1
|
Aier I, Dubey N, Varadwaj PK. Structural dynamics of olfactory receptors: implications for odorant binding and activation mechanisms. J Biomol Struct Dyn 2025:1-12. [PMID: 40244808 DOI: 10.1080/07391102.2025.2492235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
Olfaction, an ancient and intricate process, profoundly shapes human innate responses yet remains relatively understudied compared to other sensory modalities. Olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family, play a pivotal role in detecting and discriminating a vast array of odorants. This comprehensive study explores the functional roles of five diverse ORs: OR1A1, OR2W1, OR11A1, OR51E1 and OR51E2, through detailed investigations into the differences between their apo and odorant-bound forms. By examining key residues and mutations, the possible molecular mechanisms that underlie the modulation of binding landscapes and the consequent alterations in OR stability were elucidated. The findings revealed dynamic conformational changes in ORs upon odorant binding, characterized by hinging motions and tilting of transmembrane helices. Using residue interaction network analyses, critical residues involved in mediating interactions between ORs and odorants were uncovered, shedding light on the molecular determinants of olfactory perception. By examining changes in binding pocket volume and per-residue energy decomposition, the dynamic nature of OR activation and the influence of mutations on receptor stability and functionality was observed.
Collapse
Affiliation(s)
- Imlimaong Aier
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Nidhi Dubey
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
2
|
Kang M, Ahn B, Shin JY, Cho HS, Lee J, Park C. Influence of MHC on genetic diversity and testicular expression of linked olfactory receptor genes. BMC Genomics 2025; 26:115. [PMID: 39915713 PMCID: PMC11800647 DOI: 10.1186/s12864-025-11281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Olfactory receptor (OR) genes are highly polymorphic and form extensive families that recognize a wide range of vertebrate odorants. To explore the genetic diversity of MHC-linked OR genes and their connection to MHC genes, we conducted a combined haplotype analysis of MHC-linked OR and MHC class I genes to determine the influence of MHC on OR diversity, which could be associated with MHC-based mate selection. RESULTS We selected nine MHC-linked OR genes based on their expression levels in pig testes and developed a sequence-based typing method for these genes. We then performed high-resolution typing of these OR genes, along with three major classical MHC class I genes (SLA-1, -2, and - 3), in 48 pigs across six breeds. We observed significantly higher allelic diversity (P < 0.01) in ORs with strong linkage disequilibrium (LD) to SLA compared to those with weak or no LD, and we identified 48 SLA class I-OR haplotypes using the expectation-maximization algorithm. The genetic diversity of SLA-linked ORs was positively correlated with their expression levels in the testis. Specifically, SLA-linked ORs with higher testicular expression (FPKM ≥ 0.1) exhibited an increase in the number of codons under mutually diversifying selection with SLA compared to those with lower expression (FPKM < 0.1). CONCLUSIONS The presence of evolutionary interactions between MHC and linked OR genes supports the potential involvement of MHC-linked ORs in MHC-based mate selection. The use of combined haplotype information for MHC and linked ORs could provide new insights into the reproductive biology of animals.
Collapse
Affiliation(s)
- Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jae Yeol Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye-Sun Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jongan Lee
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Low VF, Lin C, Su S, Osanlouy M, Khan M, Safaei S, Maso Talou G, Curtis MA, Mombaerts P. Visualizing the human olfactory projection and ancillary structures in a 3D reconstruction. Commun Biol 2024; 7:1467. [PMID: 39516237 PMCID: PMC11549439 DOI: 10.1038/s42003-024-07017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Visualizing in 3D the histological microanatomy of the human olfactory projection from the olfactory mucosa in the nasal cavity to the olfactory bulbs in the cranial cavity necessitates a workflow for handling a great many sections. Here, we assembled a 3D reconstruction of a 7.45 cm3 en-bloc specimen extracted from an embalmed human cadaver. A series of 10 µm coronal sections was stained with quadruple fluorescence histology and scanned in four channels. A trained anatomist manually segmented six structures of interest in a subset of the sections to generate the ground truth. Six convolutional neural networks were then trained for automatic segmentation of these structures in 1234 sections. A high-performance computing solution was engineered to register the sections based on the fluorescence signal and segmented structures. The resulting 3D visualization offers several novel didactic opportunities of interactive exploration and virtual manipulation. By extrapolating manual counts of OSNs in a subset of sections to the calculated volume of the envelope of the entire olfactory epithelium, we computed a total of ~2.7 million OSNs in the specimen. Such empirically derived information helps assess the extent to which the organizational principles of the human olfactory projection may differ from those in mice.
