1
|
Rosenberg M, Park S, Umerov S, Ivask A. Experimental evolution of Escherichia coli on semi-dry silver, copper, stainless steel, and glass surfaces. Microbiol Spectr 2025; 13:e0217324. [PMID: 39948723 PMCID: PMC11960088 DOI: 10.1128/spectrum.02173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 04/03/2025] Open
Abstract
To study bacterial adaptation to antimicrobial metal surfaces in application-relevant conditions, Escherichia coli was exposed to copper and silver surfaces for 30 exposure cycles in low-organic dry or high-organic humid conditions. The evolved populations demonstrated increased metal surface tolerance without concurrent increase in minimal biocidal concentration (MBC) and minimal inhibitory concentration (MIC) values of respective metal ions or selected antibiotics. Mutation analysis did not detect increased mutation accumulation nor mutations in cop, cus, cue, sil, pco, or general efflux genes known to actively maintain copper/silver homeostasis. Instead, during cyclic exposure, mutations in genes related to cellular barrier functions and sulfur metabolism were enriched, potentially suggesting that reducing bioavailability and passively restricting uptake of the toxic metals rather than active efflux is selected for on copper and silver surfaces. The changes detected in the evolved populations did not indicate an increased risk of antibiotic cross-resistance as a result of copper or silver surface exposure. However, rapid emergence of mutations in silS activated the cryptic sil efflux locus during silver ion challenge in liquid MBC assay with the evolved populations. The silS mutants showed no benefit on copper and silver surfaces but demonstrated decreased sensitivity to ampicillin and ciprofloxacin, as well as copper and silver ions in liquid tests, indicating that efflux might be specific to granting heavy metal tolerance in liquid but not surface exposure format. Our findings highlight the critical importance of appropriate exposure conditions not only in efficacy testing but also in risk assessment of antimicrobial surface applications. IMPORTANCE This study examines the evolutionary adaptations of Escherichia coli after semi-dry exposure to copper and silver surfaces, leading to an increase in surface tolerance but no increase in mutation accumulation or substantially enhanced metal ion tolerance in standard tests. Notably, enriched mutations indicate a shift toward more energy-passive mechanisms of metal tolerance. Additionally, while enhanced silver efflux was rapidly selected for in a single round of silver exposure in liquid tests and substantially increased copper and silver ion tolerance in conventional test formats, the causal mutations did not improve viability on silver and copper surfaces, underscoring the different fitness scenarios of tolerance mechanisms dependent on exposure conditions. These findings emphasize the need for appropriate exposure conditions in evaluating of both efficacy and the potential risks of using antimicrobial surfaces, as the results from conventional liquid-based tests may not apply in solid contexts.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sandra Park
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sigrit Umerov
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Tan MF, Tan J, Fang SP, Kang ZF, Li HQ, Zhang FF, Wu CC, Li N, Zeng YB, Lin C, Huang JN. Pathogenicity and identification of host adaptation genes of the avian pathogenic Escherichia coli O145 in duck. Front Cell Infect Microbiol 2024; 14:1453907. [PMID: 39606744 PMCID: PMC11599210 DOI: 10.3389/fcimb.2024.1453907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Avian pathogenic Escherichia coli (APEC) is a critical bacterial pathogen that causes severe infections in poultry. Diverse serotypes increase the complexity of treatment and controlling APEC infections. Recent epidemiological investigations indicate O145 is emerging as a predominant serogroup of APEC in China. However, limited information is known about this newly emerged serogroup. Methods A virulent strain, NC22, was selected to elucidate the mechanisms underlying APEC O145-related pathogenicity and host adaptation. Whole-genome sequencing and pathogenicity assays was conducted on this strain. We further performed a transcriptional analysis of the bacteria during the early colonization stage in the duck liver and compared them with those in liquid cultures in vitro. Results Subcutaneous inoculation of NC22 induced typical symptoms in ducks. The bacterial loads in the blood and various tissues peaked at 2 and 3 days post infection, respectively. The affected tissues included the heart, liver, spleen, lung, kidney, bursa of Fabricius, duodenum, jejunum, and cecum. We then analyzed the transcriptome profiles of NC22 during growth in duck liver versus lysogeny broth and identified 87 genes with differential expression levels.These included key metabolic enzymes and recognized host adaptation factors. Analysis of the metabolic pathways revealed an inhibition of the metabolic shift from glycolysis towards pentose phosphate pathway and an interference of the citrate cycle. Moreover, significantly differentially expressed small regulatory RNAs were examined, such as SroC, CsrC, and GadY. Discussion These findings enhance our understanding of the pathogenicity of APEC O145 and the molecular mechanisms underlying APEC-related pathogen-host interactions.
