1
|
Stevens MJA, Horlbog JA, Diethelm A, Stephan R, Nüesch-Inderbinen M. Characteristics and comparative genome analysis of Yersinia enterocolitica and related species associated with human infections in Switzerland 2019-2023. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105652. [PMID: 39103026 DOI: 10.1016/j.meegid.2024.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE We aimed to characterise Yersinia enterocolitica from human clinical specimens in Switzerland using epidemiological, microbiological and whole-genome sequencing (WGS) data. METHODS Isolates (n = 149) were collected between January 2019 and December 2023. Epidemiological data was noted and strains were characterized by biochemical and serological typing, antimicrobial susceptibility testing (AST), and WGS-based analysis. RESULTS Most of the isolates (86%) were from stool specimens and 52% were from male patients. The patients' median age was 28 years (range < 1-94 years). Typing assigned the isolates to bioserotype 4/O:3 (44%), biotype 1A (34%), bioserotype 2/O:9 (21%), and bioserotype 3/O:3 (1%). WGS identified Y. enterocolitica (n = 147), Y. alsatica (n = 1) and Y. proxima (n = 1). Seven isolates were multidrug resistant (MDR) and harboured plasmid pAB829 carrying aph(3″)-Ib, aph(6)-Id, and tet(Y) (n = 1), pAC120 carrying aph(6)-Id and tet(A) (n = 2), or a 12.6 kb Tn2670-like transposon containing catA1, aadA12, sul1, and qacEΔ1 (n = 4). Virulence factors (VFs) included ail (n = 99), invB, (n = 145), ystA (n = 99), ystB (n = 48) and pYV-associated VFs (n = 93). MLST and cgMLST analysis showed that BT 1A strains consisted of several STs and were highly diverse, whereas BT 2/O:9 strains were all ST12 and clustered closely, and BT 4/O:3 strains mostly belonged to ST18 but were more diverse. SNP analysis revealed two highly clonal BT 4/O:3 subpopulations with wide spatio-temporal distribution. CONCLUSIONS Y. enterocolitica BT 1A, BT 2/O:9 and BT 4/O:3 are frequently associated with human yersiniosis in Switzerland. WGS-based subtyping of Y. enterocolitica is a powerful tool to explore the genetic diversity and the pathogenic potential of human isolates.
Collapse
Affiliation(s)
- Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Swiss National Reference Centre for Enteropathogenic Bacteria and Listeria, University of Zurich, Zurich, Switzerland
| | - Andrea Diethelm
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Swiss National Reference Centre for Enteropathogenic Bacteria and Listeria, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
2
|
Mai Z, Fu H, Miao R, Lu C, Zhang X, Yuan Z, Ji P, Hua Y, Wang C, Ma Y, Deng H, Wei Y. Serological investigation and isolation of Salmonella abortus equi in horses in Xinjiang. BMC Vet Res 2024; 20:103. [PMID: 38491518 PMCID: PMC10941388 DOI: 10.1186/s12917-024-03955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Salmonella enterica subspecies enterica serovar abortus equi (S. abortus equi) is one of the main pathogens that causes abortion in pregnant horses and donkeys, which was highly infectious and greatly restricts the healthy development of the horse industry. OBJECTIVES In order to investigate the prevalence and biological characteristics of S. abortus equi in different regions and breeds of horses in Xinjiang. METHODS This study conducted ELISA detection of S. abortus equi antibodies on serum samples of 971 horses collected from three large-scale horse farms and five free-range horse farms in Yili Prefecture and Bayingol Mongolian Autonomous Prefecture of Xinjiang from 2020 to 2023. On this basis, bacterial isolation, culture, identification, and drug sensitivity tests were conducted on 42 samples of aborted foal tissues and 23 mare vaginal swabs. RESULTS The results showed that the positive rate of S. abortus equi antibody was as high as 20.91% in 971 horse serum samples. Among them, the positive rate in the Ili region (29.09%) was significantly higher than that in the Bayingole region (11.24%), and the positive rate in mares (22.45%) was higher than that in stallions (14.05%). In terms of horse breeds, the positive rates of self-propagating thoroughbred horses, half-bred horses, Ili horses and Yanqi horses were 43.22%, 28.81%, 14.72% and 11.24% respectively. In addition, S. abortus equi was more susceptible to juvenile and elderly horses, with positive rates of 70.00%and 41.86%, respectively, both of which were significantly higher than young (10.97%) and adult (19.79%) horses. Further, 9 strains of S. abortus equi were obtained through bacterial isolation, culture and identification, which were resistant to five antibiotics (Clarithromycin, Clindamycin, penicillin, Sulfamethoxazole and Rifampicin), and sensitive to 13 antimicrobial agents (Amoxicillin, Ciprofloxacin and Gentamicin, et al.). CONCLUSION There was a high infection rate of S. abortus equi in Ili Prefecture and self-propagating thoroughbred horses, and juvenile or old mares were more susceptible, which will provide scientific basis for the prevention of S. abortus equi infection in different regions and breeds of horses in Xinjiang.