Collapse
Affiliation(s)
- Victoria F Low
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Chinchien Lin
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shan Su
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mahyar Osanlouy
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Soroush Safaei
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Gonzalo Maso Talou
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand.
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| |
Collapse
|
4
|
Yang J, Shi P, Li Y, Zuo Y, Nie Y, Xu T, Peng D, An Z, Huang T, Zhang J, Zhang W, Xu Y, Tang Z, Li A, Xu J. Regulatory mechanisms orchestrating cellular diversity of Cd36+ olfactory sensory neurons revealed by scRNA-seq and scATAC-seq analysis. Cell Rep 2024; 43:114671. [PMID: 39215999 DOI: 10.1016/j.celrep.2024.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/12/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Recent discoveries have revealed remarkable complexity within olfactory sensory neurons (OSNs), including the existence of two OSN populations based on the expression of Cd36. However, the regulatory mechanisms governing this cellular diversity in the same cell type remain elusive. Here, we show the preferential expression of 79 olfactory receptors in Cd36+ OSNs and the anterior projection characteristics of Cd36+ OSNs, indicating the non-randomness of Cd36 expression. The integrated analysis of single-cell RNA sequencing (scRNA-seq) and scATAC-seq reveals that the differences in Cd36+/- OSNs occur at the immature OSN stage, with Mef2a and Hdac9 being important regulators of developmental divergence. We hypothesize that the absence of Hdac9 may affect the activation of Mef2a, leading to the up-regulation of Mef2a target genes, including teashirt zinc finger family member 1 (Tshz1), in the Cd36+ OSN lineage. We validate that Tshz1 directly promotes Cd36 expression through enhancer bindings. Our study unravels the intricate regulatory landscape and principles governing cellular diversity in the olfactory system.
Collapse
Affiliation(s)
- Jiawen Yang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peiyu Shi
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yiheng Li
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yachao Zuo
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dongjie Peng
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tingting Huang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingyi Zhang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Weixing Zhang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yicong Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhongjie Tang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
6
|
Yusuf N, Monahan K. Epigenetic programming of stochastic olfactory receptor choice. Genesis 2024; 62:e23593. [PMID: 38562011 PMCID: PMC11003729 DOI: 10.1002/dvg.23593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.
Collapse
Affiliation(s)
- Nusrath Yusuf
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| | - Kevin Monahan
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Policarpo M, Baldwin MW, Casane D, Salzburger W. Diversity and evolution of the vertebrate chemoreceptor gene repertoire. Nat Commun 2024; 15:1421. [PMID: 38360851 PMCID: PMC10869828 DOI: 10.1038/s41467-024-45500-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Chemoreception - the ability to smell and taste - is an essential sensory modality of most animals. The number and type of chemical stimuli that animals can perceive depends primarily on the diversity of chemoreceptors they possess and express. In vertebrates, six families of G protein-coupled receptors form the core of their chemosensory system, the olfactory/pheromone receptor gene families OR, TAAR, V1R and V2R, and the taste receptors T1R and T2R. Here, we study the vertebrate chemoreceptor gene repertoire and its evolutionary history. Through the examination of 1,527 vertebrate genomes, we uncover substantial differences in the number and composition of chemoreceptors across vertebrates. We show that the chemoreceptor gene families are co-evolving, highly dynamic, and characterized by lineage-specific expansions (for example, OR in tetrapods; TAAR, T1R in teleosts; V1R in mammals; V2R, T2R in amphibians) and losses. Overall, amphibians, followed by mammals, are the vertebrate clades with the largest chemoreceptor repertoires. While marine tetrapods feature a convergent reduction of chemoreceptor numbers, the number of OR genes correlates with habitat in mammals and birds and with migratory behavior in birds, and the taste receptor repertoire correlates with diet in mammals and with aquatic environment in fish.