Collapse
Affiliation(s)
- Mei-Fang Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Shao-Pei Fang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Zhao-Feng Kang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Hai-Qin Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Fan-Fan Zhang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Cheng-Cheng Wu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Na Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Yan-Bin Zeng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Cui Lin
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Jiang-Nan Huang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| |
Collapse
|
3
|
Mortier J, Govers SK, Cambré A, Van Eyken R, Verheul J, den Blaauwen T, Aertsen A. Protein aggregates act as a deterministic disruptor during bacterial cell size homeostasis. Cell Mol Life Sci 2023; 80:360. [PMID: 37971522 PMCID: PMC11072981 DOI: 10.1007/s00018-023-05002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Mechanisms underlying deviant cell size fluctuations among clonal bacterial siblings are generally considered to be cryptic and stochastic in nature. However, by scrutinizing heat-stressed populations of the model bacterium Escherichia coli, we uncovered the existence of a deterministic asymmetry in cell division that is caused by the presence of intracellular protein aggregates (PAs). While these structures typically locate at the cell pole and segregate asymmetrically among daughter cells, we now show that the presence of a polar PA consistently causes a more distal off-center positioning of the FtsZ division septum. The resulting increased length of PA-inheriting siblings persists over multiple generations and could be observed in both E. coli and Bacillus subtilis populations. Closer investigation suggests that a PA can physically perturb the nucleoid structure, which subsequently leads to asymmetric septation.
Collapse
Affiliation(s)
- Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sander K Govers
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Ronald Van Eyken
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Jolanda Verheul
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Hababag EAC, Cauilan A, Quintero D, Bermudes D. Tryptophanase Expressed by Salmonella Halts Breast Cancer Cell Growth In Vitro and Inhibits Production of Immunosuppressive Kynurenine. Microorganisms 2023; 11:1355. [PMID: 37317329 DOI: 10.3390/microorganisms11051355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Tryptophan is an essential amino acid required for tumor cell growth and is also the precursor to kynurenine, an immunosuppressive molecule that plays a role in limiting anticancer immunity. Tryptophanase (TNase) is an enzyme expressed by different bacterial species that converts tryptophan into indole, pyruvate and ammonia, but is absent in the Salmonella strain VNP20009 that has been used as a therapeutic delivery vector. We cloned the Escherichia coli TNase operon tnaCAB into the VNP20009 (VNP20009-tnaCAB), and were able to detect linear production of indole over time, using Kovács reagent. In order to conduct further experiments using the whole bacteria, we added the antibiotic gentamicin to stop bacterial replication. Using a fixed number of bacteria, we found that there was no significant effect of gentamicin on stationary phase VNP20009-tnaCAB upon their ability to convert tryptophan to indole over time. We developed a procedure to extract indole from media while retaining tryptophan, and were able to measure tryptophan spectrophotometrically after exposure to gentamicin-inactivated whole bacterial cells. Using the tryptophan concentration equivalent to that present in DMEM cell culture media, a fixed number of bacteria were able to deplete 93.9% of the tryptophan in the culture media in 4 h. In VNP20009-tnaCAB depleted tissue culture media, MDA-MB-468 triple negative breast cancer cells were unable to divide, while those treated with media exposed only to VNP20009 continued cell division. Re-addition of tryptophan to conditioned culture media restored tumor cell growth. Treatment of tumor cells with molar equivalents of the TNase products indole, pyruvate and ammonia only caused a slight increase in tumor cell growth. Using an ELISA assay, we confirmed that TNase depletion of tryptophan also limits the production of immunosuppressive kynurenine in IFNγ-stimulated MDA-MB-468 cancer cells. Our results demonstrate that Salmonella VNP20009 expressing TNase has improved potential to stop tumor cell growth and reverse immunosuppression.
