrial plastid DNAs, and the topological incongruence of Myrtales among the single-gene trees.
Collapse
Affiliation(s)
- Xiaoli Yu
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Zhengbing Ma
- Forestry Technology Extension Station of Huiyang, Huizhou 516211, Guangdong, China.
| | - Shu Liu
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Zhonggang Duan
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| |
Collapse
|
9
|
Marczuk-Rojas JP, Salmerón A, Alcayde A, Isanbaev V, Carretero-Paulet L. Plastid DNA is a major source of nuclear genome complexity and of RNA genes in the orphan crop moringa. BMC PLANT BIOLOGY 2024; 24:437. [PMID: 38773387 PMCID: PMC11110229 DOI: 10.1186/s12870-024-05158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Unlike Transposable Elements (TEs) and gene/genome duplication, the role of the so-called nuclear plastid DNA sequences (NUPTs) in shaping the evolution of genome architecture and function remains poorly studied. We investigate here the functional and evolutionary fate of NUPTs in the orphan crop Moringa oleifera (moringa), featured by the highest fraction of plastid DNA found so far in any plant genome, focusing on (i) any potential biases in their distribution in relation to specific nuclear genomic features, (ii) their contribution to the emergence of new genes and gene regions, and (iii) their impact on the expression of target nuclear genes. RESULTS In agreement with their potential mutagenic effect, NUPTs are underrepresented among structural genes, although their overall transcription levels and broadness were only lower when involved exonic regions; the occurrence of plastid DNA generally did not result in a broader expression, except among those affected in introns by older NUPTs. In contrast, we found a strong enrichment of NUPTs among specific superfamilies of retrotransposons and several classes of RNA genes, including those participating in the protein biosynthetic machinery (i.e., rRNA and tRNA genes) and a specific class of regulatory RNAs. A significant fraction of NUPT RNA genes was found to be functionally expressed, thus potentially contributing to the nuclear pool. CONCLUSIONS Our results complete our view of the molecular factors driving the evolution of nuclear genome architecture and function, and support plastid DNA in moringa as a major source of (i) genome complexity and (ii) the nuclear pool of RNA genes.
Collapse
Affiliation(s)
- Juan Pablo Marczuk-Rojas
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
- "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Antonio Salmerón
- Department of Mathematics and Center for the Development and Transfer of Mathematical Research to Industry (CDTIME), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Alfredo Alcayde
- Department of Engineering, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Viktor Isanbaev
- Department of Engineering, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Lorenzo Carretero-Paulet
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain.
- "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain.
| |
Collapse
|
10
|
Fukasawa Y, Driguez P, Bougouffa S, Carty K, Putra A, Cheung MS, Ermini L. Plasticity of repetitive sequences demonstrated by the complete mitochondrial genome of Eucalyptus camaldulensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1339594. [PMID: 38601302 PMCID: PMC11005031 DOI: 10.3389/fpls.2024.1339594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The tree Eucalyptus camaldulensis is a ubiquitous member of the Eucalyptus genus, which includes several hundred species. Despite the extensive sequencing and assembly of nuclear genomes from various eucalypts, the genus has only one fully annotated and complete mitochondrial genome (mitogenome). Plant mitochondria are characterized by dynamic genomic rearrangements, facilitated by repeat content, a feature that has hindered the assembly of plant mitogenomes. This complexity is evident in the paucity of available mitogenomes. This study, to the best of our knowledge, presents the first E. camaldulensis mitogenome. Our findings suggest the presence of multiple isomeric forms of the E. camaldulensis mitogenome and provide novel insights into minor rearrangements triggered by nested repeat sequences. A comparative sequence analysis of the E. camaldulensis and E. grandis mitogenomes unveils evolutionary changes between the two genomes. A significant divergence is the evolution of a large repeat sequence, which may have contributed to the differences observed between the two genomes. The largest repeat sequences in the E. camaldulensis mitogenome align well with significant yet unexplained structural variations in the E. grandis mitogenome, highlighting the adaptability of repeat sequences in plant mitogenomes.
Collapse
Affiliation(s)
- Yoshinori Fukasawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Karen Carty
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexander Putra
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ming-Sin Cheung
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Luca Ermini
- NORLUX NeuroOncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
11
|
Feng L, Wang Z, Wang C, Yang X, An M, Yin Y. Multichromosomal mitochondrial genome of Punica granatum: comparative evolutionary analysis and gene transformation from chloroplast genomes. BMC PLANT BIOLOGY 2023; 23:512. [PMID: 37880586 PMCID: PMC10598957 DOI: 10.1186/s12870-023-04538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Punica granatum is a fundamentally important fruit tree that has important economic, medicinal and ornamental properties. At present, there are few reports on the mitochondrial genome of pomegranate. Hence, in this study the P. granatum mitogenome was sequenced and assembled to further understanding of organization, variation, and evolution of mitogenomes of this tree species. RESULTS The genome structure was multi-chromosomes with seven circular contigs, measuring 382,774 bp in length with a 45.91% GC content. It contained 74 genes, including 46 protein-coding genes, 25 tRNA genes, and three rRNA genes. There were 188 pairs of dispersed repeats with lengths of 30 or greater, primarily consisting of reverse complementary repeats. The mitogenome analysis identified 114SSRs and 466 RNA editing sites. Analyses of codon usage, nucleotide diversity and gene migration from chloroplast to mitochondrial were also conducted. The collinear and comparative analysis of mitochondrial structures between P. granatum and its proximal species indicated that P. granatum 'Taishanhong' was closely related to P. granatum 'Qingpitian' and Lagerstroemia indica. Phylogenetic examination based on the mitogenome also confirmed the evolutionary relationship. CONCLUSION The results offered crucial information on the evolutionary biology of pomegranate and highlighted ways to promote the utilization of the species' germplasm.