Collapse
Affiliation(s)
- Maxime Policarpo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
- Université Paris Cité, UFR Sciences du Vivant, Paris, France
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Lalis M, Hladiš M, Abi Khalil S, Deroo C, Marin C, Bensafi M, Baldovini N, Briand L, Fiorucci S, Topin J. A status report on human odorant receptors and their allocated agonists. Chem Senses 2024; 49:bjae037. [PMID: 39400708 DOI: 10.1093/chemse/bjae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 10/15/2024] Open
Abstract
Olfactory perception begins when odorous substances interact with specialized receptors located on the surface of dedicated sensory neurons. The recognition of smells depends on a complex mechanism involving a combination of interactions between an odorant and a set of odorant receptors (ORs), where molecules are recognized according to a combinatorial activation code of ORs. Although these interactions have been studied for decades, the rules governing this ligand recognition remain poorly understood, and the complete combinatorial code is only known for a handful of odorants. We have carefully analyzed experimental results regarding the interactions between ORs and molecules to provide a status report on the deorphanization of ORs, i.e. the identification of the first agonist for a given sequence. This meticulous analysis highlights the influence of experimental methodology (cell line or readout) on molecule-receptor association results and shows that 83% of the results are conserved regardless of experimental conditions. The distribution of another key parameter, EC50, indicates that most OR ligand activities are in the micromolar range and that impurities could lead to erroneous conclusions. Focusing on the human ORs, our study shows that 88% of the documented sequences still need to be deorphanized. Finally, we also estimate the size of the ORs' recognition range, or broadness, as the number of odorants activating a given OR. By analogously estimating molecular broadness and combining the two estimates we propose a basic framework that can serve as a comparison point for future machine learning algorithms predicting OR-molecule activity.
Collapse
Affiliation(s)
- Maxence Lalis
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Matej Hladiš
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Samar Abi Khalil
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Christophe Deroo
- Expressions Parfumées, 136 chemin de St Marc, 06130, Grasse, France
| | - Christophe Marin
- Expressions Parfumées, 136 chemin de St Marc, 06130, Grasse, France
| | - Moustafa Bensafi
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, University Claude Bernard Lyon, Bron, France
| | - Nicolas Baldovini
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Jérémie Topin
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| |
Collapse
|
9
|
Gerovska D, Noer JB, Qin Y, Ain Q, Januzi D, Schwab M, Witte OW, Araúzo-Bravo MJ, Kretz A. A distinct circular DNA profile intersects with proteome changes in the genotoxic stress-related hSOD1 G93A model of ALS. Cell Biosci 2023; 13:170. [PMID: 37705092 PMCID: PMC10498603 DOI: 10.1186/s13578-023-01116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Numerous genes, including SOD1, mutated in familial and sporadic amyotrophic lateral sclerosis (f/sALS) share a role in DNA damage and repair, emphasizing genome disintegration in ALS. One possible outcome of chromosomal instability and repair processes is extrachromosomal circular DNA (eccDNA) formation. Therefore, eccDNA might accumulate in f/sALS with yet unknown function. METHODS We combined rolling circle amplification with linear DNA digestion to purify eccDNA from the cervical spinal cord of 9 co-isogenic symptomatic hSOD1G93A mutants and 10 controls, followed by deep short-read sequencing. We mapped the eccDNAs and performed differential analysis based on the split read signal of the eccDNAs, referred as DifCir, between the ALS and control specimens, to find differentially produced per gene circles (DPpGC) in the two groups. Compared were eccDNA abundances, length distributions and genic profiles. We further assessed proteome alterations in ALS by mass spectrometry, and matched the DPpGCs with differentially expressed proteins (DEPs) in ALS. Additionally, we aligned the ALS-specific DPpGCs to ALS risk gene databases. RESULTS We found a six-fold enrichment in the number of unique eccDNAs in the genotoxic ALS-model relative to controls. We uncovered a distinct genic circulome profile characterized by 225 up-DPpGCs, i.e., genes that produced more eccDNAs from distinct gene sequences in ALS than under control conditions. The inter-sample recurrence rate was at least 89% for the top 6 up-DPpGCs. ALS proteome analyses revealed 42 corresponding DEPs, of which 19 underlying genes were itemized for an ALS risk in GWAS databases. The up-DPpGCs and their DEP tandems mainly impart neuron-specific functions, and gene set enrichment analyses indicated an overrepresentation of the adenylate cyclase modulating G protein pathway. CONCLUSIONS We prove, for the first time, a significant enrichment of eccDNA in the ALS-affected spinal cord. Our triple circulome, proteome and genome approach provide indication for a potential importance of certain eccDNAs in ALS neurodegeneration and a yet unconsidered role as ALS biomarkers. The related functional pathways might open up new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Julie B Noer
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Yating Qin
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Quratul Ain
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Department of Internal Medicine IV, Hepatology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Donjetë Januzi
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
- Basque Foundation for Science, IKERBASQUE, 48013, Bilbao, Spain.
- Max Planck Institute for Molecular Biomedicine, Computational Biology and Bioinformatics Group, 48149, Münster, North Rhine-Westphalia, Germany.