Collapse
Affiliation(s)
| | - Allea Cauilan
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - David Quintero
- Los Angeles Medical Facility, Los Angeles, CA 90027, USA
| | - David Bermudes
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| |
Collapse
|
5
|
Deal I, Macauley M, Davies R. Boolean Models of the Transport, Synthesis, and Metabolism of Tryptophan in Escherichia coli. Bull Math Biol 2023; 85:29. [PMID: 36877290 DOI: 10.1007/s11538-023-01122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/11/2023] [Indexed: 03/07/2023]
Abstract
The tryptophan (trp) operon in Escherichia coli codes for the proteins responsible for the synthesis of the amino acid tryptophan from chorismic acid, and has been one of the most well-studied gene networks since its discovery in the 1960s. The tryptophanase (tna) operon codes for proteins needed to transport and metabolize it. Both of these have been modeled individually with delay differential equations under the assumption of mass-action kinetics. Recent work has provided strong evidence for bistable behavior of the tna operon. The authors of Orozco-Gómez et al. (Sci Rep 9(1):5451, 2019) identified a medium range of tryptophan in which the system has two stable steady-states, and they reproduced these experimentally. In this paper, we will show how a Boolean model can capture this bistability. We will also develop and analyze a Boolean model of the trp operon. Finally, we will combine these two to create a single Boolean model of the transport, synthesis, and metabolism of tryptophan. In this amalgamated model, the bistability disappears, presumably reflecting the ability of the trp operon to produce tryptophan and drive the system toward homeostasis. All of these models have longer attractors that we call "artifacts of synchrony", which disappear in the asynchronous automata. This curiously matches the behavior of a recent Boolean model of the arabinose operon in E. coli, and we discuss some open-ended questions that arise along these lines.
Collapse
Affiliation(s)
- Isadora Deal
- School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Matthew Macauley
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, 29634, USA.
| | - Robin Davies
- Radford University Carilion, Roanoke, VA, 24013, USA
| |
Collapse
|
6
|
Sudan S, Flick R, Nong L, Li J. Potential Probiotic Bacillus subtilis Isolated from a Novel Niche Exhibits Broad Range Antibacterial Activity and Causes Virulence and Metabolic Dysregulation in Enterotoxic E. coli. Microorganisms 2021; 9:1483. [PMID: 34361918 PMCID: PMC8307078 DOI: 10.3390/microorganisms9071483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial life in extreme environments, such as deserts and deep oceans, is thought to have evolved to overcome constraints of nutrient availability, temperature, and suboptimal hygiene environments. Isolation of probiotic bacteria from such niche may provide a competitive edge over traditional probiotics. Here, we tested the survival, safety, and antimicrobial effect of a recently isolated and potential novel strain of Bacillus subtilis (CP9) from desert camel in vitro. Antimicrobial assays were performed via radial diffusion, agar spot, and co-culture assays. Cytotoxic analysis was performed using pig intestinal epithelial cells (IPEC-J2). Real time-PCR was performed for studying the effect on ETEC virulence genes and metabolomic analysis was performed using LC-MS. The results showed that CP9 cells were viable in varied bile salts and in low pH environments. CP9 showed no apparent cytotoxicity in IPEC-J2 cells. CP9 displayed significant bactericidal effect against Enterotoxic E. coli (ETEC), Salmonella Typhimurium, and Methicillin-resistant Staphylococcus aureus (MRSA) in a contact inhibitory fashion. CP9 reduced the expression of ETEC virulent genes during a 5 h co-culture. Additionally, a unique emergent metabolic signature in co-culture samples was observed by LC-MS analysis. Our findings indicate that CP9 exhibits a strong antibacterial property and reveals potential mechanisms behind.
