1
|
Zambrano-Vásquez OR, Cortés-Camacho F, Castañeda-Sánchez JI, Aréchaga-Ocampo E, Valle-Velázquez E, Cabrera-Angeles JC, Sánchez-Gloria JL, Sánchez-Muñoz F, Arellano-Buendia AS, Sánchez-Lozada LG, Osorio-Alonso H. Update in non-alcoholic fatty liver disease management: role of sodium-glucose cotransporter 2 inhibitors. Life Sci 2025; 372:123638. [PMID: 40246191 DOI: 10.1016/j.lfs.2025.123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes without significant alcohol consumption. It is closely associated with sedentarism, hypercaloric diets, obesity, dyslipidemia, insulin resistance, type 2 diabetes mellitus, and genetic predisposition. NAFLD comprises a spectrum of liver disorders, from simple steatosis to non-alcoholic (NASH) and liver cirrhosis. The complex etiological mechanisms include oxidative stress, inflammation, apoptosis, and fibrosis; therefore, its management is challenging. Sodium-glucose cotransporter type 2 inhibitors (SGLT2i), a class of antidiabetic drugs, have emerged as promising therapeutic agents due to their ability to improve key metabolic parameters, including obesity, dyslipidemia, insulin resistance, and hyperglycemia. This review explores the cellular mechanisms by which SGLT2i, either as monotherapy or combined with other treatments, modulate signaling pathways involved in lipid and carbohydrate metabolism. Additionally, we examine their effects on oxidative stress, inflammation, fibrosis, and apoptosis, which are critical drivers of NAFLD progression. This review is intended to summarize the multiple benefits of SGLT2 inhibitors and to educate healthcare providers on the therapeutic potential of these drugs in order to foster their incorporation into effective NAFLD management plans.
Collapse
Affiliation(s)
- Oscar R Zambrano-Vásquez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Fernando Cortés-Camacho
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Jorge I Castañeda-Sánchez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, México City 04960, Mexico
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México City 05348, Mexico
| | - Estefanía Valle-Velázquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Juan C Cabrera-Angeles
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - José L Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fausto Sánchez-Muñoz
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Abraham S Arellano-Buendia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Laura G Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico.
| |
Collapse
|
2
|
Sharma S, Kaur I, Dubey N, Goswami N, Tanwar SS. Berberine can be a Potential Therapeutic Agent in Treatment of Huntington's Disease: A Proposed Mechanistic Insight. Mol Neurobiol 2025:10.1007/s12035-025-05054-6. [PMID: 40377895 DOI: 10.1007/s12035-025-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by CAG repeat expansion in the HTT gene, producing mutant huntingtin (mHTT) protein. This leads to neuronal damage through protein aggregation, transcriptional dysregulation, excitotoxicity, and mitochondrial dysfunction. mHTT impairs protein clearance and alters gene expression, energy metabolism, and synaptic function. Therapeutic strategies include enhancing mHTT degradation, gene silencing via antisense oligonucleotides and RNAi, promoting neuroprotection through BDNF signaling, and modulating neurotransmitters like glutamate and dopamine. Berberine, a natural isoquinoline alkaloid, has emerged as a promising therapeutic option for HD due to its multifaceted neuroprotective properties. Research indicates that berberine can mitigate the progression of neurodegenerative diseases, including HD, by targeting various molecular pathways. It exhibits antioxidant, anti-inflammatory, and autophagy-enhancing effects, which are crucial in reducing neuronal damage and apoptosis associated with HD. These properties make berberine a potential candidate for therapeutic intervention in HD, as demonstrated in both cellular and animal models. Berberine activates the PI3K/Akt pathway, which is vital for cell survival and neuroprotection. It reduces oxidative stress and neuroinflammation, both of which are implicated in HD pathology. Berberine enhances autophagic processes, promoting the degradation of mutant huntingtin protein, a key pathological feature of HD. In transgenic HD mouse models, berberine administration has been shown to alleviate motor dysfunction and prolong survival. It effectively reduces the accumulation of mutant huntingtin in cultured cells, suggesting a direct impact on the disease's molecular underpinnings. Berberine's safety profile, established through its use in treating other conditions, supports its potential for clinical trials in HD patients. Its ability to modulate neurotransmitter levels and engage multiple signaling pathways further underscores its therapeutic promise. While berberine shows significant potential as a therapeutic agent for HD, further research is necessary to fully elucidate its mechanisms and optimize its clinical application. The current evidence in the review paper, primarily from preclinical studies, provides a strong foundation for future investigations into berberine's efficacy and safety in human HD patients.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India
- Research Scholar, Department of Pharmacology, SAGE University, Indore, M.P, India
| | - Inderpreet Kaur
- Department of Pharmacy, Shivalik College of Pharmacy, Nangal, Punjab, India
| | - Naina Dubey
- Department of Pharmaceutical Sciences, SAGE University, Bhopal, M.P, India
| | - Neelima Goswami
- Department of Pharmaceutics, Sagar Institute of Research Technology and Science-Pharmacy, Bhopal, M.P, India
| | - Sampat Singh Tanwar
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India.