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain.
| | - Alexandra Kretz
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany.
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany.
| |
Collapse
|
10
|
Jaroszewicz A, Ernst J. ChromGene: gene-based modeling of epigenomic data. Genome Biol 2023; 24:203. [PMID: 37679846 PMCID: PMC10486095 DOI: 10.1186/s13059-023-03041-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Various computational approaches have been developed to annotate epigenomes on a per-position basis by modeling combinatorial and spatial patterns within epigenomic data. However, such annotations are less suitable for gene-based analyses. We present ChromGene, a method based on a mixture of learned hidden Markov models, to annotate genes based on multiple epigenomic maps across the gene body and flanks. We provide ChromGene assignments for over 100 cell and tissue types. We characterize the mixture components in terms of gene expression, constraint, and other gene annotations. The ChromGene method and annotations will provide a useful resource for gene-based epigenomic analyses.
Collapse
Affiliation(s)
- Artur Jaroszewicz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Computer Science Department, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Computational Medicine Department, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Andrews G, Fan K, Pratt HE, Phalke N, Karlsson EK, Lindblad-Toh K, Gazal S, Moore JE, Weng Z, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, et alAndrews G, Fan K, Pratt HE, Phalke N, Karlsson EK, Lindblad-Toh K, Gazal S, Moore JE, Weng Z, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Mammalian evolution of human cis-regulatory elements and transcription factor binding sites. Science 2023; 380:eabn7930. [PMID: 37104580 DOI: 10.1126/science.abn7930] [Show More Authors] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Understanding the regulatory landscape of the human genome is a long-standing objective of modern biology. Using the reference-free alignment across 241 mammalian genomes produced by the Zoonomia Consortium, we charted evolutionary trajectories for 0.92 million human candidate cis-regulatory elements (cCREs) and 15.6 million human transcription factor binding sites (TFBSs). We identified 439,461 cCREs and 2,024,062 TFBSs under evolutionary constraint. Genes near constrained elements perform fundamental cellular processes, whereas genes near primate-specific elements are involved in environmental interaction, including odor perception and immune response. About 20% of TFBSs are transposable element-derived and exhibit intricate patterns of gains and losses during primate evolution whereas sequence variants associated with complex traits are enriched in constrained TFBSs. Our annotations illuminate the regulatory functions of the human genome.
Collapse
Affiliation(s)
- Gregory Andrews
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kaili Fan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Henry E Pratt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nishigandha Phalke
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Elinor K Karlsson
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132 Uppsala, Sweden
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jill E Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alradhi M, Wen S, Safi M, Al‐danakh A, Wang H, Shopit A, Sun M, Fan B, Li X. Molecular genetic and clinical characteristic analysis of primary signet ring cell carcinoma of urinary bladder identified by a novel OR2L5 mutation. Cancer Med 2023; 12:3931-3951. [PMID: 36779496 PMCID: PMC9972163 DOI: 10.1002/cam4.5121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
To get a better understanding of the genetic basis of primary signet ring cell carcinoma (SRCC) of the bladder, which is highly rare and not yet explored. First, by using immunohistochemistry to find histological pathological characteristics. Second, a massively parallel whole-exome sequencing (WES) was performed on a 58-year-old male patient who had painless macroscopic hematuria and was pathologically diagnosed with primary SRCC of the bladder, followed by comparing with genes of ordinary urothelial cancer (UC) from TCGA. Furthermore, a population-based analysis using the SEER database was performed to investigate the prognosis (SRCC vs. UC). We identified 63 copy number variations (CNVs) with gain counts and 181 CNVs with loss counts. Totally 4515 mutations were discovered in C > T with a success rate of greater than 89%. The most frequently mutated pathway was RTK-RAS which has 85 genes involved in carcinogenic signaling. Final screening on predisposing genes is performed after filtering based on ACMG. Moreover, several driver genes, including NBN, KCTD18, SPATA13, ANKRD36, OR2L5, MALRD1, and LSMEM1, were detected. Sanger sequencing of germline DNA revealed the presence of a mutant base A/G of OR2L5 in the sequence, which was discovered for the first time in primary SRCC of the bladder. Furthermore, the immunohistochemical profile showed that primary SRCC of the bladder were positive for CK7, CK20, GATA-3, and expression of CK(AE1/AE2), EMA, and Ki67. In the SEER-based study, the patients with primary SRCC of the bladder got a worse prognosis compared to those with UC with median months overall survival (OS) 14 vs. 41, respectively, P = 0001, even after adjusting the variables in the Cox regression model, the SRCC of the bladder showed worse survival HR = 1.119, 95% CI = (1.081-1.328), P = 0.0001. These results imply that suppression of potential driver mutations may be a viable adjuvant treatment approach for primary SRCC in the bladder in place of standard chemotherapy, a possibility that warrants further clinical investigation.