Collapse
Affiliation(s)
- Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert Flick
- Biozone, Mass Spectrometry and Metabolomics, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada;
| | - Linda Nong
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
7
|
Abstract
Despite our extensive knowledge of the genetic regulation of heat shock proteins (HSPs), the evolutionary routes that allow bacteria to adaptively tune their HSP levels and corresponding proteostatic robustness have been explored less. In this report, directed evolution experiments using the Escherichia coli model system unexpectedly revealed that seemingly random single mutations in its tnaA gene can confer significant heat resistance. Closer examination, however, indicated that these mutations create folding-deficient and aggregation-prone TnaA variants that in turn can endogenously and preemptively trigger HSP expression to cause heat resistance. These findings, importantly, demonstrate that even erosive mutations with disruptive effects on protein structure and functionality can still yield true gain-of-function alleles with a selective advantage in adaptive evolution.
Collapse
|
8
|
Production of Enantiopure Chiral Epoxides with E. coli Expressing Styrene Monooxygenase. Molecules 2021; 26:molecules26061514. [PMID: 33802034 PMCID: PMC8001364 DOI: 10.3390/molecules26061514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022] Open
Abstract
Styrene monooxygenases are a group of highly selective enzymes able to catalyse the epoxidation of alkenes to corresponding chiral epoxides in excellent enantiopurity. Chiral compounds containing oxirane ring or products of their hydrolysis represent key building blocks and precursors in organic synthesis in the pharmaceutical industry, and many of them are produced on an industrial scale. Two-component recombinant styrene monooxygenase (SMO) from Marinobacterium litorale was expressed as a fused protein (StyAL2StyB) in Escherichia coli BL21(DE3). By high cell density fermentation, 35 gDCW/L of biomass with overexpressed SMO was produced. SMO exhibited excellent stability, broad substrate specificity, and enantioselectivity, as it remained active for months and converted a group of alkenes to corresponding chiral epoxides in high enantiomeric excess (˃95–99% ee). Optically pure (S)-4-chlorostyrene oxide, (S)-allylbenzene oxide, (2R,5R)-1,2:5,6-diepoxyhexane, 2-(3-bromopropyl)oxirane, and (S)-4-(oxiran-2-yl)butan-1-ol were prepared by whole-cell SMO.
Collapse
|
9
|
Sueki A, Stein F, Savitski MM, Selkrig J, Typas A. Systematic Localization of Escherichia coli Membrane Proteins. mSystems 2020; 5:e00808-19. [PMID: 32127419 PMCID: PMC7055658 DOI: 10.1128/msystems.00808-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
The molecular architecture and function of the Gram-negative bacterial cell envelope are dictated by protein composition and localization. Proteins that localize to the inner membranes (IM) and outer membranes (OM) of Gram-negative bacteria play critical and distinct roles in cellular physiology; however, approaches to systematically interrogate their distribution across both membranes and the soluble cell fraction are lacking. Here, we employed multiplexed quantitative mass spectrometry using tandem mass tag (TMT) labeling to assess membrane protein localization in a proteome-wide fashion by separating IM and OM vesicles from exponentially growing Escherichia coli K-12 cells on a sucrose density gradient. The migration patterns for >1,600 proteins were classified in an unbiased manner, accurately recapitulating decades of knowledge in membrane protein localization in E. coli For 559 proteins that are currently annotated as peripherally associated with the IM (G. Orfanoudaki and A. Economou, Mol Cell Proteomics 13:3674-3687, 2014, https://doi.org/10.1074/mcp.O114.041137) and that display potential for dual localization to either the IM or cytoplasm, we could allocate 110 proteins to the IM and 206 proteins to the soluble cell fraction based on their fractionation patterns. In addition, we uncovered 63 cases, in which our data disagreed with current localization annotation in protein databases. For 42 of these cases, we