| |
Collapse
|
3
|
Zhao X, Xia F, Dong Z, Huang W, Kong X, Cui Z, Yan M, Gao H, Rong R, Wang M, Liu G, Zhang Z, Zhang J, Yuan T, Cai H, Yan Z, Zhu L, Qin W. A novel EndMT inhibitor, xanthotoxin, attenuates non-alcoholic fatty liver disease by acting as TGFβR2 antagonist. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156823. [PMID: 40347928 DOI: 10.1016/j.phymed.2025.156823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/12/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has emerged as a key process contributing to the pathology of non-alcoholic fatty liver disease (NAFLD). Thus, identifying EndMT inhibitors may help impede NAFLD progression. PURPOSE Our research aims to identify potent natural EndMT inhibitors and explore their therapeutic potential and mechanisms of action in NAFLD. METHODS A natural compound library was employed to screen potential EndMT inhibitors. High-fat diet (HFD)-induced ApoE-/- mice and free fatty acid (FFA)-treated human hepatic sinusoidal endothelial cells (HHSECs) were employed as animal and cellular models of NAFLD. EndMT was evaluated by western blotting, qRT-PCR, immunofluorescence staining, tube formation, wound healing, and transwell assays. LC-MS/MS was applied to screen for altered secreted proteins during EndMT. Molecular docking, CETSA, and SPR assays were employed to validate the combination of xanthotoxin with TGFβR2. RESULTS Xanthotoxin was identified as a novel EndMT inhibitor. Further investigation revealed that xanthotoxin ameliorates NAFLD in ApoE-/- mice. By inhibiting EndMT, xanthotoxin improves endothelial dysfunction, reduces the pro-NAFLD factor ANGPTL2 secretion, and increases the anti-NAFLD factor SOD2 secretion, thus reducing hepatocyte steatosis, inflammation, and hepatic stellate cell fibrosis. Additional studies demonstrated that xanthotoxin binds to TGFβR2 and acts as its antagonist to block EndMT. In mice, EC-specific overexpression of TGFβR2 negated xanthotoxin's therapeutic impact on NAFLD. CONCLUSION This study reveals for the first time that xanthotoxin attenuates NAFLD by acting as a TGFβR2 antagonist to inhibit EndMT. These findings highlight the significant therapeutic potential of xanthotoxin in NAFLD treatment.
Collapse
Affiliation(s)
- Xiaona Zhao
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Fangjie Xia
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Zixu Dong
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Wenyang Huang
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Xinxin Kong
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Zhoujun Cui
- Department of General Surgery, Rizhao People's Hospital, Rizhao 276800, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Ruixue Rong
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Binzhou Medical University, Yantai 264000, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Tao Yuan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong First Medical University, Jinan 250000, Shandong, China
| | - Huiying Cai
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Zhenzhen Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Lin Zhu
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; Department of Cardiology (Shandong Provincial Key Laboratory for Cardiovascular Disease Diagnosis and Treatment) at Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Jinan 250000, Shandong, China.
| |
Collapse
|
4
|
Ezhilarasan D, Langeswaran K. Hepatocellular Interactions of Potential Nutraceuticals in the Management of Inflammatory NAFLD. Cell Biochem Funct 2024; 42:e4112. [PMID: 39238138 DOI: 10.1002/cbf.4112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells. These cells acquire a profibrogenic phenotype, leading to extracellular matrix accumulation and fibrosis. Persistent fibrosis can progress to cirrhosis. Fatty infiltration, oxidative stress, and inflammation exacerbate fatty liver diseases. Thus, many plant-derived antioxidants, like silymarin, silibinin, curcumin, resveratrol, berberine, and quercetin, have been extensively studied in experimental models and clinical patients with NAFLD. Experimentally, these compounds have shown beneficial effects in reducing lipid accumulation, oxidative stress, and inflammatory markers by modulating the ERK, NF-κB, AMPKα, and PPARγ pathways. They also help decrease metabolic endotoxemia, intestinal permeability, and gut inflammation. Clinically, silymarin and silibinin have been found to reduce transaminase levels, while resveratrol and curcumin help alleviate inflammation in NAFLD patients. However, these phytocompounds exhibit poor water solubility, leading to low oral bioavailability and hindering their biological efficacy. Additionally, inconclusive clinical results highlight the need for further trials with larger populations, longer durations, and standardized protocols.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Hepatology and Molecular Medicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Kulanthaivel Langeswaran
- Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
5
|
Barbhuiya PA, Sen S, Pathak MP. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: a comprehensive review. PHYTOCHEMISTRY REVIEWS 2024; 23:969-996. [DOI: 10.1007/s11101-023-09912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2025]
|
6
|
Su X, Xu Q, Li Z, Ren Y, Jiao Q, Wang L, Wang Y. Role of the angiopoietin-like protein family in the progression of NAFLD. Heliyon 2024; 10:e27739. [PMID: 38560164 PMCID: PMC10980950 DOI: 10.1016/j.heliyon.2024.e27739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease, with a range of conditions including non-alcoholic fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Currently recognized as the liver component of the metabolic syndrome, NAFLD is intimately linked to metabolic diseases. Angiopoietin-like proteins (ANGPTLs) comprise a class of proteins that resemble angiopoietins structurally. It is closely related to obesity, insulin resistance and lipid metabolism, and may be the critical factor of metabolic syndrome. In recent years, many studies have found that there is a certain correlation between ANGPTLs and the occurrence and progression of NAFLD disease spectrum. This article reviews the possible mechanisms and roles of ANGPTL protein in the pathogenesis and progression of NAFLD.
Collapse
Affiliation(s)
- Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| |
Collapse
|
7
|
Ionita-Radu F, Patoni C, Nancoff AS, Marin FS, Gaman L, Bucurica A, Socol C, Jinga M, Dutu M, Bucurica S. Berberine Effects in Pre-Fibrotic Stages of Non-Alcoholic Fatty Liver Disease-Clinical and Pre-Clinical Overview and Systematic Review of the Literature. Int J Mol Sci 2024; 25:4201. [PMID: 38673787 PMCID: PMC11050387 DOI: 10.3390/ijms25084201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the predominant cause of chronic liver conditions, and its progression is marked by evolution to non-alcoholic steatosis, steatohepatitis, cirrhosis related to non-alcoholic steatohepatitis, and the potential occurrence of hepatocellular carcinoma. In our systematic review, we searched two databases, Medline (via Pubmed Central) and Scopus, from inception to 5 February 2024, and included 73 types of research (nine clinical studies and 64 pre-clinical studies) from 2854 published papers. Our extensive research highlights the impact of Berberine on NAFLD pathophysiology mechanisms, such as Adenosine Monophosphate-Activated Protein Kinase (AMPK), gut dysbiosis, peroxisome proliferator-activated receptor (PPAR), Sirtuins, and inflammasome. Studies involving human subjects showed a measurable reduction of liver fat in addition to improved profiles of serum lipids and hepatic enzymes. While current drugs for NAFLD treatment are either scarce or still in development or launch phases, Berberine presents a promising profile. However, improvements in its formulation are necessary to enhance the bioavailability of this natural substance.