Collapse
Affiliation(s)
- Mohammed Alradhi
- Department of Urology, Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Shuang Wen
- Department of Pathology, Dalian Friendship HospitalDalianChina
| | - Mohammed Safi
- Department of Respiratory DiseasesShandong Second Provincial General Hospital Shandong UniversityShandongChina
| | - Abdullah Al‐danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Honglong Wang
- Department of Pathology, Dalian Friendship HospitalDalianChina
| | - Abdullah Shopit
- Department of Pharmacology, Dalian Medical UniversityDalianChina
| | - Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of MedicineHubeiChina
| | - Bo Fan
- Department of Urology, Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiancheng Li
- Department of Urology, Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
13
|
Nagai MH, Matsunami H. Activity-Dependent Labeling of Olfactory Sensory Neurons Using RNA Fluorescence In Situ Hybridization Followed by Phospho-S6 Immunofluorescence. Methods Mol Biol 2023; 2710:83-97. [PMID: 37688726 DOI: 10.1007/978-1-0716-3425-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This microscope-based method allows demonstrating that an odorant receptor responded to an odorant in vivo. In sections of olfactory epithelium from odorant-exposed mice, the subpopulation of olfactory sensory neurons expressing a particular odorant receptor type is labeled using RNA fluorescence in situ hybridization. Sequential immunofluorescence against the phosphorylated S6 ribosomal subunit reveals the activated olfactory sensory neurons. The presence of double-labeled cells confirms that the particular odorant receptor type was activated by the odorant stimulation.
Collapse
Affiliation(s)
- Maira Harume Nagai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Durham, NC, USA.
| |
Collapse
|
14
|
de March CA, Matsunami H, Abe M, Cobb M, Hoover KC. Genetic and functional odorant receptor variation in the Homo lineage. iScience 2022; 26:105908. [PMID: 36691623 PMCID: PMC9860384 DOI: 10.1016/j.isci.2022.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/07/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Humans, Neanderthals, and Denisovans independently adapted to a wide range of geographic environments and their associated food odors. Using ancient DNA sequences, we explored the in vitro function of thirty odorant receptor genes in the genus Homo. Our extinct relatives had highly conserved olfactory receptor sequence, but humans did not. Variations in odorant receptor protein sequence and structure may have produced variation in odor detection and perception. Variants led to minimal changes in specificity but had more influence on functional sensitivity. The few Neanderthal variants disturbed function, whereas Denisovan variants increased sensitivity to sweet and sulfur odors. Geographic adaptations may have produced greater functional variation in our lineage, increasing our olfactory repertoire and expanding our adaptive capacity. Our survey of olfactory genes and odorant receptors suggests that our genus has a shared repertoire with possible local ecological adaptations.
Collapse
Affiliation(s)
- Claire A. de March
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette 91190, France,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA,Corresponding author
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Masashi Abe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Matthew Cobb
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kara C. Hoover
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA,Corresponding author
| |
Collapse
|
15
|
Bentz EJ, Ophir AG. Chromosome-scale genome assembly of the African giant pouched rat (Cricetomys ansorgei) and evolutionary analysis reveals evidence of olfactory specialization. Genomics 2022; 114:110521. [PMID: 36351561 DOI: 10.1016/j.ygeno.2022.110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The Southern giant pouched rat, Cricetomys ansorgei, is a large rodent best known for its ability to detect landmines using its impressive sense of smell. Their powerful chemosensory abilities enable subtle discrimination of chemical social signals, and female pouched rats demonstrate a unique reproductive physiology hypothesized to be mediated by pheromonal mechanisms. Thus, C. ansorgei represents a novel mammalian model for chemosensory physiology, social behavior, and pheromonal control of reproductive physiology. We present the first chromosome-scale genomic sequence of the pouched rat encoding 22,671 protein coding genes, including 1571 olfactory receptors, and provide a glance into the evolutionary history of this species. Functional enrichment analysis reveals genetic expansions specific to the pouched rat are enriched for functions related to olfactory specialization. Overall, this assembly is of reference-quality, and will serve as a useful and informative genomic sequence on which we can confidently base future molecular research involving the pouched rat.