were able to find supportive evidence for our localization findings in the literature. We anticipate that our systems-level analysis of the E. coli membrane proteome will serve as a useful reference data set to query membrane protein localization, as well as to provide a novel methodology to rapidly and systematically map membrane protein localization in more poorly characterized Gram-negative species.IMPORTANCE Current knowledge of protein localization, particularly outer membrane proteins, is highly dependent on bioinformatic predictions. To date, no systematic experimental studies have directly compared protein localization spanning the inner and outer membranes of E. coli By combining sucrose density gradient fractionation of inner membrane (IM) and outer membrane (OM) proteins with multiplex quantitative proteomics, we systematically quantified localization patterns for >1,600 proteins, providing high-confidence localization annotations for 1,368 proteins. Of these proteins, we resolve the predominant localization of 316 proteins that currently have dual annotation (cytoplasmic and IM) in protein databases and identify new annotations for 42 additional proteins. Overall, we present a novel quantitative methodology to systematically map membrane proteins in Gram-negative bacteria and use it to unravel the biological complexity of the membrane proteome architecture in E. coli.
Collapse
Affiliation(s)
- Anna Sueki
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
10
|
Du L, Zhang Z, Xu Q, Chen N. Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli. Bioengineered 2019; 10:59-70. [PMID: 30866700 PMCID: PMC6527064 DOI: 10.1080/21655979.2019.1592417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/07/2022] Open
Abstract
Tryptophan, an aromatic amino acid, has been widely used in food industry because it participates in the regulation of protein synthesis and metabolic network in vivo. In this study, we obtained a strain named TRP03 by enhancing the tryptophan synthesis pathway, which could accumulate tryptophan at approximately 35 g/L in a 5 L bioreactor. We then modified the central metabolic pathway of TRP03, to increase the supply of the precursor phosphoenolpyruvate (PEP), the genes related to PEP were modified. Furthermore, citric acid transport system and TCA were upregulated to effectively increase cell growth. We observed that strain TRP07 that could accumulate tryptophan at approximately 49 g/L with a yield of 0.186 g tryptophan/g glucose in a 5 L bioreactor. By-products such as glutamate and acetic acid were reduced to 0.8 g/L and 2.2 g/L, respectively.
Collapse
Affiliation(s)
- Lihong Du
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
11
|
Liu L, Bilal M, Luo H, Zhao Y, Iqbal HMN. Metabolic Engineering and Fermentation Process Strategies for L-Tryptophan Production by Escherichia coli. Processes (Basel) 2019; 7:213. [DOI: 10.3390/pr7040213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
L-tryptophan is an essential aromatic amino acid that has been widely used in medicine, food, and animal feed. Microbial biosynthesis of L-tryptophan through metabolic engineering approaches represents a sustainable, cost-effective, and environmentally friendly route compared to chemical synthesis. In particular, metabolic pathway engineering allows enhanced product titers by inactivating/blocking the competing pathways, increasing the intracellular level of essential precursors, and overexpressing rate-limiting enzymatic steps. Based on the route of the L-tryptophan biosynthesis pathway, this review presents a systematic and detailed summary of the contemporary metabolic engineering approaches employed for L-tryptophan production. In addition to the engineering of the L-tryptophan biosynthesis pathway, the metabolic engineering modification of carbon source uptake, by-product formation, key regulatory factors, and the polyhydroxybutyrate biosynthesis pathway in L-tryptophan biosynthesis are discussed. Moreover, fermentation bioprocess optimization strategies used for L-tryptophan overproduction are also delineated. Towards the end, the review is wrapped up with the concluding remarks, and future strategies are outlined for the development of a high L-tryptophan production strain.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Campus Monterrey, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico
| |
Collapse
|
12
|
Orozco-Gómez DI, Sosa-Hernández JE, Gallardo-Navarro ÓA, Santana-Solano J, Santillán M. Bistable behaviour and medium-dependent post-translational regulation of the tryptophanase operon regulatory pathway in Echerichia coli. Sci Rep 2019; 9:5451. [PMID: 30931970 PMCID: PMC6443796 DOI: 10.1038/s41598-019-41856-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/15/2019] [Indexed: 11/28/2022] Open
Abstract
The present work is aimed at studying the dynamic behaviour of the tryptopnanase (tna) operon, which encodes the proteins necessary to uptake and metabolise tryptophan to use it as a carbon source in the absence of glucose. To this end, we designed a micro-bioreactor capable of driving a bacterial culture to a stationary state. This allowed us to explore (at the single cell level) the tna operon steady-state dynamics under multiple culture conditions. Our experimental results suggest that the tna operon is bistable for a specific range of environmental tryptophan and glucose concentrations, and evidence that both reagents play a role on the activation of the enzyme in charge of metabolising tryptophan: tryptophanase (TnaA). Based on our experimental data and the already known regulatory mechanisms, we developed a mathematical model for the tna operon regulatory pathway. Our modelling results reinforce the claim that the tna operon is bistable, and further suggest that the activity of enzyme TnaA is regulated by the environmental levels of glucose and tryptophan via a common signalling pathway. Possible biological implications of our findings are further discussed.
Collapse
Affiliation(s)
- David I Orozco-Gómez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, 66600, Apodaca, NL, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Óscar Adrián Gallardo-Navarro
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, 66600, Apodaca, NL, Mexico
| | - Jesús Santana-Solano
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, 66600, Apodaca, NL, Mexico
| | - Moisés Santillán
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, 66600, Apodaca, NL, Mexico.
| |
Collapse
|
13
|
Howard MF, Bina XR, Bina JE. Indole Inhibits ToxR Regulon Expression in Vibrio cholerae. Infect Immun 2019; 87:e00776-18. [PMID: 30617203 PMCID: PMC6386550 DOI: 10.1128/iai.00776-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Indole is a degradation product of tryptophan that functions as a signaling molecule in many bacteria. This includes Vibrio cholerae, where indole was shown to regulate biofilm and type VI secretion in nontoxigenic environmental isolates. Indole is also produced by toxigenic V. cholerae strains in the human intestine, but its significance in the host is unknown. We investigated the effects of indole on toxigenic V. cholerae O1 El Tor during growth under virulence inducing conditions. The indole transcriptome was defined by RNA sequencing and showed widespread changes in the expression of genes involved in metabolism, biofilm production, and virulence factor production. In contrast, genes involved in type VI secretion were not affected by indole. We subsequently found that indole repressed genes involved in V. cholerae pathogenesis, including the ToxR virulence regulon. Consistent with this, indole inhibited cholera toxin and toxin-coregulated pilus production in a dose-dependent manner. The effects of indole on virulence factor production and biofilm were linked to ToxR and the ToxR-dependent regulator LeuO. The expression of leuO was increased by exogenous indole and linked to repression of the ToxR virulence regulon. This process was dependent on the ToxR periplasmic domain, suggesting that indole was a ToxR agonist. This conclusion was further supported by results showing that the ToxR periplasmic domain contributed to indole-mediated increased biofilm production. Collectively, our results suggest that indole may be a niche-specific cue that can function as a ToxR agonist to modulate virulence gene expression and biofilm production in V. cholerae.