Collapse
Affiliation(s)
- Florentina Ionita-Radu
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Cristina Patoni
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Andreea Simona Nancoff
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Flavius-Stefan Marin
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Laura Gaman
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Ana Bucurica
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Calin Socol
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Mariana Jinga
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Madalina Dutu
- Department of Anesthesiology and Intensive Care, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Sandica Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| |
Collapse
|
8
|
Chen J, Huang Y, Chen H, Yang Q, Zheng W, Lin Y, Xue M, Wang C. Identification of a Novel NLRP12 Frameshift Mutation (Val730Glyfs ∗41) by Whole-Exome Sequencing in Patients with Crohn's Disease. Hum Mutat 2024; 2024:5573272. [PMID: 40225939 PMCID: PMC11918926 DOI: 10.1155/2024/5573272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
NLRP12 encodes the nucleotide-binding leucine-rich repeat-containing receptor 12 protein and has been linked to familial cold autoinflammatory syndrome 2 (FCAS2). Previous studies have reported that NLRP12 protein can dampen inflammatory responses in DSS-induced mice colitis. To date, only four alterations in the NLRP12 gene have been associated with Crohn's disease (CD). Here, we reported a novel heterozygous NLRP12 frameshift mutation (c.2188dupG, p.Val730Glyfs∗41) identified by whole-exome sequencing in the proband with CD. The Sanger sequencing confirmed that his sister and father also carried this NLRP12 mutation, which cosegregated well with the CD phenotype. In silico analysis predicted this mutation to be disease-causing. Patients heterozygous for this mutation exhibited decreased NLRP12 protein levels in the peripheral blood and colon. Functional assays showed that mutant NLRP12 plasmid-transfected HEK293T cells exhibited significantly lower NLRP12 mRNA and protein levels than wild-type plasmid-transfected cells. The nonsense-mediated decay inhibitor NMDI14 significantly increased NLRP12 mRNA and protein levels in mutant plasmid-transfected cells. Overall, our results demonstrated that this heterozygous NLRP12 mutation (c.2188dupG) resulted in decreased NLRP12 expression, which might contribute to the mechanism underlying CD.
Collapse
Affiliation(s)
- Jintong Chen
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yanni Huang
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Huaning Chen
- Department of Rheumatology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qinyu Yang
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
| | - Weiwei Zheng
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
| | - Yanjun Lin
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
| | - Mengli Xue
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
| | - Chengdang Wang
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
9
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Wei X, Lin L, Yuan QQ, Wang XY, Zhang Q, Zhang XM, Tang KC, Guo MY, Dong TY, Han W, Huang DK, Qi YL, Zhang M, Zhang HB. Bavachin protects against diet-induced hepatic steatosis and obesity in mice. Acta Pharmacol Sin 2023; 44:1416-1428. [PMID: 36721007 PMCID: PMC10310714 DOI: 10.1038/s41401-023-01056-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health concern worldwide, and the incidence of metabolic disorders associated with NAFLD is rapidly increasing because of the obesity epidemic. There are currently no approved drugs that prevent or treat NAFLD. Recent evidence shows that bavachin, a flavonoid isolated from the seeds and fruits of Psoralea corylifolia L., increases the transcriptional activity of PPARγ and insulin sensitivity during preadipocyte differentiation, but the effect of bavachin on glucose and lipid metabolism remains unclear. In the current study we investigated the effects of bavachin on obesity-associated NAFLD in vivo and in vitro. In mouse primary hepatocytes and Huh7 cells, treatment with bavachin (20 μM) significantly suppressed PA/OA or high glucose/high insulin-induced increases in the expression of fatty acid synthesis-related genes and the number and size of lipid droplets. Furthermore, bavachin treatment markedly elevated the phosphorylation levels of AKT and GSK-3β, improving the insulin signaling activity in the cells. In HFD-induced obese mice, administration of bavachin (30 mg/kg, i.p. every other day for 8 weeks) efficiently attenuated the increases in body weight, liver weight, blood glucose, and liver and serum triglyceride contents. Moreover, bavachin administration significantly alleviated hepatic inflammation and ameliorated HFD-induced glucose intolerance and insulin resistance. We demonstrated that bavachin protected against HFD-induced obesity by inducing fat thermogenesis and browning subcutaneous white adipose tissue (subWAT). We revealed that bavachin repressed the expression of lipid synthesis genes in the liver of obese mice, while promoting the expression of thermogenesis, browning, and mitochondrial respiration-related genes in subWAT and brown adipose tissue (BAT) in the mice. In conclusion, bavachin attenuates hepatic steatosis and obesity by repressing de novo lipogenesis, inducing fat thermogenesis and browning subWAT, suggesting that bavachin is a potential drug for NAFLD therapy.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Li Lin
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Qian-Qian Yuan
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiu-Yun Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Min Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ke-Chao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Man-Yu Guo
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ting-Yu Dong
- The Second Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Wei Han
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Da-Ke Huang
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yin-Liang Qi
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Mei Zhang
- Health Management Center, The First Affiliated Hospital of the University of Sciences and Technology of China (Anhui Provincial Hospital), Hefei, 230001, China.
| | - Hua-Bing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
- The Affiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou), Chuzhou, 239001, China.