Collapse
Affiliation(s)
- Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Han Fu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Ronghao Miao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Chong Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xiaosong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ziwen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chen Wang
- Animal Husbandry and Veterinary Station of Bazhou Center for Disease Control and Prevention of Korla, Korla, China
| | - Yuhui Ma
- Animal Husbandry and Veterinary Medicine Development Center of Zhaosu County, Zhaosu, China
| | - Haifeng Deng
- Zhaosu Horse Farm, Ili Kazakh Autonomous Prefecture, Zhaosu, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
3
|
Kröger C, Lerminiaux NA, Ershova AS, MacKenzie KD, Kirzinger MW, Märtlbauer E, Perry BJ, Cameron ADS, Schauer K. Plasmid-encoded lactose metabolism and mobilized colistin resistance ( mcr-9) genes in Salmonella enterica serovars isolated from dairy facilities in the 1980s. Microb Genom 2023; 9:001149. [PMID: 38031909 PMCID: PMC10711319 DOI: 10.1099/mgen.0.001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Horizontal gene transfer by plasmids can confer metabolic capabilities that expand a host cell's niche. Yet, it is less understood whether the coalescence of specialized catabolic functions, antibiotic resistances and metal resistances on plasmids provides synergistic benefits. In this study, we report whole-genome assembly and phenotypic analysis of five Salmonella enterica strains isolated in the 1980s from milk powder in Munich, Germany. All strains exhibited the unusual phenotype of lactose-fermentation and encoded either of two variants of the lac operon. Surprisingly, all strains encoded the mobilized colistin resistance gene 9 (mcr-9), long before the first report of this gene in the literature. In two cases, the mcr-9 gene and the lac locus were linked within a large gene island that formed an IncHI2A-type plasmid in one strain but was chromosomally integrated in the other strain. In two other strains, the mcr-9 gene was found on a large IncHI1B/IncP-type plasmid, whereas the lac locus was encoded on a separate chromosomally integrated plasmidic island. The mcr-9 sequences were identical and genomic contexts could not explain the wide range of colistin resistances exhibited by the Salmonella strains. Nucleotide variants did explain phenotypic differences in motility and exopolysaccharide production. The observed linkage of mcr-9 to lactose metabolism, an array of heavy-metal detoxification systems, and other antibiotic resistance genes may reflect a coalescence of specialized phenotypes that improve the spread of colistin resistance in dairy facilities, much earlier than previously suspected.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Nicole A. Lerminiaux
- Department of Biology, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Anna S. Ershova
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Keith D. MacKenzie
- Department of Biology, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Morgan W. Kirzinger
- Department of Biology, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Present address: National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, 85764, Germany
| | - Benjamin J. Perry
- Department of Biology, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Present address: AgResearch, 176 Puddle Alley, Mosgiel 9092, New Zealand
| | - Andrew D. S. Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Kristina Schauer
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, 85764, Germany
| |
Collapse
|
4
|
Dec M, Zając M, Puchalski A, Szczepaniak K, Urban-Chmiel R. Pet Reptiles in Poland as a Potential Source of Transmission of Salmonella. Pathogens 2022; 11:1125. [PMID: 36297182 PMCID: PMC9610186 DOI: 10.3390/pathogens11101125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 07/30/2023] Open
Abstract
Reptiles are considered a potential source of Salmonella transmission to humans. The aim of this research was to determine the incidence of Salmonella in pet reptiles in Poland and to examine Salmonella isolates with regard to their biochemical characteristics, serotype, antimicrobial susceptibility, and pathogenic and zoonotic potential. The research material consisted of 67 reptile faeces samples. The taxonomic affiliation of the Salmonella isolates was determined by MALDI-TOF mass spectrometry, biochemical analyses, and serotyping; whole genome sequencing (WGS) analysis was performed on three isolates whose serotype could not be determined by agglutination. The antimicrobial susceptibility of the Salmonella isolates was determined by the broth dilution method, and in the case of some antimicrobials by the disk diffusion method. The pathogenic and zoonotic potential of the identified serotypes was estimated based on available reports and case studies. The presence of Salmonella was confirmed in 71.6% of faecal samples, with the highest incidence (87.1%) recorded for snakes, followed