Collapse
Affiliation(s)
- Mondraya F Howard
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - X Renee Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James E Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Evaluation of a Culture-Dependent Algorithm and a Molecular Algorithm for Identification of Shigella spp., Escherichia coli, and Enteroinvasive E. coli. J Clin Microbiol 2018; 56:JCM.00510-18. [PMID: 30021824 PMCID: PMC6156305 DOI: 10.1128/jcm.00510-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Identification of Shigella spp., Escherichia coli, and enteroinvasive E. coli (EIEC) is challenging because of their close relatedness. Distinction is vital, as infections with Shigella spp. are under surveillance of health authorities, in contrast to EIEC infections. In this study, a culture-dependent identification algorithm and a molecular identification algorithm were evaluated. Discrepancies between the two algorithms and original identification were assessed using whole-genome sequencing (WGS). After discrepancy analysis with the molecular algorithm, 100% of the evaluated isolates were identified in concordance with the original identification. However, the resolution for certain serotypes was lower than that of previously described methods and lower than that of the culture-dependent algorithm. Although the resolution of the culture-dependent algorithm is high, 100% of noninvasive E. coli, Shigella sonnei, and Shigella dysenteriae, 93% of Shigella boydii and EIEC, and 85% of Shigella flexneri isolates were identified in concordance with the original identification. Discrepancy analysis using WGS was able to confirm one of the used algorithms in four discrepant results. However, it failed to clarify three other discrepant results, as it added yet another identification. Both proposed algorithms performed well for the identification of Shigella spp. and EIEC isolates and are applicable in low-resource settings, in contrast to previously described methods that require WGS for daily diagnostics. Evaluation of the algorithms showed that both algorithms are capable of identifying Shigella species and EIEC isolates. The molecular algorithm is more applicable in clinical diagnostics for fast and accurate screening, while the culture-dependent algorithm is more suitable for reference laboratories to identify Shigella spp. and EIEC up to the serotype level.
Collapse
|
15
|
Mateus A, Bobonis J, Kurzawa N, Stein F, Helm D, Hevler J, Typas A, Savitski MM. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol Syst Biol 2018; 14:e8242. [PMID: 29980614 PMCID: PMC6056769 DOI: 10.15252/msb.20188242] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Increasing antibiotic resistance urges for new technologies for studying microbes and antimicrobial mechanism of action. We adapted thermal proteome profiling (TPP) to probe the thermostability of Escherichia coli proteins in vivoE. coli had a more thermostable proteome than human cells, with protein thermostability depending on subcellular location-forming a high-to-low gradient from the cell surface to the cytoplasm. While subunits of protein complexes residing in one compartment melted similarly, protein complexes spanning compartments often had their subunits melting in a location-wise manner. Monitoring the E. coli meltome and proteome at different growth phases captured changes in metabolism. Cells lacking TolC, a component of multiple efflux pumps, exhibited major physiological changes, including differential thermostability and levels of its interaction partners, signaling cascades, and periplasmic quality control. Finally, we combined in vitro and in vivo TPP to identify targets of known antimicrobial drugs and to map their downstream effects. In conclusion, we demonstrate that TPP can be used in bacteria to probe protein complex architecture, metabolic pathways, and intracellular drug target engagement.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jacob Bobonis
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Hevler
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
16
|
Sergeeva OV, Bredikhin DO, Nesterchuk MV, Serebryakova MV, Sergiev PV, Dontsova OA. Possible Role of Escherichia coli Protein YbgI. BIOCHEMISTRY (MOSCOW) 2018; 83:270-280. [PMID: 29625546 DOI: 10.1134/s0006297918030070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins containing the NIF3 domain are highly conserved and are found in bacteria, eukaryotes, and archaea. YbgI is an Escherichia coli protein whose gene is conserved among bacteria. The structure of YbgI is known; however, the function of this protein in cells remains obscure. Our studies of E. coli cells with deleted ybgI gene suggest that YbgI is involved in formation of the bacterial cell wall.
Collapse
Affiliation(s)
- O V Sergeeva
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Moscow Region, Russia.
| | | | | | | | | | | |
Collapse
|