Collapse
Affiliation(s)
- Lijuan Feng
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Zenghui Wang
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Chuanzeng Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Xuemei Yang
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Mengmeng An
- Zibo Academy of Agricultural Sciences, Zibo, 255000, Shandong, China
| | - Yanlei Yin
- Shandong Institute of Pomology, Taian, 271000, Shandong, China.
| |
Collapse
|
12
|
Kim HB, Lee DG, Kim SC. Plastomes of Sonchus (Asteraceae) endemic to the Atlantic Madeira archipelago: Genome structure, comparative analysis, and phylogenetic relationships. PLoS One 2023; 18:e0287523. [PMID: 37347743 PMCID: PMC10286973 DOI: 10.1371/journal.pone.0287523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The woody Sonchus alliance, a spectacular example of adaptive radiation with six genera and approximately 31 species, is found exclusively on three Macaronesian Islands (Madeira, Canaries, and Cape Verdes) in the Atlantic Ocean. Four of the Sonchus taxa are restricted to Madeira, including shrubs and small trees at higher elevations (S. fruticosus and S. pinnatus), and caudex perennials in the lower coastal areas (S. ustulatus subsp. maderensis and S. ustulatus subsp. ustulatus). The Madeiran Sonchus stemmed from a single colonization event that originated from the Canaries < 3 million years ago. However, the plastome evolution and species relationships remains insufficiently explored. We therefore assembled and characterized the plastomes of four Sonchus taxa from Madeira and conducted a phylogenomic analysis. We found highly conserved plastome sequences among the taxa, further supporting a single and recent origin. We also found highly conserved plastomes among the cosmopolitan weedy Sonchus, Macaronesian Sonchus in the Atlantic, and Juan Fernández Islands Dendroseris in the Pacific. Furthermore, we identified four mutation hotspot regions (trnK-rps16, petN-psbM, ndhF-Ψycf1, and ycf1) and simple sequence repeat motifs. This study strongly supports the monophyly of Madeiran Sonchus. However, its relationship with the remaining woody Sonchus alliance from the Canary Islands requires further investigation.
Collapse
Affiliation(s)
- Hye-Been Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
- R&I Center, COSMAX BTI, Pangyo Inno Valley E255, Seongnam, Republic of Korea
| | - Dong-Geol Lee
- R&I Center, COSMAX BTI, Pangyo Inno Valley E255, Seongnam, Republic of Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Characterization and phylogenetic analysis of the complete mitochondrial genome sequence of Photinia serratifolia. Sci Rep 2023; 13:770. [PMID: 36641495 PMCID: PMC9840629 DOI: 10.1038/s41598-022-24327-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/14/2022] [Indexed: 01/15/2023] Open
Abstract
Plant mitochondrial genomes (mitogenomes) are a valuable source of genetic information for a better understanding of phylogenetic relationships. However, no mitogenome of any species in the genus of Photinia has been reported. In this study, using NGS sequencing, we reported the mitogenome assembly and annotation of Photinia serratifolia, which is 473,579 bp in length, contains 38 protein-coding genes, 23 tRNAs, and 6 rRNAs, with 61 genes have no introns. The rps2 and rps11 genes are missing in the P. serratifolia mitogenome. Although there are more editing sites (488) in the P. serratifolia mitogenome than in most angiosperms, fewer editing types were found in the P. serratifolia mitogenome, showing a clear bias in RNA-editing. Phylogenetic analysis based on the mitogenomes of P. serratifolia and 8 other taxa of the Rosaceae family reflected the exact evolutionary and taxonomic status of P. serratifolia. However, Ka/Ks analysis revealed that 72.69% of the protein-coding genes in the P. serratifolia mitogenome had undergone negative selections, reflecting the importance of those genes in the P. serratifolia mitogenome. Collectively, these results will provide valuable information for the evolution of P. serratifolia and provide insight into the evolutionary relationships within Photinia and the Rosaceae family.
Collapse
|
14
|
Comparative analyses of Theobroma cacao and T. grandiflorum mitogenomes reveal conserved gene content embedded within complex and plastic structures. Gene X 2023; 849:146904. [DOI: 10.1016/j.gene.2022.146904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
|
15
|
Lötter A, Duong TA, Candotti J, Mizrachi E, Wegrzyn JL, Myburg AA. Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids. Gigascience 2022; 12:giad064. [PMID: 37632754 PMCID: PMC10460159 DOI: 10.1093/gigascience/giad064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 07/27/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND De novo phased (haplo)genome assembly using long-read DNA sequencing data has improved the detection and characterization of structural variants (SVs) in plant and animal genomes. Able to span across haplotypes, long reads allow phased, haplogenome assembly in highly outbred organisms such as forest trees. Eucalyptus tree species and interspecific hybrids are the most widely planted hardwood trees with F1 hybrids of Eucalyptus grandis and E. urophylla forming the bulk of fast-growing pulpwood plantations in subtropical regions. The extent of structural variation and its effect on interspecific hybridization is unknown in these trees. As a first step towards elucidating the extent of structural variation between the genomes of E. grandis and E. urophylla, we sequenced and assembled the haplogenomes contained in an F1 hybrid of the two species. FINDINGS Using Nanopore sequencing and a trio-binning approach, we assembled the separate haplogenomes (566.7 Mb and 544.5 Mb) to 98.0% BUSCO completion. High-density SNP genetic linkage maps of both parents allowed scaffolding of 88.0% of the haplogenome contigs into 11 pseudo-chromosomes (scaffold N50 of 43.8 Mb and 42.5 Mb for the E. grandis and E. urophylla haplogenomes, respectively). We identify 48,729 SVs between the two haplogenomes providing the first detailed insight into genome structural rearrangement in these species. The two haplogenomes have similar gene content, 35,572 and 33,915 functionally annotated genes, of which 34.7% are contained in genome rearrangements. CONCLUSIONS Knowledge of SV and haplotype diversity in the two species will form the basis for understanding the genetic basis of hybrid superiority in these trees.
Collapse
Affiliation(s)
- Anneri Lötter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Julia Candotti
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, Institute for Systems Genomics: Computational Biology Core, University of Connecticut, Storrs, CT 06269, USA
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| |
Collapse
|
16
|
Gao Y, Shen G, Yuan G, Tian Z. Comparative Analysis of Whole Chloroplast Genomes of Three Common Species of Echinochloa (Gramineae) in Paddy Fields. Int J Mol Sci 2022; 23:ijms232213864. [PMID: 36430336 PMCID: PMC9698722 DOI: 10.3390/ijms232213864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Echinochloa crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens, morphologically similar at the seedling stage, are the most pernicious barnyard grass species in paddy fields worldwide. Chloroplast (cp) genomes could be conducive to their identification. In this study, we assembled the complete cp genome sequences of Echinochloa crus-galli var. crus-galli (139,856 bp), E. crus-galli var. zelayensis (139,874 bp), and E. glabrescens (139,874 bp), which exhibited a typical circular tetramerous structure, large and small single-copy regions, and a pair of inverted repeats. In Echinochloa crus-galli var. crus-galli, there were 136 simple sequence (SSRs) and 62 long (LRs) repeats, and in the other two species, 139 SSRs and 68 LRs. Each cp genome contains 92 protein-encoding genes. In Echinochloa crus-galli var. crus-galli and E. glabrescens, 321 and 1 single-nucleotide polymorphisms were detected compared to Echinochloa crus-galli var. zelayensis. IR expansion and contraction revealed small differences between the three species. The phylogenetic tree based on cp genomes demonstrated the phylogenetic relationship between ten barnyard grass species and other common Gramineae plants, showing new genetic relationships of the genus Echinochloa. This study provides valuable information on cp genomes, useful for identifying and classifying the genus Echinochloa and studying its phylogenetic relationships and evolution.