| |
Collapse
|
11
|
He H, Chai X, Li J, Li C, Wu X, Ye X, Ma H, Li X. LCN2 contributes to the improvement of nonalcoholic steatohepatitis by 8-Cetylberberine. Life Sci 2023; 321:121595. [PMID: 36940908 DOI: 10.1016/j.lfs.2023.121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
AIMS Nonalcoholic steatohepatitis (NASH) is becoming one of the most common causes of liver transplantation and hepatocellular carcinoma, but no specific drugs are FDA-approved to treat it. 8-cetylberberine (CBBR), which is a long-chain alkane derivative of berberine, exhibits potent pharmacological activities and improves metabolism performance. The aim of this study is to explore the function and mechanism of CBBR against NASH. MATERIALS AND METHODS L02 and HepG2 hepatocytes were treated with the medium containing palmitic acids and oleic acids (PO) and incubated with CBBR for 12 h, then the levels of lipid accumulation were tested by kits or western blots. C57BL/6 J mice were fed with a high-fat diet or a high-fat/high-cholesterol diet. CBBR (15 mg/kg or 30 mg/kg) was orally administered for 8 weeks. Liver weight, steatosis, inflammation, and fibrosis were evaluated. Transcriptomic indicated the target of CBBR in NASH. KEY FINDINGS CBBR significantly reduced lipid accumulation, inflammation, liver injury, and fibrosis in NASH mice. CBBR also decreased lipid accumulation and inflammation in PO-induced L02 and HepG2 cells. RNA sequencing and bioinformatics analysis indicated that CBBR inhibited the pathways and key regulators associated with lipid accumulation, inflammation, and fibrosis in the pathogenesis of NASH. Mechanically, CBBR may prevent NASH via inhibiting LCN2, as proved by the finding that the anti-NASH effect of CBBR was more obvious in PO-stimulated HepG2 cells treated with LCN2 overexpression. SIGNIFICANCE Our work provides an insight into the effectiveness of CBBR in improving metabolic-stress-caused NASH as well as the mechanism by regulating LCN2.
Collapse
Affiliation(s)
- Huan He
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xue Chai
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Juan Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Changsheng Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xinran Wu
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
12
|
Mohseni R, Teimouri M, Safaei M, Arab Sadeghabadi Z. AMP-activated protein kinase is a key regulator of obesity-associated factors. Cell Biochem Funct 2023; 41:20-32. [PMID: 36468539 DOI: 10.1002/cbf.3767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
An imbalance between caloric intake and energy expenditure leads to obesity. Obesity is an important risk factor for the development of several metabolic diseases including insulin resistance, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. So, controlling obesity could be effective in the improvement of obesity-related diseases. Various factors are involved in obesity, such as AMP-activated protein kinases (AMPK), silent information regulators, inflammatory mediators, oxidative stress parameters, gastrointestinal hormones, adipokines, angiopoietin-like proteins, and microRNAs. These factors play an important role in obesity by controlling fat metabolism, energy homeostasis, food intake, and insulin sensitivity. AMPK is a heterotrimeric serine/threonine protein kinase known as a fuel-sensing enzyme. The central role of AMPK in obesity makes it an attractive molecule to target obesity and related metabolic diseases. In this review, the critical role of AMPK in obesity and the interplay between AMPK and obesity-associated factors were elaborated.
Collapse
Affiliation(s)
- Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Clinical Biochemistry & Nutrition, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Arab Sadeghabadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Clinical Biochemistry & Nutrition, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
13
|
S R, P G, P B, Hn Y, Ak D. Solid lipid nanoformulation of berberine attenuates Doxorubicin triggered in vitro inflammation in H9c2 rat cardiomyocytes. Comb Chem High Throughput Screen 2022; 25:1695-1706. [PMID: 35718970 DOI: 10.2174/1386207325666220617113744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/06/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
Abstract
AIM To evaluate berberine solid lipid nanoparticles' efficacy against doxorubicin-induced cardiotoxicity. BACKGROUND Berberine (Ber) is cardioprotective, but its oral bioavailability is low and its effect in chemotherapy-induced cardiotoxicity has not been studied. OBJECTIVE Solid lipid nanoparticles (SLNs) of berberine chloride were prepared, characterized and evaluated in vitro against Doxorubicin induced cardiomyocyte injury. METHODOLOGY Berberine loaded SLNs (Ber-SLNs) were synthesized using water-in-oil microemulsion technique with tripalmitin, Tween 80 and poloxamer 407. Ber-SLNs were evaluated for preventive effect against toxicity of Doxorubicin in H9c2 cells. The culture was pre-treated (24 h) with Ber (10 µM) and Ber-SLNs (1 and 10 µM) and exposed to 1 µM of Doxorubicin (Dox) was added for 3 h. The cell viability (LDH (Lactate dehydrogenase) assay and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)), levels of Creatine kinase-MB (CK-MB), Nitrite, MDA (Malondialdehyde), ROS (Reactive oxygen species) generation and apoptotic DNA (Deoxyribonucleic acid) content were assessed. RESULTS Ber-SLNs had a mean particle size of 13.12±1.188 nm, zeta potential of -1.05 ± 0.08 mV, poly-dispersity index (PDI) of 0.317 ± 0.05 and entrapment efficiency of 50 ± 4.8%. Cell viability was 81 0.17% for Ber-SLNs (10 µM) and 73.22 0.83% for Ber (10 µM) treated cells in MTT assay. Percentage cytotoxicity calculated from LDH release was 58.91 0.54% after Dox, 40.3 1.3% with Ber (10 µM) and 40.7 1.3% with Ber-SLNs (1 µM) (p<0.001). Inflammation and oxidative stress markers were lower with Ber and Ber-SLNs. Attenuation of ROS generation and apoptosis of cardiomyocytes were noted on fluorescence microscopy. CONCLUSION Ber loaded SLNs effectively prevented Doxorubicin-induced inflammation and oxidative stress in rat cardiomyocytes. The results demonstrate that microemulsion is a simple, cost-effective technique to prepare Ber-SLNs and may be considered as a drug delivery vehicle for berberine.