Collapse
Affiliation(s)
- Ehren J Bentz
- Department of Psychology, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
16
|
Kurihara S, Tei M, Hata J, Mori E, Fujioka M, Matsuwaki Y, Otori N, Kojima H, Okano HJ. MRI tractography reveals the human olfactory nerve map connecting the olfactory epithelium and olfactory bulb. Commun Biol 2022; 5:843. [PMID: 36068329 PMCID: PMC9448749 DOI: 10.1038/s42003-022-03794-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The olfactory nerve map describes the topographical neural connections between the olfactory epithelium in the nasal cavity and the olfactory bulb. Previous studies have constructed the olfactory nerve maps of rodents using histological analyses or transgenic animal models to investigate olfactory nerve pathways. However, the human olfactory nerve map remains unknown. Here, we demonstrate that high-field magnetic resonance imaging and diffusion tensor tractography can be used to visualize olfactory sensory neurons while maintaining their three-dimensional structures. This technique allowed us to evaluate the olfactory sensory neuron projections from the nasal cavities to the olfactory bulbs and visualize the olfactory nerve maps of humans, marmosets and mice. The olfactory nerve maps revealed that the dorsal-ventral and medial-lateral axes were preserved between the olfactory epithelium and olfactory bulb in all three species. Further development of this technique might allow it to be used clinically to facilitate the diagnosis of olfactory dysfunction. Combined high-field MRI and DTI analyses in post-mortem mouse, marmoset, and human samples provide insight into the neural connections between nasal cavities and olfactory bulbs.
Collapse
Affiliation(s)
- Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan.
| | - Masayoshi Tei
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan.,Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu Arakawa-ku, Tokyo, 116-8551, Japan
| | - Eri Mori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Masato Fujioka
- Department of Molecular Genetics, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku Sagamihara-shi, Kanagawa, 252-0373, Japan.,Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshinori Matsuwaki
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan.
| |
Collapse
|
17
|
Koyama S, Heinbockel T. Chemical Constituents of Essential Oils Used in Olfactory Training: Focus on COVID-19 Induced Olfactory Dysfunction. Front Pharmacol 2022; 13:835886. [PMID: 35721200 PMCID: PMC9201274 DOI: 10.3389/fphar.2022.835886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The recent increase in the number of patients with post-viral olfactory dysfunction (PVOD) following the outbreak of COVID-19 has raised the general interest in and concern about olfactory dysfunction. At present, no clear method of treatment for PVOD has been established. Currently the most well-known method to improve the symptoms of olfactory dysfunction is "olfactory training" using essential oils. The essential oils used in olfactory training typically include rose, lemon, clove, and eucalyptus, which were selected based on the odor prism hypothesis proposed by Hans Henning in 1916. He classified odors based on six primary categories or dimensions and suggested that any olfactory stimulus fits into his smell prism, a three-dimensional space. The term "olfactory training" has been used based on the concept of training olfactory sensory neurons to relearn and distinguish olfactory stimuli. However, other mechanisms might contribute to how olfactory training can improve the recovery of the olfactory sense. Possibly, the essential oils contain chemical constituents with bioactive properties that facilitate the recovery of the olfactory sense by suppressing inflammation and enhancing regeneration. In this review, we summarize the chemical constituents of the essential oils of rose, lemon, clove, and eucalyptus and raise the possibility that the chemical constituents with bioactive properties are involved in improving the symptoms of olfactory dysfunction. We also propose that other essential oils that contain chemical constituents with anti-inflammatory effects and have binding affinity with SARS-CoV-2 can be new candidates to test their efficiencies in facilitating the recovery.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
18
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
19
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
20
|
Hot Spot Mutagenesis Improves the Functional Expression of Unique Mammalian Odorant Receptors. Int J Mol Sci 2021; 23:ijms23010277. [PMID: 35008703 PMCID: PMC8745346 DOI: 10.3390/ijms23010277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Vertebrate animals detect odors through olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family. Due to the difficulty in the heterologous expression of ORs, studies of their odor molecule recognition mechanisms have progressed poorly. Functional expression of most ORs in heterologous cells requires the co-expression of their chaperone proteins, receptor transporting proteins (RTPs). Yet, some ORs were found to be functionally expressed without the support of RTP (RTP-independent ORs). In this study, we investigated whether amino acid residues highly conserved among RTP-independent ORs improve the functional expression of ORs in heterologous cells. We found that a single amino acid substitution at one of two sites (NBW3.39 and 3.43) in their conserved residues (E and L, respectively) significantly improved the functional expression of ORs in heterologous cells. E3.39 and L3.43 also enhanced the membrane expression of RTP-dependent ORs in the absence of RTP. These changes did not alter the odorant responsiveness of the tested ORs. Our results showed that specific sites within transmembrane domains regulate the membrane expression of some ORs.