Collapse
|
17
|
Yang J, Ling C, Zhang H, Hussain Q, Lyu S, Zheng G, Liu Y. A Comparative Genomics Approach for Analysis of Complete Mitogenomes of Five Actinidiaceae Plants. Genes (Basel) 2022; 13:genes13101827. [PMID: 36292711 PMCID: PMC9601400 DOI: 10.3390/genes13101827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022] Open
Abstract
Actinidiaceae, an economically important plant family, includes the Actinidia, Clematoclethra and Saurauia genus. Kiwifruit, with remarkably high vitamin C content, is an endemic species widely distributed in China with high economic value. Although many Actinidiaceae chloroplast genomes have been reported, few complete mitogenomes of Actinidiaceae have been studied. Here, complete circular mitogenomes of the four kiwifruit species and Saurauia tristyla were assembled. Codon usage, sequence repeats, RNA editing, gene transfers, selective pressure, and phylogenetic relationships in the four kiwifruit species and S. tristyla were comparatively analyzed. This research will contribute to the study of phylogenetic relationships within Actiniaceae and molecular barcoding in kiwifruit.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Chengcheng Ling
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Huamin Zhang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Guohua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (G.Z.); (Y.L.)
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (G.Z.); (Y.L.)
| |
Collapse
|
18
|
Zhao Y, Qu D, Ma Y. Characterization of the Chloroplast Genome of Argyranthemum frutescens and a Comparison with Other Species in Anthemideae. Genes (Basel) 2022; 13:genes13101720. [PMID: 36292605 PMCID: PMC9602088 DOI: 10.3390/genes13101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Argyranthemum frutescens, which belongs to the Anthemideae (Asteraceae), is widely cultivated as an ornamental plant. In this study, the complete chloroplast genome of A. frutescens was obtained based on the sequences generated by Illumina HiSeq. The chloroplast genome of A. frutescens was 149,626 base pairs (bp) in length, containing a pair of inverted repeats (IR, 24,510 bp) regions separated by a small single-copy (SSC, 18,352 bp) sequence and a large single-copy (LSC, 82,254 bp) sequence. The genome contained 132 genes, consisting of 85 coding DNA sequences, 37 tRNA genes, and 8 rRNA genes, with nineteen genes duplicated in the IR region. A comparison chloroplast genome analysis among ten species from the tribe of Anthemideae revealed that the chloroplast genome size varied, but the genome structure, gene content, and oligonucleotide repeats were highly conserved. Highly divergent regions, e.g., ycf1, trnK-psbK, petN-psbM intronic, were detected. Phylogenetic analysis supported Argyranthemum as a separate genus. The findings of this study will be helpful in the exploration of the phylogenetic relationships of the tribe of Anthemideae and contribute to the breeding improvement of A. frutescens.
Collapse
|
19
|
Mostert‐O'Neill MM, Tate H, Reynolds SM, Mphahlele MM, van den Berg G, Verryn SD, Acosta JJ, Borevitz JO, Myburg AA. Genomic consequences of artificial selection during early domestication of a wood fibre crop. THE NEW PHYTOLOGIST 2022; 235:1944-1956. [PMID: 35657639 PMCID: PMC9541791 DOI: 10.1111/nph.18297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
From its origins in Australia, Eucalyptus grandis has spread to every continent, except Antarctica, as a wood crop. It has been cultivated and bred for over 100 yr in places such as South Africa. Unlike most annual crops and fruit trees, domestication of E. grandis is still in its infancy, representing a unique opportunity to interrogate the genomic consequences of artificial selection early in the domestication process. To determine how a century of artificial selection has changed the genome of E. grandis, we generated single nucleotide polymorphism genotypes for 1080 individuals from three advanced South African breeding programmes using the EUChip60K chip, and investigated population structure and genome-wide differentiation patterns relative to wild progenitors. Breeding and wild populations appeared genetically distinct. We found genomic evidence of evolutionary processes known to have occurred in other plant domesticates, including interspecific introgression and intraspecific infusion from wild material. Furthermore, we found genomic regions with increased linkage disequilibrium and genetic differentiation, putatively representing early soft sweeps of selection. This is, to our knowledge, the first study of genomic signatures of domestication in a timber species looking beyond the first few generations of cultivation. Our findings highlight the importance of intra- and interspecific hybridization during early domestication.
Collapse
Affiliation(s)
- Marja M. Mostert‐O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Hannah Tate
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - S. Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Makobatjatji M. Mphahlele
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
- Mondi Forests, Tree Improvement Technology Programme, Trahar Technology Centre – TTCMountain Home Estate, Off Dennis Shepstone Dr.Hilton3245South Africa
| | - Gert van den Berg
- Sappi Forests Research, Shaw Research CentrePO Box 473Howick3290South Africa
| | - Steve D. Verryn
- Creation Breeding Innovations75 Kafue St.Lynnwood Glen0081South Africa
| | - Juan J. Acosta
- Camcore, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityPO Box 7626RaleighNC27695USA
| | - Justin O. Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy BiologyAustralian National UniversityCanberraACT0200Australia
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| |
Collapse
|
20
|
The Eucalyptus grandis chloroplast proteome: Seasonal variations in leaf development. PLoS One 2022; 17:e0265134. [PMID: 36048873 PMCID: PMC9436043 DOI: 10.1371/journal.pone.0265134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Chloroplast metabolism is very sensitive to environmental fluctuations and is intimately related to plant leaf development. Characterization of the chloroplast proteome dynamics can contribute to a better understanding on plant adaptation to different climate scenarios and leaf development processes. Herein, we carried out a discovery-driven analysis of the Eucalyptus grandis chloroplast proteome during leaf maturation and throughout different seasons of the year. The chloroplast proteome from young leaves differed the most from all assessed samples. Most upregulated proteins identified in mature and young leaves were those related to catabolic-redox signaling and biogenesis processes, respectively. Seasonal dynamics revealed unique proteome features in the fall and spring periods. The most abundant chloroplast protein in humid (wet) seasons (spring and summer) was a small subunit of RuBisCO, while in the dry periods (fall and winter) the proteins that showed the most pronounced accumulation were associated with photo-oxidative damage, Calvin cycle, shikimate pathway, and detoxification. Our investigation of the chloroplast proteome dynamics during leaf development revealed significant alterations in relation to the maturation event. Our findings also suggest that transition seasons induced the most pronounced chloroplast proteome changes over the year. This study contributes to a more comprehensive understanding on the subcellular mechanisms that lead to plant leaf adaptation and ultimately gives more insights into Eucalyptus grandis phenology.