Collapse
Affiliation(s)
- Rawal S
- Department of Pharmacology, AIIMS, New Delhi
| | - Gupta P
- Department of Pharmacology, AIIMS, New Delhi
| | - Bhatnagar P
- Department of Pharmacology, AIIMS, New Delhi
| | - Yadav Hn
- Department of Pharmacology, AIIMS, New Delhi
| | - Dinda Ak
- Department of Pathology, AIIMS, New Delhi
| |
Collapse
|
14
|
Recent Experimental Studies of Maternal Obesity, Diabetes during Pregnancy and the Developmental Origins of Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23084467. [PMID: 35457285 PMCID: PMC9027277 DOI: 10.3390/ijms23084467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Globally, cardiovascular disease remains the leading cause of death. Most concerning is the rise in cardiovascular risk factors including obesity, diabetes and hypertension among youth, which increases the likelihood of the development of earlier and more severe cardiovascular disease. While lifestyle factors are involved in these trends, an increasing body of evidence implicates environmental exposures in early life on health outcomes in adulthood. Maternal obesity and diabetes during pregnancy, which have increased dramatically in recent years, also have profound effects on fetal growth and development. Mounting evidence is emerging that maternal obesity and diabetes during pregnancy have lifelong effects on cardiovascular risk factors and heart disease development. However, the mechanisms responsible for these observations are unknown. In this review, we summarize the findings of recent experimental studies, showing that maternal obesity and diabetes during pregnancy affect energy metabolism and heart disease development in the offspring, with a focus on the mechanisms involved. We also evaluate early proof-of-concept studies for interventions that could mitigate maternal obesity and gestational diabetes-induced cardiovascular disease risk in the offspring.
Collapse
|
15
|
Mazandaranian MR, Dana PM, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B. Effects of berberine on leukemia with a focus on its molecular targets. Anticancer Agents Med Chem 2022; 22:2766-2774. [PMID: 35331097 DOI: 10.2174/1871520622666220324092302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Leukemia is a common cancer among both women and men worldwide. Besides the fact that finding new treatment methods may enhance the life quality of patients, there are several problems that we face today in treating leukemia patients, such as drugs side effects and acquired resistance to chemotherapeutic drugs. Berberine is a bioactive alkaloid found in herbal plants (e.g. Rhizoma coptidis and Cortex phellodendri) and exerts several beneficial functions, including anti-tumor activities. Furthermore, berberine exerts antiproliferative and anti-inflammatory effects. Up to now, some studies have investigated the roles of berberine in different types of leukemia, including acute myeloid leukemia and chronic lymphocytic leukemia. In this review, a detailed description of berberine roles in leukemia is provided. We discuss how berberine involves different molecular targets (e.g. interleukins and cyclins) and signaling pathways (e.g. mTOR and PI3K) to exert its anti-tumor functions and how berberine is effective in leukemia treatment when combined with other therapeutic drugs.
Collapse
Affiliation(s)
- Mohammad Reza Mazandaranian
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Yang L, Yu S, Yang Y, Wu H, Zhang X, Lei Y, Lei Z. Berberine improves liver injury induced glucose and lipid metabolic disorders via alleviating ER stress of hepatocytes and modulating gut microbiota in mice. Bioorg Med Chem 2022; 55:116598. [PMID: 34979291 DOI: 10.1016/j.bmc.2021.116598] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022]
Abstract
Liver injury mediated by endoplasmic reticulum (ER) stress can cause many kinds of liver diseases including hepatic glucose and lipid metabolic disorders, and long term liver injury would lead to cirrhosis and hepatic cancer. Therefore, effective drugs for treating liver injury are urgent in need. Berberine is a multifunctional drug of traditional Chinese medicine, and it can improve various liver diseases. To study the effects of berberine on ER stress-induced liver injury, tunicamycin was administrated to C57BL/6 mice with or without berberine pre-treatment. H&E staining was used to check the morphology and histology of liver tissues. The serum and liver tissues were harvested to test biochemical indexes and the expression levels of genes related with glucose and lipid metabolism, ER stress and unfold protein response (UPR). 16S rDNA sequence technology was conducted to check the fecal microbiota. Pre-administration with berberine could alleviate the excess accumulation of triglyceride (TG) in the liver of mice treated with tunicamycin. Tunicamycin administration caused significant increase of the expression level of genes related to ER stress and UPR, such as CHOP, Grp78 and ATF6, but the berberine pre-treatment could significantly downregulate the expression level of these genes. Tunicamycin administration resulted in increased ratio of Prevotellaceae to Erysipelotrichaceae at the family level of the fecal microbiota in mice, and this trend was reversed by the pre-treatment of berberine. These results demonstrated that berberine could improve liver injury induced hepatic metabolic disorders through relieving ER stress in hepatocytes and regulating gut microbiota in mice.
Collapse
Affiliation(s)
- Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China; School of Biological Engineering, Wuhu Institute of Technology, Wenjin West Road 201#, Wuhu 241003, P.R. China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou 510080, P.R. China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China; School of Biological Engineering, Wuhu Institute of Technology, Wenjin West Road 201#, Wuhu 241003, P.R. China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China; School of Biological Engineering, Wuhu Institute of Technology, Wenjin West Road 201#, Wuhu 241003, P.R. China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, P.R. China.
| |
Collapse
|
17
|
Ma C, Wang C, Zhang Y, Zhou H, Li Y. Potential Natural Compounds for the Prevention and Treatment of Nonalcoholic Fatty Liver Disease: A Review on Molecular Mechanisms. Curr Mol Pharmacol 2021; 15:846-861. [PMID: 34923950 DOI: 10.2174/1874467215666211217120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a kind of metabolic stress-induced liver injury closely related to insulin resistance and genetic susceptibility, and there is no specific drug for its clinical treatment currently. In recent years, a large amount of literature has reported that many natural compounds extracted from traditional Chinese medicine (TCM) can improve NAFLD through various mechanisms. According to the latest reports, some emerging natural compounds have shown great potential to improve NAFLD but are seldom used clinically due to the lacking special research. PURPOSE This paper aims to summarize the molecular mechanisms of the potential natural compounds on improving NAFLD, thus providing a direction and basis for further research on the pathogenesis of NAFLD and the development of effective drugs for the prevention and treatment of NAFLD. METHODS By searching various online databases, such as Web of Science, SciFinder, PubMed, and CNKI, NAFLD and these natural compounds were used as the keywords for detailed literature retrieval. RESULTS The pathogenesis of NAFLD and the molecular mechanisms of the potential natural compounds on improving NAFLD have been reviewed. CONCLUSION Many natural compounds from traditional Chinese medicine have a good prospect in the treatment of NAFLD, which can serve as a direction for the development of anti-NAFLD drugs in the future.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
18
|
Development of an Innovative Berberine Food-Grade Formulation with an Ameliorated Absorption: In Vitro Evidence Confirmed by Healthy Human Volunteers Pharmacokinetic Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7563889. [PMID: 34904017 PMCID: PMC8665891 DOI: 10.1155/2021/7563889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
Objective To evaluate in vitro solubility, bioaccessibility, and cytotoxic profile, together with a pharmacokinetic profile by oral administration to healthy volunteers of a novel food-grade berberine formulation (BBR-PP, i.e., berberine Phytosome®). Results An in vitro increase of solubility in simulated gastric and intestinal fluids and an improved bioaccessibility at intestinal level along with a lower cytotoxicity with respect to berberine were observed with BBR-PP. The pharmacokinetic profile of the oral administration to healthy volunteers confirmed that berberine Phytosome® significantly ameliorated berberine absorption, in comparison to unformulated berberine, without any observed side effects. The berberine plasma concentrations observed with both doses of BBR-PP were significantly higher than those seen after unformulated berberine administration, starting from 45 min (free berberine) and 30 min (total berberine). Furthermore, BBR-PP improved berberine bioavailability (AUC) was significantly higher, around 10 times on molar basis and with observed dose linearity, compared to the unformulated berberine. Conclusion These findings open new perspectives on the use of this healthy berberine formulation in metabolic discomforts.