by lizards (77.8%) and turtles (38.9%). All isolates (n = 51) belonged to the species S. enterica, predominantly to subspecies I (66.7%) and IIIb (25.5%). Among these, 25 serotypes were identified, including 10 that had previously been confirmed to cause reptile-associated salmonellosis (RAS). Salmonella isolates were susceptible to all antimicrobial substances used except streptomycin, to which 9.8% of the strains showed resistance. None of the strains contained corresponding resistance genes. The study demonstrates that pet reptiles kept in Poland are a significant reservoir of Salmonella and contribute to knowledge of the characteristics of reptilian Salmonella strains. Due to the risk of salmonellosis, contact with these animals requires special hygiene rules.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Andrzej Puchalski
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Klaudiusz Szczepaniak
- Department of Parasitology and Fish Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| |
Collapse
|
5
|
Xia Y, Wei ZY, He R, Li JH, Wang ZX, Huo JD, Chen JH. Hybrid de novo Genome Assembly of Erwinia sp. E602 and Bioinformatic Analysis Characterized a New Plasmid-Borne lac Operon Under Positive Selection. Front Microbiol 2021; 12:783195. [PMID: 34858382 PMCID: PMC8632497 DOI: 10.3389/fmicb.2021.783195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Our previous study identified a new β-galactosidase in Erwinia sp. E602. To further understand the lactose metabolism in this strain, de novo genome assembly was conducted by using a strategy combining Illumina and PacBio sequencing technology. The whole genome of Erwinia sp. E602 includes a 4.8 Mb chromosome and a 326 kb large plasmid. A total of 4,739 genes, including 4,543 protein-coding genes, 25 rRNAs, 82 tRNAs and 7 other ncRNAs genes were annotated. The plasmid was the largest one characterized in genus Erwinia by far, and it contained a number of genes and pathways responsible for lactose metabolism and regulation. Moreover, a new plasmid-borne lac operon that lacked a typical β-galactoside transacetylase (lacA) gene was identified in the strain. Phylogenetic analysis showed that the genes lacY and lacZ in the operon were under positive selection, indicating the adaptation of lactose metabolism to the environment in Erwinia sp. E602. Our current study demonstrated that the hybrid de novo genome assembly using Illumina and PacBio sequencing technologies, as well as the metabolic pathway analysis, provided a useful strategy for better understanding of the evolution of undiscovered microbial species or strains.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Rui He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Jia-Huan Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhi-Xin Wang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jun-Da Huo
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Kubicek-Sutherland JZ, Xie G, Shakya M, Dighe PK, Jacobs LL, Daligault H, Davenport K, Stromberg LR, Stromberg ZR, Cheng Q, Kempaiah P, Ong’echa JM, Otieno V, Raballah E, Anyona S, Ouma C, Chain PSG, Perkins DJ, Mukundan H, McMahon BH, Doggett NA. Comparative genomic and phenotypic characterization of invasive non-typhoidal Salmonella isolates from Siaya, Kenya. PLoS Negl Trop Dis 2021; 15:e0008991. [PMID: 33524010 PMCID: PMC7877762 DOI: 10.1371/journal.pntd.0008991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/11/2021] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major global health concern that often causes bloodstream infections in areas of the world affected by malnutrition and comorbidities such as HIV and malaria. Developing a strategy to control the emergence and spread of highly invasive and antimicrobial resistant NTS isolates requires a comprehensive analysis of epidemiological factors and molecular pathogenesis. Here, we characterize 11 NTS isolates that caused bloodstream infections in pediatric patients in Siaya, Kenya from 2003-2010. Nine isolates were identified as S. Typhimurium sequence type 313 while the other two were S. Enteritidis. Comprehensive genotypic and phenotypic analyses were performed to compare these isolates to those previously identified in sub-Saharan Africa. We identified a S. Typhimurium isolate referred to as UGA14 that displayed novel plasmid, pseudogene and resistance features as compared to other isolates reported from Africa. Notably, UGA14 is able to ferment both lactose and sucrose due to the acquisition of insertion elements on the pKST313 plasmid. These findings show for the first time the co-evolution of plasmid-mediated lactose and sucrose metabolism along with cephalosporin resistance in NTS further elucidating the evolutionary mechanisms of invasive NTS phenotypes. These results further support the use of combined genomic and phenotypic approaches to detect and characterize atypical NTS isolates in order to advance biosurveillance efforts that inform countermeasures aimed at controlling invasive and antimicrobial resistant NTS.