Collapse
|
21
|
Li C, Liu Y, Lin F, Zheng Y, Huang P. Characterization of the complete chloroplast genome sequences of six Dalbergia species and its comparative analysis in the subfamily of Papilionoideae (Fabaceae). PeerJ 2022; 10:e13570. [PMID: 35795179 PMCID: PMC9252178 DOI: 10.7717/peerj.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/20/2022] [Indexed: 01/17/2023] Open
Abstract
Dalbergia spp. are numerous and widely distributed in pantropical areas in Asia, Africa and America, and most of the species have important economic and ecological value as precious timber. In this study, we determined and characterized six complete chloroplast genomes of Dalbergia species (Dalbergia obtusifolia, D. hupeana, D. mimosoides, D. sissoo, D. hancei, D. balansae), which displayed the typical quadripartite structure of angiosperms. The sizes of the genomes ranged from 155,698 bp (D. hancei) to 156,419 bp (D. obtusifolia). The complete chloroplast genomes of Dalbergia include 37 tRNA genes, eight rRNA genes and 84 protein-coding genes. We analysed the sequence diversity of Dalberigia chloroplast genomes coupled with previous reports. The results showed 12 noncoding regions (rps16-accD, trnR-UCU-trnG-UCC, ndhE-ndhG, trnG-UCC-psbZ, rps8-rpl14, trnP-UGG-psaJ, ndhH-rps15, trnQ-UUG-rps16, trnS-GCU-psbI, rps12-clpP, psbA-trnK-UUU, trnK-UUU-intron), and four coding regions (rps16, ycf1, rps15 and ndhF) showed many nucleotide variations that could be used as potential molecular markers. Based on a site-specific model, we analysed the selective pressure of chloroplast genes in Dalbergia species. Twenty-two genes with positively selected sites were detected, involving the photosynthetic system (ndhC, adhD, ndhF, petB, psaA, psaB, psbB, psbC, psbK and rbcL), self-replication category of genes (rpoA, rpoC2, rps3, rps12 and rps18) and others (accD, ccsA, cemA, clpP, matK, ycf1 and ycf2). Additionally, we identified potential RNA editing sites that were relatively conserved in the genus Dalbergia. Furthermore, the comparative analysis of cp genomes of Dalbergieae species indicated that the boundary of IRs/SSC was highly variable, which resulted in the size variation of cp genomes. Finally, phylogenetic analysis showed an inferred phylogenetic tree of Papilionoideae species with high bootstrap support and suggested that Amorpheae was the sister of the clade Dalbergieae. Moreover, three genera of the Pterocarpus clade showed a nested evolutionary relationship. These complete cp genomes provided valuable information for understanding the genetic variation and phylogenetic relationship of Dalbergia species with their relatives.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
22
|
Xu Y, Dong Y, Cheng W, Wu K, Gao H, Liu L, Xu L, Gong B. Characterization and phylogenetic analysis of the complete mitochondrial genome sequence of Diospyros oleifera, the first representative from the family Ebenaceae. Heliyon 2022; 8:e09870. [PMID: 35847622 PMCID: PMC9283892 DOI: 10.1016/j.heliyon.2022.e09870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 01/30/2023] Open
Abstract
Plant mitochondrial genomes are a valuable source of genetic information for a better understanding of phylogenetic relationships. However, no mitochondrial genome of any species in Ebenaceae has been reported. In this study, we reported the first mitochondrial genome of an Ebenaceae model plant Diospyros oleifera. The mitogenome was 493,958 bp in length, contained 39 protein-coding genes, 27 transfer RNA genes, and 3 ribosomal RNA genes. The rps2 and rps11 genes were missing in the D. oleifera mt genome, while the rps10 gene was identified. The length of the repetitive sequence in the D. oleifera mt genome was 31 kb, accounting for 6.33%. A clear bias in RNA-editing sites were found in the D. oleifera mt genome. We also detected 28 chloroplast-derived fragments significantly associated with D. oleifera mt genes, indicating intracellular tRNA genes transferred frequently from chloroplasts to mitochondria in D. oleifera. Phylogenetic analysis based on the mt genomes of D. oleifera and 27 other taxa reflected the exact evolutionary and taxonomic status of D. oleifera. Ka/Ks analysis revealed that 95.16% of the protein-coding genes in the D. oleifera mt genome had undergone negative selections. But, the rearrangement of mitochondrial genes has been widely occur among D. oleifera and these observed species. These results will lay the foundation for identifying further evolutionary relationships within Ebenaceae.
Collapse
Affiliation(s)
- Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Yi Dong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Wenqiang Cheng
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Kaiyun Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Haidong Gao
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Lei Liu
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Lei Xu
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| |
Collapse
|
23
|
Yang J, Choi MJ, Kim SH, Choi HJ, Kim SC. Plastome Characterization and Phylogenomic Analysis Yield New Insights into the Evolutionary Relationships among the Species of the Subgenus Bryocles ( Hosta; Asparagaceae) in East Asia. PLANTS 2021; 10:plants10101980. [PMID: 34685791 PMCID: PMC8538707 DOI: 10.3390/plants10101980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The genus Hosta, which has a native distribution in temperate East Asia and a number of species ranging from 23 to 40, represents a taxonomically important and ornamentally popular plant. Despite its taxonomic and horticultural importance, the genus Hosta has remained taxonomically challenging owing to insufficient diagnostic features, continuous morphological variation, and the process of hybridization and introgression, making species circumscription and phylogenetic inference difficult. In this study, we sequenced 11 accessions of Hosta plastomes, including members of three geographically defined subgenera, Hosta, Bryocles, and Giboshi, determined the characteristics of plastomes, and inferred their phylogenetic relationships. We found highly conserved plastomes among the three subgenera, identified several mutation hotspots that can be used as barcodes, and revealed the patterns of codon usage bias and RNA editing sites. Five positively selected plastome genes (rbcL, rpoB, rpoC2, rpl16, and rpl20) were identified. Phylogenetic analysis suggested (1) the earliest divergence of subg. Hosta, (2) non-monophyly of subg. Bryocles and its two sections (Lamellatae and Stoloniferae), (3) a sister relationship between H. sieboldiana (subg. Giboshi) and H. ventricosa (subg. Bryocles), and (4) reciprocally monophyletic and divergent lineages of H. capitata in Korea and Japan, requiring further studies of their taxonomic distinction.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Ulleung-do & Dok-do, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Mi-Jung Choi
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea;
| | - Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea;
| | - Hyeok-Jae Choi
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea;
- Correspondence: (H.-J.C.); (S.-C.K.); Tel.: +82-55-213-3457 (H.-J.C.); +82-31-299-4499 (S.-C.K.)