Collapse
|
19
|
SOCS1 Mediates Berberine-Induced Amelioration of Microglial Activated States in N9 Microglia Exposed to β Amyloid. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9311855. [PMID: 34778460 PMCID: PMC8589517 DOI: 10.1155/2021/9311855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 01/26/2023]
Abstract
Attenuating β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Berberine (BBR) can reduce microglial activation in Aβ-treated microglial cells; the mechanism, however, is still illusive. Silencing of cytokine signaling factor 1 (SOCS1) is the primary regulator of many cytokines involved in immune reactions, whose upregulation can reverse the activation of microglial cells. Microglia could be activated into two different statuses, classic activated state (M1 state) and alternative activated state (M2 state), and M1 state is harmful, but M2 is beneficial. In the present study, N9 microglial cells were exposed to Aβ to imitate microglial activation in AD. And Western blot and immunocytochemistry were taken to observe inducible nitric oxide synthase (iNOS), Arginase-1 (Arg-1), and SOCS1 expressions, and the enzyme-linked immunosorbent assay (ELISA) was used to measure inflammatory and neurotrophic factor release. Compared with the normal cultured control cells, Aβ exposure markedly increased the level of microglial M1 state markers (P < 0.05), including iNOS protein expression, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 releases, and BBR administration upregulated SOSC1 expression and the level of microglial M2 state markers (P < 0.05), such as Arg-1 expression, brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF) releases, downregulating the SOCS1 expression by using siRNA, however, significantly reversed the BBR-induced effects on microglial M1 and M2 state markers and SOCS1 expression (P < 0.05). These findings indicated that BBR can inhibit Aβ-induced microglial activation via modulating the microglial M1/M2 activated state, and SOCS1 mediates the process.
Collapse
|
20
|
Bhasin J, Thakur B, Kumar S, Chopra V. Tree Turmeric: A Super Food and Contemporary Nutraceutical of 21st Century - A Laconic Review. J Am Coll Nutr 2021; 41:728-746. [PMID: 34757887 DOI: 10.1080/07315724.2021.1958104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Since ancient times the medicinal plants have been under use as food and potential therapeutic agent for the management of overall health and the use of all plant parts including fruits, seeds, is well reported in the literature. One such plant is Berberis aristata which is rich in vitamins, minerals, and various phytochemicals amongst which Berberine is the principal bioactive compound with a range of reported health benefits, and some of the commercial formulations like Rasaut, Darvyadi Leha are being used for the treatments of jaundice, malaria, typhoid fever, inflammation, eye infection, diarrhea, wound healing, etc. The hepatoprotective, antidiabetic, antitumor, anti-cancerous, properties are the recent additions to its functional importance. Berberine has significant bioactivities in the treatments of different diseases. Besides its remarkable applications, the berberine has low efficacy due to its low solubility in water, poor absorption, and low bioavailability. This problem can be solved by using some techniques like Nanotechnology which has been found to increase its solubility in water, bioavailability, and absorption and hence provide a better delivery system of berberine. This review illuminates the therapeutic applications of the plant Berberis aristata, scientific validation to its traditional uses, role of berberine in the treatment of various diseases through its different bioactivities, major flaws in berberine treatment, and the role of nanotechnology in minimizing those flaws and increasing its overall efficacy. Key teaching pointsPlant Berberis aristata has been used since ancient times for the treatment of various ailments like jaundice, hepatitis, fever, bleeding, inflammation, diarrhea, malaria, skin and eye infections, chronic rheumatism, and urinary disorders.Berberine is the major and most significant phytochemical among numerous phytochemicals present in plant Berberis aristata.Berberine has significantly shown many potent effect against emerging diseases like cancer and diabetes. Besides that, it has also shown antioxidant, anti-inflamation, antimicrobial, hepatoprotective, and anti-gastrointestinal disorder properties.Berberine can be very effective in overcoming the demerits of berberine treatment like poor aqueous solubility, low bioavailability, and poor absorption in the human body in the treatment of various diseases.