Collapse
Affiliation(s)
| | - Gary Xie
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Migun Shakya
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Priya K. Dighe
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Lindsey L. Jacobs
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | | | - Karen Davenport
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | | | | | - Qiuying Cheng
- Center for Global Health, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Prakasha Kempaiah
- Center for Global Health, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - John Michael Ong’echa
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Otieno
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
| | - Evans Raballah
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Medical Laboratory Science, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Samuel Anyona
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya
| | - Collins Ouma
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | | | - Douglas J. Perkins
- Center for Global Health, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
| | - Harshini Mukundan
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | | | - Norman A. Doggett
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| |
Collapse
|
7
|
Payen M, Pardos de la Gándara M, Cointe A, Massiot A, Bidet P, Weill FX, Bonacorsi S. Diagnostic challenge of gastrointestinal infection due to lactose-fermenting Salmonella enterica subsp. enterica serovar 4,5:I:. Diagn Microbiol Infect Dis 2020; 98:115105. [PMID: 32650283 DOI: 10.1016/j.diagmicrobio.2020.115105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 11/16/2022]
Abstract
Here, we describe a case of a nontyphoidal Salmonella disease caused by a Salmonella enterica serovar 4,5:i:- (monophasic Salmonella typhimurium) which acquired a Lac operon. This lactose-fermenting bacterium presents a major challenge for phenotypical detection of Salmonella. Only specific agar plates or molecular techniques allow reliable detection.
Collapse
Affiliation(s)
- Mathilde Payen
- Service de Microbiologie, Centre National de Référence associé Escherichia coli, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris, Paris, France
| | - María Pardos de la Gándara
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - Aurélie Cointe
- Service de Microbiologie, Centre National de Référence associé Escherichia coli, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris, Paris, France; Université de Paris, IAME, INSERM, F-75018 Paris, France
| | - Alix Massiot
- Service des Urgences pédiatriques, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Philippe Bidet
- Service de Microbiologie, Centre National de Référence associé Escherichia coli, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris, Paris, France; Université de Paris, IAME, INSERM, F-75018 Paris, France
| | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - Stéphane Bonacorsi
- Service de Microbiologie, Centre National de Référence associé Escherichia coli, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris, Paris, France; Université de Paris, IAME, INSERM, F-75018 Paris, France.