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (H.-J.C.); (S.-C.K.); Tel.: +82-55-213-3457 (H.-J.C.); +82-31-299-4499 (S.-C.K.)
| |
Collapse
|
24
|
Choi KS, Park S. Complete Plastid and Mitochondrial Genomes of Aeginetia indica Reveal Intracellular Gene Transfer (IGT), Horizontal Gene Transfer (HGT), and Cytoplasmic Male Sterility (CMS). Int J Mol Sci 2021; 22:6143. [PMID: 34200260 PMCID: PMC8201098 DOI: 10.3390/ijms22116143] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022] Open
Abstract
Orobanchaceae have become a model group for studies on the evolution of parasitic flowering plants, and Aeginetia indica, a holoparasitic plant, is a member of this family. In this study, we assembled the complete chloroplast and mitochondrial genomes of A. indica. The chloroplast and mitochondrial genomes were 56,381 bp and 401,628 bp long, respectively. The chloroplast genome of A. indica shows massive plastid genes and the loss of one IR (inverted repeat). A comparison of the A. indica chloroplast genome sequence with that of a previous study demonstrated that the two chloroplast genomes encode a similar number of proteins (except atpH) but differ greatly in length. The A. indica mitochondrial genome has 53 genes, including 35 protein-coding genes (34 native mitochondrial genes and one chloroplast gene), 15 tRNA (11 native mitochondrial genes and four chloroplast genes) genes, and three rRNA genes. Evidence for intracellular gene transfer (IGT) and horizontal gene transfer (HGT) was obtained for plastid and mitochondrial genomes. ψndhB and ψcemA in the A. indica mitogenome were transferred from the plastid genome of A. indica. The atpH gene in the plastid of A. indica was transferred from another plastid angiosperm plastid and the atpI gene in mitogenome A. indica was transferred from a host plant like Miscanthus siensis. Cox2 (orf43) encodes proteins containing a membrane domain, making ORF (Open Reading Frame) the most likely candidate gene for CMS development in A. indica.
Collapse
Affiliation(s)
- Kyoung-Su Choi
- Institute of Natural Science, Yeungnam Univiersity, Gyeongsan-si 38541, Gyeongbuk-do, Korea;
- Department of Life Sciences, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Korea
| | - Seonjoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Korea
| |
Collapse
|
25
|
Zhang XF, Landis JB, Wang HX, Zhu ZX, Wang HF. Comparative analysis of chloroplast genome structure and molecular dating in Myrtales. BMC PLANT BIOLOGY 2021; 21:219. [PMID: 33992095 PMCID: PMC8122561 DOI: 10.1186/s12870-021-02985-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Myrtales is a species rich branch of Rosidae, with many species having important economic, medicinal, and ornamental value. At present, although there are reports on the chloroplast structure of Myrtales, a comprehensive analysis of the chloroplast structure of Myrtales is lacking. Phylogenetic and divergence time estimates of Myrtales are mostly constructed by using chloroplast gene fragments, and the support for relationships is low. A more reliable method to reconstruct the species divergence time and phylogenetic relationships is by using whole chloroplast genomes. In this study, we comprehensively analyzed the structural characteristics of Myrtales chloroplasts, compared variation hotspots, and reconstructed the species differentiation time of Myrtales with four fossils and one secondary calibration point. RESULTS A total of 92 chloroplast sequences of Myrtales, representing six families, 16 subfamilies and 78 genera, were obtained including nine newly sequenced chloroplasts by whole genome sequencing. Structural analyses showed that the chloroplasts range in size between 152,214-171,315 bp and exhibit a typical four part structure. The IR region is between 23,901-36,747 bp, with the large single copy region spanning 83,691-91,249 bp and the small single copy region spanning 11,150-19,703 bp. In total, 123-133 genes are present in the chloroplasts including 77-81 protein coding genes, four rRNA genes and 30-31 tRNA genes. The GC content was 36.9-38.9%, with the average GC content being 37%. The GC content in the LSC, SSC and IR regions was 34.7-37.3%, 30.6-36.8% and 39.7-43.5%, respectively. By analyzing nucleotide polymorphism of the chloroplast, we propose 21 hypervariable regions as potential DNA barcode regions for Myrtales. Phylogenetic analyses showed that Myrtales and its corresponding families are monophyletic, with Combretaceae and the clade of Onagraceae + Lythraceae (BS = 100%, PP = 1) being sister groups. The results of molecular dating showed that the crown of Myrtales was most likely to be 104.90 Ma (95% HPD = 87.88-114.18 Ma), and differentiated from the Geraniales around 111.59 Ma (95% HPD = 95.50-118.62 Ma). CONCLUSIONS The chloroplast genome structure of Myrtales is similar to other angiosperms and has a typical four part structure. Due to the expansion and contraction of the IR region, the chloroplast genome sizes in this group are slightly different. The variation of noncoding regions of the chloroplast genome is larger than those of coding regions. Phylogenetic analysis showed that Combretaceae and Onagraceae + Lythraceae were well supported as sister groups. Molecular dating indicates that the Myrtales crown most likely originated during the Albian age of the Lower Cretaceous. These chloroplast genomes contribute to the study of genetic diversity and species evolution of Myrtales, while providing useful information for taxonomic and phylogenetic studies of Myrtales.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, 14850, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Hong-Xin Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Zhi-Xin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Hua-Feng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
26
|
Liu S, Feng S, Huang Y, An W, Yang Z, Xie C, Zheng X. Characterization of the Complete Chloroplast Genome of Buddleja Lindleyana. J AOAC Int 2021; 105:202-210. [PMID: 33944934 DOI: 10.1093/jaoacint/qsab066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Buddleja lindleyana Fort., which belongs to the Loganiaceae with a distribution throughout the tropics, is widely used as an ornamental plant in China. Buddleja contains several morphologically similar species, which need to be identified by molecular identification. But there is little molecular research on the genus Buddleja. OBJECTIVE Using molecular biology techniques to sequence and analyze the complete chloroplast (cp) genome of B. lindleyana. METHODS According to next-generation sequencing to sequence the genome data, a series of bioinformatics software were used to assembly and analysis the molecular structure of cp genome of B. lindleyana. RESULTS The complete cp genome of B. lindleyana is a circular 154,487-bp-long molecule with a GC content of 38.1%. It has a familiar quadripartite structure, including a large single-copy region (LSC; 85,489 bp), a small single-copy region (SSC; 17,898bp) and a pair of inverted repeats (IRs; 25,550 bp). A total of 133 genes were identified in the genome, including 86 protein-coding genes, 37 tRNA genes, 8 rRNA genes and 2 pseudogenes. CONCLUSIONS These results suggested that B. lindelyana cp genome could be used as a potential genomic resource to resolve the phylogenetic positions and relationships of Loganiaceae, and will offer valuable information for future research in the identification of Buddleja species and will conduce to genomic investigations of these species.