Collapse
Affiliation(s)
- Jasleen Bhasin
- Faculty of Technology and Sciences, Lovely Professional University, Phagwara, India
| | - Baneet Thakur
- Department of Food Technology and Nutrition, Lovely Professional University Faculty of Technology and Sciences, Phagwara, India
| | - Satish Kumar
- Food Technology and Nutrition, Dr. YS Parmar University of Horticulture and Forestry, Solan, India
| | - Vikas Chopra
- Department of Food Science and Technology, PAU, Ludhiana, Ludhiana, India
| |
Collapse
|
21
|
Chen P, Li Y, Xiao L. Berberine ameliorates nonalcoholic fatty liver disease by decreasing the liver lipid content via reversing the abnormal expression of MTTP and LDLR. Exp Ther Med 2021; 22:1109. [PMID: 34504563 PMCID: PMC8383777 DOI: 10.3892/etm.2021.10543] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is increasing. The present study explored the effect and mechanism of berberine (BBR) on NAFLD in rats. Thirty-five Sprague-Dawley rats were randomly divided into the control and NAFLD groups, which were fed a normal diet or high-fat diet, respectively, for 8 weeks. Hematoxylin and eosin staining was performed on liver tissues and establishment of the NAFLD model was confirmed by microscopy. NAFLD rats were subsequently randomly subdivided and treated with saline or BBR for 8 weeks. The liver wet weight of rats in each group was measured, the liver tissue structure was observed by microscopy, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), fasting blood glucose (FBG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels were detected using a semi-automatic biochemical detector. Reverse transcription-quantitative PCR and western blotting were performed to determine the mRNA and protein expression levels of microsomal triglyceride transfer protein (MTTP), apolipoprotein B and low-density lipoprotein receptor (LDLR). Compared with the control group, the liver wet weight of the NAFLD rats was higher; the liver showed obvious fatty degeneration and liver TG levels increased significantly, as did serum levels of ALT, AST, TC, TG, FBG, HDL and LDL, while expression of MTTP and LDLR significantly decreased. Compared with the saline-treated NAFLD rats, the BBR-treated rats had reduced liver wet weight, improved liver steatosis and a significant decrease in liver TG levels, while ALT, AST, TC, TG, and LDL serum levels significantly decreased and MTTP levels were significantly upregulated. In conclusion, BBR treatment ameliorated the fatty liver induced by a high-fat diet in rats. Furthermore, BBR reversed the abnormal expression of MTTP and LDLR in rats with high-fat diet induced-NAFLD. The present findings suggest that fatty liver could be improved by BBR administration, via reversing the abnormal expression of MTTP and LDLR and inhibiting lipid synthesis.
Collapse
Affiliation(s)
- Ping Chen
- Department of Pharmacy, Affiliated Hospital of Shandong Medical College, Linyi, Shandong 276000, P.R. China
| | - Yusheng Li
- Department of Pharmacy, Linyi Maternal and Child Health Care Hospital, Linyi, Shandong 276000, P.R. China
| | - Li Xiao
- Department of Pharmacy, Linyi Maternal and Child Health Care Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
22
|
Ren S, Ma X, Wang R, Liu H, Wei Y, Wei S, Jing M, Zhao Y. Preclinical Evidence of Berberine on Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Animal Studies. Front Pharmacol 2021; 12:742465. [PMID: 34566663 PMCID: PMC8458904 DOI: 10.3389/fphar.2021.742465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
As lifestyle and diet structure impact our health, non-alcoholic fatty liver disease (NAFLD) is prevalent all over the world. Some phytomedicines containing berberine (BBR) have been extensively used for centuries in Ayurvedic and traditional Chinese medicine. The goal of this systematic review is to investigate the preclinical evidence of BBR on NAFLD models. The following relevant databases, including Web of Science, PubMed, the Cochrane Library, and Embase, were retrieved from inception to May 2021. The content involved BBR on different animal models for the treatment of NAFLD. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) Animal Experiment Bias Risk Assessment Tool was used to assess the methodological quality and RevMan 5.4 software was used to conduct the meta-analysis based on the Cochrane tool. A total of 31 studies involving 566 animals were included, of which five models and five animal breeds were reported. The results showed that TC, TG, ALT, AST, HDL-C, LDL-C, FBG, FINS, and FFA in the group treated with BBR were significantly restored compared with those in the model group. HOMA-IR had a significant downward trend, but the result was not significantly different (P = 0.08). The subgroup analysis of the different models and different animal breeds indicated that BBR could ameliorate the aforementioned indicator levels, although some results showed no significant difference. Finally, we summarized the molecular mechanisms by which berberine regulated NAFLD/NASH, mainly focusing on activating the AMPK pathway, improving insulin sensitivity and glucose metabolism, regulating mitochondrial function, reducing inflammation and oxidative stress, regulating cell death and ER stress, reducing DNA methylation, and regulating intestinal microenvironment and neurotoxicity. The preclinical evidence suggested that BBR might be an effective and promising drug for treating NAFLD/NASH. In addition, further studies with more well-designed researches are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Sichen Ren
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honghong Liu
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Ruscica M, Penson PE, Ferri N, Sirtori CR, Pirro M, Mancini GBJ, Sattar N, Toth PP, Sahebkar A, Lavie CJ, Wong ND, Banach M. Impact of nutraceuticals on markers of systemic inflammation: Potential relevance to cardiovascular diseases - A position paper from the International Lipid Expert Panel (ILEP). Prog Cardiovasc Dis 2021; 67:40-52. [PMID: 34186099 DOI: 10.1016/j.pcad.2021.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Inflammation is a marker of arterial disease stemming from cholesterol-dependent to -independent molecular mechanisms. In recent years, the role of inflammation in atherogenesis has been underpinned by pharmacological approaches targeting systemic inflammation that have led to a significant reduction in cardiovascular disease (CVD) risk. Although the use of nutraceuticals to prevent CVD has largely focused on lipid-lowering (e.g, red-yeast rice and omega-3 fatty acids), there is growing interest and need, especially now in the time of coronavirus pandemic, in the use of nutraceuticals to reduce inflammatory markers, and potentially the inflammatory CVD burden, however, there is still not enough evidence to confirm this. Indeed, diet is an important lifestyle determinant of health and can influence both systemic and vascular inflammation, to varying extents, according to the individual nutraceutical constituents. Thus, the aim of this Position Paper is to provide the first attempt at recommendations on the use of nutraceuticals with effective anti-inflammatory properties.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - Cesare R Sirtori
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Matteo Pirro
- Internal Medicine Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - G B John Mancini
- Center for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Peter P Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Carl J Lavie
- Department of Medicine, John Ochsner Medical Center, New Orleans, LA, USA
| | - Nathan D Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California Irvine, Irvine, CA, USA
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz (MUL), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| |
Collapse
|
24
|
Bansod S, Saifi MA, Godugu C. Molecular updates on berberine in liver diseases: Bench to bedside. Phytother Res 2021; 35:5459-5476. [PMID: 34056769 DOI: 10.1002/ptr.7181] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Liver diseases are life-threatening illnesses and are the major cause of mortality and morbidity worldwide. These may include liver fibrosis, liver cirrhosis, and drug-induced liver toxicity. Liver diseases have a wide prevalence globally and the fifth most common cause of death among all gastrointestinal disorders. Several novel therapeutic approaches have emerged for the therapy of liver diseases that may provide better clinical outcomes with improved safety. The use of phytochemicals for the amelioration of liver diseases has gained considerable popularity. Berberine (BBR), an isoquinoline alkaloid of the protoberberine type, has emerged as a promising molecule for the treatment of gastrointestinal disorders. Accumulating studies have proved the hepatoprotective effects of BBR. BBR has been shown to modulate multiple signaling pathways implicated in the pathogenesis of liver diseases including Akt/FoxO2, PPAR-γ, Nrf2, insulin, AMPK, mTOR, and epigenetic pathways. In the present review, we have emphasized the important pharmacological activities and mechanisms of BBR in liver diseases. Further, we have reviewed various pharmacokinetic and toxicological barriers of this promising phytoconstituent. Finally, formulation-based novel approaches are also summarized to overcome the clinical hurdles for BBR.