| |
Collapse
|
8
|
Mthembu TP, Zishiri OT, El Zowalaty ME. Detection and Molecular Identification of Salmonella Virulence Genes in Livestock Production Systems in South Africa. Pathogens 2019; 8:pathogens8030124. [PMID: 31405078 PMCID: PMC6789496 DOI: 10.3390/pathogens8030124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023] Open
Abstract
Livestock are an important source of protein and food for humans, however opportunistic pathogens such as Salmonella spp. turn livestock into vehicles of foodborne diseases. This study investigated the prevalence of virulence genes in Salmonella spp. isolated from livestock production systems in two provinces of South Africa. During the period from May to August, 2018, a total of 361 faecal (189), oral (100), environmental (soil (36) and water (27)) and feed (9) samples were randomly collected from different animals (cattle, sheep, goats, pigs, ducks and chickens) that were housed in small-scale livestock production systems from Eastern Cape and KwaZulu-Natal Provinces in South Africa. Salmonella spp. were isolated and identified using microbiological and DNA molecular methods. Salmonella spp. were present in 29.0% of the samples of which 30.2% belonged to the Salmonella enterica species as confirmed by the positive amplification of the species specific iroB gene. Virulence genes that were screened from livestock-associated Salmonella were invA, iroB, spiC, pipD and int1. Statistically significant associations (p < 0.05) were established between the virulence genes, sampling location, animal host as well as the season when samples were collected. Furthermore, statistically significant (p < 0.05) positive correlations were observed between most of the virulence genes investigated. This is one of the recent studies to detect and investigate livestock-associated Salmonella spp. in South Africa. This study highlights the importance of continuous monitoring and surveillance for pathogenic salmonellae. It also demonstrated the detection and prevalence of virulent Salmonella spp. harbored by livestock in South Africa. This study demonstrated the potential risks of pathogenic Salmonella enterica to cause foodborne diseases and zoonotic infections from farm-to-fork continuum using the global one-health approach.
Collapse
Affiliation(s)
- Thobeka P Mthembu
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Oliver T Zishiri
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, College of Pharmacy City University College of Ajman, Al Tallah 2, Ajman, P.O. Box 18484, UAE.
| |
Collapse
|
9
|
Pulford CV, Wenner N, Redway ML, Rodwell EV, Webster HJ, Escudero R, Kröger C, Canals R, Rowe W, Lopez J, Hall N, Rowley PD, Timofte D, Harrison RA, Baker KS, Hinton JCD. The diversity, evolution and ecology of Salmonella in venomous snakes. PLoS Negl Trop Dis 2019; 13:e0007169. [PMID: 31163033 PMCID: PMC6548357 DOI: 10.1371/journal.pntd.0007169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/08/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Reptile-associated Salmonella bacteria are a major, but often neglected cause of both gastrointestinal and bloodstream infection in humans globally. The diversity of Salmonella enterica has not yet been determined in venomous snakes, however other ectothermic animals have been reported to carry a broad range of Salmonella bacteria. We investigated the prevalence and diversity of Salmonella in a collection of venomous snakes and non-venomous reptiles. METHODOLOGY/PRINCIPLE FINDINGS We used a combination of selective enrichment techniques to establish a unique dataset of reptilian isolates to study Salmonella enterica species-level evolution and ecology and used whole-genome sequencing to investigate the relatedness of phylogenetic groups. We observed that 91% of venomous snakes carried Salmonella, and found that a diverse range of serovars (n = 58) were carried by reptiles. The Salmonella serovars belonged to four of the six Salmonella enterica subspecies: diarizonae, enterica, houtanae and salamae. Subspecies enterica isolates were distributed among two distinct phylogenetic clusters, previously described as clade A (52%) and clade B (48%). We identified metabolic differences between S. diarizonae, S. enterica clade A and clade B involving growth on lactose, tartaric acid, dulcitol, myo-inositol and allantoin. SIGNIFICANCE We present the first whole genome-based comparative study of the Salmonella bacteria that colonise venomous and non-venomous reptiles and shed new light on Salmonella evolution. Venomous snakes examined in this study carried a broad range of Salmonella, including serovars which have been associated with disease in humans such as S. Enteritidis. The findings raise the possibility that venomous snakes could be a reservoir for Salmonella serovars associated with human salmonellosis.
Collapse
Affiliation(s)
- Caisey V. Pulford
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicolas Wenner
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Martha L. Redway
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ella V. Rodwell
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Hermione J. Webster
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Roberta Escudero
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Kröger
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rocío Canals
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Will Rowe
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Javier Lopez
- Animal Health Department, Chester Zoo, Cheshire, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Paul D. Rowley
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Dorina Timofte
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Cheshire, United Kingdom
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Robert A. Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kate S. Baker
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Binet R, Pettengill EA, Hoffmann M, Hammack TS, Monday SR. Construction of stable fluorescent laboratory control strains for several food safety relevant Enterobacteriaceae. Food Microbiol 2018; 76:553-563. [DOI: 10.1016/j.fm.2017.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
|