Collapse
Affiliation(s)
- Shanshan Liu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shiyin Feng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405
| | - Yuying Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenli An
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zerui Yang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chunzhu Xie
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiasheng Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
27
|
Yang J, Chiang YC, Hsu TW, Kim SH, Pak JH, Kim SC. Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan. Sci Rep 2021; 11:1152. [PMID: 33441744 PMCID: PMC7806662 DOI: 10.1038/s41598-020-80143-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Genus Rubus represents the second largest genus of the family Rosaceae in Taiwan, with 41 currently recognized species across three subgenera (Chamaebatus, Idaoeobatus, and Malochobatus). Despite previous morphological and cytological studies, little is known regarding the overall phylogenetic relationships among the Rubus species in Taiwan, and their relationships to congeneric species in continental China. We characterized eight complete plastomes of Taiwan endemic Rubus species: subg. Idaeobatus (R. glandulosopunctatus, R. incanus, R. parviaraliifolius, R rubroangustifolius, R. taitoensis, and R. taiwanicolus) and subg. Malachobatus (R. kawakamii and R. laciniastostipulatus) to determine their phylogenetic relationships. The plastomes were highly conserved and the size of the complete plastome sequences ranged from 155,566 to 156,236 bp. The overall GC content ranged from 37.0 to 37.3%. The frequency of codon usage showed similar patterns among species, and 29 of the 73 common protein-coding genes were positively selected. The comparative phylogenomic analysis identified four highly variable intergenic regions (rps16/trnQ, petA/psbJ, rpl32/trnL-UAG, and trnT-UGU/trnL-UAA). Phylogenetic analysis of 31 representative complete plastomes within the family Rosaceae revealed three major lineages within Rubus in Taiwan. However, overall phylogenetic relationships among endemic species require broader taxon sampling to gain new insights into infrageneric relationships and their plastome evolution.
Collapse
Affiliation(s)
- JiYoung Yang
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tsai-Wen Hsu
- Taiwan Endemic Species Research Institute, 1 Mingshen East Road, Chichi Township, Nantou, 55244, Taiwan
| | - Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae-Hong Pak
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
28
|
Yang J, Takayama K, Youn JS, Pak JH, Kim SC. Plastome Characterization and Phylogenomics of East Asian Beeches with a Special Emphasis on Fagus multinervis on Ulleung Island, Korea. Genes (Basel) 2020; 11:E1338. [PMID: 33198274 PMCID: PMC7697516 DOI: 10.3390/genes11111338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
Beech trees of the genus Fagus (Fagaceae) are monoecious and distributed in the Northern Hemisphere. They represent an important component of mixed broad-leaved evergreen-deciduous forests and are an economically important source of timber. Despite their ecological and economical importance, however, little is known regarding the overall plastome evolution among Fagus species in East Asia. In particular, the taxonomic position and status of F. multinervis, a beech species endemic to Ulleung Island of Korea, remains unclear even today. Therefore, in this study, we characterized four newly completed plastomes of East Asian Fagus species (one accession each of F. crenata and F. multinervis and two accessions of F. japonica). Moreover, we performed phylogenomic analyses comparing these four plastomes with F. sylvatica (European beech) plastome. The four plastomes were highly conserved, and their size ranged from 158,163 to 158,348 base pair (bp). The overall GC content was 37.1%, and the sequence similarity ranged from 99.8% to 99.99%. Codon usage patterns were similar among species, and 7 of 77 common protein-coding genes were under positive selection. Furthermore, we identified five highly variable hotspot regions of the Fagus plastomes (ccsA/ndhD, ndhD/psaC, ndhF/rpl32, trnS-GCU/trnG-UCC, and ycf1). Phylogenetic analysis revealed the monophyly of Fagus as well as early divergence of the subgenus Fagus and monophyletic Engleriana. Finally, phylogenetic results supported the taxonomic distinction of F. multinervis from its close relatives F. engleriana and F. japonica. However, the sister species and geographic origin of F. multinervis on Ulleung Island could not be determined.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan;
| | - Jin-Suk Youn
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Gyeonggi-do, Suwon 16419, Korea
| |
Collapse
|
29
|
Sullivan AR, Eldfjell Y, Schiffthaler B, Delhomme N, Asp T, Hebelstrup KH, Keech O, Öberg L, Møller IM, Arvestad L, Street NR, Wang XR. The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants. Genome Biol Evol 2020; 12:3586-3598. [PMID: 31774499 PMCID: PMC6944214 DOI: 10.1093/gbe/evz263] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their infancy and some key aspects of genome evolution are still known mainly from pregenomic, qualitative methods. To help address these limitations, we combined machine learning and in silico enrichment of mitochondrial-like long reads to assemble the bacterial-sized mitogenome of Norway spruce (Pinaceae: Picea abies). We conducted comparative analyses of repeat abundance, intergenomic transfers, substitution and rearrangement rates, and estimated repeat-by-repeat homologous recombination rates. Prompted by our discovery of highly recombinogenic small repeats in P. abies, we assessed the genomic support for the prevailing hypothesis that intramolecular recombination is predominantly driven by repeat length, with larger repeats facilitating DNA exchange more readily. Overall, we found mixed support for this view: Recombination dynamics were heterogeneous across vascular plants and highly active small repeats (ca. 200 bp) were present in about one-third of studied mitogenomes. As in previous studies, we did not observe any robust relationships among commonly studied genome attributes, but we identify variation in recombination rates as a underinvestigated source of plant mitogenome diversity.