Collapse
|
21
|
Khan M, Yoo SJ, Clijsters M, Backaert W, Vanstapel A, Speleman K, Lietaer C, Choi S, Hether TD, Marcelis L, Nam A, Pan L, Reeves JW, Van Bulck P, Zhou H, Bourgeois M, Debaveye Y, De Munter P, Gunst J, Jorissen M, Lagrou K, Lorent N, Neyrinck A, Peetermans M, Thal DR, Vandenbriele C, Wauters J, Mombaerts P, Van Gerven L. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 2021; 184:5932-5949.e15. [PMID: 34798069 PMCID: PMC8564600 DOI: 10.1016/j.cell.2021.10.027] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.
Collapse
Affiliation(s)
- Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Seung-Jun Yoo
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Marnick Clijsters
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium
| | - Wout Backaert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Kato Speleman
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Charlotte Lietaer
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | | | - Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Andrew Nam
- NanoString Technologies Inc., Seattle, WA, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA, USA
| | | | - Pauline Van Bulck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hai Zhou
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Marc Bourgeois
- Department of Anesthesiology and Intensive Care Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Yves Debaveye
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Paul De Munter
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Mark Jorissen
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Arne Neyrinck
- Department of Anesthesia, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marijke Peetermans
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| | - Laura Van Gerven
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
23
|
Heinbockel T, Straiker A. Cannabinoids Regulate Sensory Processing in Early Olfactory and Visual Neural Circuits. Front Neural Circuits 2021; 15:662349. [PMID: 34305536 PMCID: PMC8294086 DOI: 10.3389/fncir.2021.662349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Our sensory systems such as the olfactory and visual systems are the target of neuromodulatory regulation. This neuromodulation starts at the level of sensory receptors and extends into cortical processing. A relatively new group of neuromodulators includes cannabinoids. These form a group of chemical substances that are found in the cannabis plant. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main cannabinoids. THC acts in the brain and nervous system like the chemical substances that our body produces, the endogenous cannabinoids or endocannabinoids, also nicknamed the brain's own cannabis. While the function of the endocannabinoid system is understood fairly well in limbic structures such as the hippocampus and the amygdala, this signaling system is less well understood in the olfactory pathway and the visual system. Here, we describe and compare endocannabinoids as signaling molecules in the early processing centers of the olfactory and visual system, the olfactory bulb, and the retina, and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| | - Alex Straiker
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
24
|
Tanaka H, Tsujimura A. Pervasiveness of intronless genes expressed in haploid germ cell differentiation. Reprod Med Biol 2021; 20:255-259. [PMID: 34262392 PMCID: PMC8254168 DOI: 10.1002/rmb2.12385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND cDNA libraries derived from the brain and testis contain genes that encode almost all proteins. The brain is composed of various differentiated cells, and the testis also contains various differentiated cells, such as germ cells, and somatic cells that support germ cell differentiation, such as Sertoli and Leydig cells. Many genes appear to be expressed due to tissue complexity. METHODS The Genome Project has sequenced the entire genomes of humans and mice. Recent research using new gene analysis technologies has found that many genes are expressed specifically in male germ cells. MAIN FINDINGS RESULTS Functional intronless genes are significantly enriched in haploid germ cell-specific genes. CONCLUSION Functional intronless genes associated with fertility are more likely to be inherited in haploid germ cells than in somatic cells.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Lab. of Molecular BiologyFaculty of Pharmaceutical SciencesNagasaki International UniversitySaseboJapan
| | - Akira Tsujimura
- Department of UrologyJuntendo University HospitalUrayasuJapan
| |
Collapse
|
25
|
Zapiec B, Mombaerts P. The Zonal Organization of Odorant Receptor Gene Choice in the Main Olfactory Epithelium of the Mouse. Cell Rep 2021; 30:4220-4234.e5. [PMID: 32209480 DOI: 10.1016/j.celrep.2020.02.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
A mature olfactory sensory neuron (OSN) of the main olfactory epithelium (MOE) typically expresses one allele of one odorant receptor (OR) gene. It is widely thought that the great majority of the 1,141 intact mouse OR genes are expressed in one of four MOE zones (or bands or stripes), which are largely non-overlapping. Here, we develop a multiplex method to map, in 3D and MOE-wide, the expression areas of multiple OR genes in individual, non-genetically modified mice by three-color fluorescence in situ hybridization, semi-automated image segmentation, and 3D reconstruction. We classify the expression areas of 68 OR genes into 9 zones. These zones are highly overlapping and strikingly complex when viewed in 3D reconstructions. There could well be more zones. We propose that zones reflect distinct OSN types that are each restricted in their choice to a subset of the OR gene repertoire.