Collapse
Affiliation(s)
- Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
25
|
Zhou H, Ma C, Wang C, Gong L, Zhang Y, Li Y. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. Eur J Pharmacol 2021; 898:173976. [PMID: 33639194 DOI: 10.1016/j.ejphar.2021.173976] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
With the improvement of people's living standards and the change of eating habits, non-alcoholic fatty liver disease (NAFLD) has gradually become one of the most common chronic liver diseases in the world. However, there are no effective drugs for the treatment of NAFLD. Therefore, it is urgent to find safe, efficient, and economical anti-NAFLD drugs. Compared with western medicines that possess fast lipid-lowering effect, traditional Chinese medicines (TCM) have attracted increasing attention for the treatment of NAFLD due to their unique advantages such as multi-targets and multi-channel mechanisms of action. TCM monomers have been proved to treat NAFLD through regulating various pathways, including inflammation, lipid production, insulin sensitivity, mitochondrial dysfunction, autophagy, and intestinal microbiota. In particular, peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1c (SREBP-1c), nuclear transcription factor kappa (NF-κB), phosphoinositide 3-kinase (PI3K), sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), p53 and nuclear factor erythroid 2-related factor 2 (Nrf2) are considered as important molecular targets for ameliorating NAFLD by TCM monomers. Therefore, by searching PubMed, Web of Science and SciFinder databases, this paper updates and summarizes the experimental and clinical evidence of TCM monomers for the treatment of NAFLD in the past six years (2015-2020), thus providing thoughts and prospects for further exploring the pathogenesis of NAFLD and TCM monomer therapies.
Collapse
Affiliation(s)
- Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
26
|
Wang Y, Liu H, Zheng M, Yang Y, Ren H, Kong Y, Wang S, Wang J, Jiang Y, Yang J, Shan C. Berberine Slows the Progression of Prediabetes to Diabetes in Zucker Diabetic Fatty Rats by Enhancing Intestinal Secretion of Glucagon-Like Peptide-2 and Improving the Gut Microbiota. Front Endocrinol (Lausanne) 2021; 12:609134. [PMID: 34025574 PMCID: PMC8138858 DOI: 10.3389/fendo.2021.609134] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Berberine is a plant alkaloid that has multiple beneficial effects against intestine inflammation. In our previous study, we have found that berberine also possesses an antidiabetic effect. However, whether berberine is useful in the prevention of type 2 diabetes mellitus (T2DM) through its effect on intestine endocrine function and gut microbiota is unclear. AIM To investigate the effects of berberine in the prevention of T2DM, as well as its effects on intestine GLP-2 secretion and gut microbiota in ZDF rats. METHODS Twenty Zucker Diabetic Fatty (ZDF) rats were fed a high-energy diet until they exhibited impaired glucose tolerance (IGT). The rats were then divided into two groups to receive berberine (100 mg/kg/d; berberine group) or vehicle (IGT group) by gavage for 3 weeks. Five Zucker Lean (ZL) rats were used as controls. Fasting blood glucose (FBG) was measured, an oral glucose tolerance test was performed, and the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was calculated. Intestinal expression of TLR-4, NF-κB, TNF-α, mucin, zona occludens-1 (ZO-1) and occludin were assessed (immunohistochemistry). Plasma levels and glutamine-induced intestinal secretion of glucagon-like peptide-1 (GLP-1) and GLP-2 were measured (enzyme-linked immunosorbent assay). The plasma lipopolysaccharide (LPS) level was measured. Fecal DNA extraction, pyrosequencing, and bioinformatics analysis were performed. RESULTS After 3 weeks of intervention, diabetes developed in all rats in the IGT group, but only 30% of rats in the berberine group. Treatment with berberine was associated with reductions in food intake, FBG level, insulin resistance, and plasma LPS level, as well as increases in fasting plasma GLP-2 level and glutamine-induced intestinal GLP-2 secretion. Berberine could increase the goblet cell number and villi length, and also reverse the suppressed expressions of mucin, occludin, ZO-1 and the upregulated expressions of TLR-4, NF-κB and TNF-α induced in IGT rats (P<0.05). Berberine also improved the structure of the gut microbiota and restored species diversity. CONCLUSION Berberine may slow the progression of prediabetes to T2DM in ZDF rats by improving GLP-2 secretion, intestinal permeability, and the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ying Wang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Haiyi Liu
- Department of Pediatrics, Cangzhou People’s Hospital, Cangzhou, China
| | - Miaoyan Zheng
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanhui Yang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Huizhu Ren
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yan Kong
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shanshan Wang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yingying Jiang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Juhong Yang, ; Chunyan Shan,
| | - Chunyan Shan
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Juhong Yang, ; Chunyan Shan,
| |
Collapse
|