Collapse
Affiliation(s)
- Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Sweden
| | - Yrin Eldfjell
- Science for Life Laboratory, Department of Mathematics, Swedish e-Science Research Centre, Stockholm University, Sweden
| | - Bastian Schiffthaler
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Lisa Öberg
- Oldtjikko Photo Art & Science, Duved, Sweden
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Lars Arvestad
- Science for Life Laboratory, Department of Mathematics, Swedish e-Science Research Centre, Stockholm University, Sweden
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Sweden
| |
Collapse
|
30
|
Yang J, Kang GH, Pak JH, Kim SC. Characterization and Comparison of Two Complete Plastomes of Rosaceae Species ( Potentilla dickinsii var. glabrata and Spiraea insularis) Endemic to Ulleung Island, Korea. Int J Mol Sci 2020; 21:E4933. [PMID: 32668601 PMCID: PMC7404287 DOI: 10.3390/ijms21144933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Potentilla dickinsii var. glabrata and Spiraea insularis in the family Rosaceae are species endemic to Ulleung Island, Korea, the latter of which is listed as endangered. In this study, we characterized the complete plastomes of these two species and compared these with previously reported plastomes of other Ulleung Island endemic species of Rosaceae (Cotoneaster wilsonii, Prunus takesimensis, Rubus takesimensis, and Sorbus ulleungensis). The highly conserved complete plastomes of P. dickinsii var. glabrata and S. insularis are 158,637 and 155,524 base pairs with GC contents of 37% and 36.9%, respectively. Comparative phylogenomic analysis identified three highly variable intergenic regions (trnT-UGU/trnL-UAA, rpl32/trnL-UAG, and ndhF/rpl32) and one variable genic region (ycf1). Only 14 of the 75 protein-coding genes have been subject to strong purifying selection. Phylogenetic analysis of 23 representative plastomes within the Rosaceae supported the monophyly of Potentilla and the sister relationship between Potentilla and Fragaria and indicated that S. insularis is sister to a clade containing Cotoneaster, Malus, Pyrus, and Sorbus. The plastome resources generated in this study will contribute to elucidating the plastome evolution of insular endemic Rosaceae on Ulleung Island and also in assessing the genetic consequences of anagenetic speciation for various endemic lineages on the island.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea;
| | - Gi-Ho Kang
- Baekdudaegan National Arboretum, 1501 Chunyang-ro, Chungyang-myeon, Bonghwa-gun, Gyeongsangbuk-do 36209, Korea;
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea;
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do 16419, Korea
| |
Collapse
|
31
|
Hong Z, Wu Z, Zhao K, Yang Z, Zhang N, Guo J, Tembrock LR, Xu D. Comparative Analyses of Five Complete Chloroplast Genomes from the Genus Pterocarpus (Fabacaeae). Int J Mol Sci 2020; 21:E3758. [PMID: 32466556 PMCID: PMC7312355 DOI: 10.3390/ijms21113758] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Pterocarpus is a genus of trees mainly distributed in tropical Asia, Africa, and South America. Some species of Pterocarpus are rosewood tree species, having important economic value for timber, and for some species, medicinal value as well. Up to now, information about this genus with regard to the genomic characteristics of the chloroplasts has been limited. Based on a combination of next-generation sequencing (Illumina Hiseq) and long-read sequencing (PacBio), the whole chloroplast genomes (cp genomes) of five species (rosewoods) in Pterocarpus (Pterocarpus macrocarpus, P. santalinus, P. indicus, P. pedatus, P. marsupium) have been assembled. The cp genomes of five species in Pterocarpus have similar structural characteristics, gene content, and sequence to other flowering plants. The cp genomes have a typical four-part structure, containing 110 unique genes (77 protein coding genes, 4 rRNAs, 29 tRNAs). Through comparative genomic analysis, abundant simple sequence repeat (SSR)loci (333-349) were detected in Pterocarpus, among which A /T single nucleotide repeats accounted for the highest proportion (72.8-76.4%). In the five cp genomes of Pterocarpus, eight hypervariable regions, including trnH-GUG_psbA, trnS-UGA_psbC, accD-psaI, ndhI-exon2_ndhI-exon1, ndhG_ndhi-exon2, rpoC2-exon2, ccsA, and trnfM-CAU, are proposed for use as DNA barcode regions. In the comparison of gene selection pressures (P. santalinus as the reference genome), purifying selection was inferred as the primary mode of selection in maintaining important biological functions. Phylogenetic analysis shows that Pterocarpus is a monophyletic group. The species P. tinctorius is resolved as early diverging in the genus. Pterocarpus was resolved as sister to the genus Tipuana.
Collapse
Affiliation(s)
- Zhou Hong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (Z.H.); (K.Z.); (Z.Y.); (N.Z.); (J.G.)
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Kunkun Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (Z.H.); (K.Z.); (Z.Y.); (N.Z.); (J.G.)
| | - Zengjiang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (Z.H.); (K.Z.); (Z.Y.); (N.Z.); (J.G.)
| | - Ningnan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (Z.H.); (K.Z.); (Z.Y.); (N.Z.); (J.G.)
| | - Junyu Guo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (Z.H.); (K.Z.); (Z.Y.); (N.Z.); (J.G.)
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Daping Xu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (Z.H.); (K.Z.); (Z.Y.); (N.Z.); (J.G.)
| |
Collapse
|
32
|
Wu HH, Zhao XH, Zong XY, Ding R, Chen XH. Complete mitochondrial genome of Medinilla magnifica (Myrtales, Melastomataceae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1749173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Hai-Hong Wu
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xing-Hua Zhao
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xiao-Yan Zong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Rui Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Xu-Hui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
33
|
Zhang GJ, Dong R, Lan LN, Li SF, Gao WJ, Niu HX. Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants. Int J Mol Sci 2020; 21:ijms21030707. [PMID: 31973163 PMCID: PMC7037861 DOI: 10.3390/ijms21030707] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ran Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| | - Hong-Xing Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| |
Collapse
|
34
|
Methods and Tools for Plant Organelle Genome Sequencing, Assembly, and Downstream Analysis. Methods Mol Biol 2020; 2107:49-98. [PMID: 31893443 DOI: 10.1007/978-1-0716-0235-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Organelles play an important role in a eukaryotic cell. Among them, the two organelles, chloroplast and mitochondria, are responsible for the critical function of photosynthesis and aerobic respiration. Organellar genomes are also very important for plant systematic studies. Here we have described the methods for isolation of the mitochondrial and plastid DNA and its subsequent sequencing with the help of NGS technology. We have also discussed in detail the various tools available for assembly, annotation, and visualization of the organelle genome sequence.