Collapse
Affiliation(s)
- Bolek Zapiec
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
26
|
Leme Silva AG, Nagai MH, Nakahara TS, Malnic B. Genetic Background Effects on the Expression of an Odorant Receptor Gene. Front Cell Neurosci 2021; 15:646413. [PMID: 33716678 PMCID: PMC7947310 DOI: 10.3389/fncel.2021.646413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
There are more than 1000 odorant receptor (OR) genes in the mouse genome. Each olfactory sensory neuron expresses only one of these genes, in a monoallelic fashion. The transcript abundance of homologous OR genes vary between distinct mouse strains. Here we analyzed the expression of the OR gene Olfr17 (also named P2) in different genomic contexts. Olfr17 is expressed at higher levels in the olfactory epithelium from 129 mice than from C57BL/6 (B6) mice. However, we found that in P2-IRES-tauGFP knock-in mice, the transcript levels of the 129 Olfr17 allele are highly reduced when compared to the B6 Olfr17 allele. To address the mechanisms involved in this variation we compared the 5′ region sequence and DNA methylation patterns of the B6 and 129 Olfr17 alleles. Our results show that genetic variations in cis regulatory regions can lead to differential DNA methylation frequencies in these OR gene alleles. They also show that expression of the Olfr17 alleles is largely affected by the genetic background, and suggest that in knock-in mice, expression can be affected by epigenetic modifications in the region of the targeted locus.
Collapse
Affiliation(s)
| | | | | | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, Sisu C, Wright JC, Armstrong J, Barnes I, Berry A, Bignell A, Boix C, Carbonell Sala S, Cunningham F, Di Domenico T, Donaldson S, Fiddes IT, García Girón C, Gonzalez JM, Grego T, Hardy M, Hourlier T, Howe KL, Hunt T, Izuogu OG, Johnson R, Martin FJ, Martínez L, Mohanan S, Muir P, Navarro FCP, Parker A, Pei B, Pozo F, Riera FC, Ruffier M, Schmitt BM, Stapleton E, Suner MM, Sycheva I, Uszczynska-Ratajczak B, Wolf MY, Xu J, Yang YT, Yates A, Zerbino D, Zhang Y, Choudhary JS, Gerstein M, Guigó R, Hubbard TJP, Kellis M, Paten B, Tress ML, Flicek P. GENCODE 2021. Nucleic Acids Res 2021; 49:D916-D923. [PMID: 33270111 PMCID: PMC7778937 DOI: 10.1093/nar/gkaa1087] [Citation(s) in RCA: 788] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.
Collapse
Affiliation(s)
- Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Julien Lagarde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, E-08003 Catalonia, Spain
| | - Jane E Loveland
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Cristina Sisu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.,Department of Bioscience, Brunel University London, Uxbridge UB8 3PH, UK
| | - James C Wright
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Joel Armstrong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - If Barnes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew Berry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alexandra Bignell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carles Boix
- MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Silvia Carbonell Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, E-08003 Catalonia, Spain
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tomás Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sarah Donaldson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ian T Fiddes
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Carlos García Girón
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jose Manuel Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tiago Grego
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew Hardy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Osagie G Izuogu
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University Hospital, University of Bern, Bern, Switzerland.,Department of Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Laura Martínez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Shamika Mohanan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Muir
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Fabio C P Navarro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Anne Parker
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Baikang Pei
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ferriol Calvet Riera
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Magali Ruffier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bianca M Schmitt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Eloise Stapleton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Marie-Marthe Suner
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Irina Sycheva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Maxim Y Wolf
- Department of Biomedical Informatics at Harvard Medical School, 10 Shattuck Street, Suite 514, Boston, MA 02115, USA
| | - Jinuri Xu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yucheng T Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.,Program in Computational Biology & Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Andrew Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yan Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.,Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jyoti S Choudhary
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.,Program in Computational Biology & Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA.,Department of Computer Science, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, E-08003 Catalonia, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, E-08003 Catalonia, Spain
| | - Tim J P Hubbard
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|