Collapse
|
35
|
Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Mol Phylogenet Evol 2019; 142:106641. [PMID: 31605813 DOI: 10.1016/j.ympev.2019.106641] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
The family Caprifoliaceae s.l. is an asterid angiosperm clade of ca. 960 species, most of which are distributed in temperate regions of the northern hemisphere. Recent studies show that the family comprises seven major clades: Linnaeoideae, Zabelia, Morinoideae, Dipsacoideae, Valerianoideae, Caprifolioideae, and Diervilloideae. However, its phylogeny at the subfamily or genus level remains controversial, and the backbone relationships among subfamilies are incompletely resolved. In this study, we utilized complete plastome sequencing to resolve the relationships among the subfamilies of the Caprifoliaceae s.l. and clarify several long-standing controversies. We generated and analyzed plastomes of 48 accessions of Caprifoliaceae s.l., representing 44 species, six subfamilies and one genus. Combined with available Caprifoliaceae s.l. plastomes on GenBank and 12 outgroups, we analyzed a final dataset of 68 accessions. Genome structure was strongly conserved in general, although the boundaries between the Inverted Repeat were found to have contracted across Caprifoliaceae s.l. to exclude rpl2, rps19, and ycf1, all or parts of which are typically present in the IR of most angiosperms. The ndhF gene was found to have been inverted in all plastomes of Adoxaceae. Phylogenomic analyses of 68 complete plastomes yielded a highly supported topology that strongly supported the monophyly of Zabelia and its sister relationship to Morinoideae. Moreover, a clade of Valerianoideae + Dipsacoideae was recovered as sister to a clade of Linnaeoideae + Zabelia + Morinoideae clade, and Heptacodium was sister to remaining Caprifolioideae. The Diervilloideae and Caprifolioideae were successively sister to all other Caprifoliaceae s.l. Major lineages of Caprifoliaceae s.l. were estimated to have diverged from the Upper Cretaceous to the Eocene (50-100 Ma), whereas within-genus diversification was dated to the Oligocene and later, concomitant with global cooling and drying. Our results demonstrate the power of plastid phylogenomics in improving estimates of phylogeny among genera and subfamilies, and provide new insights into plastome evolution across Caprifoliaceae s.l.
Collapse
|
36
|
Kim SH, Yang J, Park J, Yamada T, Maki M, Kim SC. Comparison of Whole Plastome Sequences between Thermogenic Skunk Cabbage Symplocarpus renifolius and Nonthermogenic S. nipponicus (Orontioideae; Araceae) in East Asia. Int J Mol Sci 2019; 20:E4678. [PMID: 31547213 PMCID: PMC6801674 DOI: 10.3390/ijms20194678] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Symplocarpus, a skunk cabbage genus, includes two sister groups, which are drastically different in life history traits and thermogenesis, as follows: The nonthermogenic summer flowering S. nipponicus and thermogenic early spring flowering S. renifolius. Although the molecular basis of thermogenesis and complete chloroplast genome (plastome) of thermogenic S. renifolius have been well characterized, very little is known for that of S. nipponicus. We sequenced the complete plastomes of S. nipponicus sampled from Japan and Korea and compared them with that of S. renifolius sampled from Korea. The nonthermogenic S. nipponicus plastomes from Japan and Korea had 158,322 and 158,508 base pairs, respectively, which were slightly shorter than the thermogenic plastome of S. renifolius. No structural or content rearrangements between the species pairs were found. Six highly variable noncoding regions (psbC/trnS, petA/psbJ, trnS/trnG, trnC/petN, ycf4/cemA, and rpl3/rpl22) were identified between S. nipponicus and S. renifolius and 14 hot-spot regions were also identified at the subfamily level. We found a similar total number of SSR (simple sequence repeat) motifs in two accessions of S. nipponicus sampled from Japan and Korea. Phylogenetic analysis supported the basal position of subfamily Orontioideae and the monophyly of genus Symplocarpus, and also revealed an unexpected evolutionary relationship between S. nipponicus and S. renifolius.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, Kyungpook National University, Daegu, Gyeongsangbuk-do 41566, Korea.
| | | | - Takayuki Yamada
- Botanical Gardens, Tohoku University, Sendai 980-0862, Japan.
| | - Masayuki Maki
- Botanical Gardens, Tohoku University, Sendai 980-0862, Japan.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
37
|
The Complete Chloroplast Genomes of Punica granatum and a Comparison with Other Species in Lythraceae. Int J Mol Sci 2019; 20:ijms20122886. [PMID: 31200508 PMCID: PMC6627765 DOI: 10.3390/ijms20122886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
Pomegranates (Punica granatum L.) are one of the most popular fruit trees cultivated in arid and semi-arid tropics and subtropics. In this study, we determined and characterized three complete chloroplast (cp) genomes of P. granatum cultivars with different phenotypes using the genome skimming approach. The complete cp genomes of three pomegranate cultivars displayed the typical quadripartite structure of angiosperms, and their length ranged from 156,638 to 156,639 bp. They encoded 113 unique genes and 17 are duplicated in the inverted regions. We analyzed the sequence diversity of pomegranate cp genomes coupled with two previous reports. The results showed that the sequence diversity is extremely low and no informative sites were detected, which suggests that cp genome sequences may be not be suitable for investigating the genetic diversity of pomegranate genotypes. Further, we analyzed the codon usage pattern and identified the potential RNA editing sites. A comparative cp genome analysis with other species within Lythraceae revealed that the gene content and organization are highly conserved. Based on a site-specific model, 11 genes with positively selected sites were detected, and most of them were photosynthesis-related genes and genetic system-related genes. Together with previously released cp genomes of the order Myrtales, we determined the taxonomic position of P. granatum based on the complete chloroplast genomes. Phylogenetic analysis suggested that P. granatum form a single clade with other species from Lythraceae with a high support value. The complete cp genomes provides valuable information for understanding the phylogenetic position of P. gramatum in the order Myrtales.
Collapse
|