1
|
dos Reis JBA, de Oliveira TMR, Sartori da Silva MRS, Lopes FAC, de Paula AM, Pontes NDC, do Vale HMM. Different Land Use Systems in the Brazilian Cerrado and Their Effects on Soil Bacterial Communities. Microorganisms 2025; 13:804. [PMID: 40284640 PMCID: PMC12029540 DOI: 10.3390/microorganisms13040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
The effect of agricultural practices on soil bacterial communities is not constant and depends a lot on the climatic context, changes in the soil characteristics, land use, and agricultural strategy. Thus, knowledge about how different land use systems in the Cerrado influence the diversity and taxonomic structure of microbial communities under the same soil type remains limited. In this context, the objective of this work was to analyze and compare the bacterial communities of Cerrado soil under two different land use systems (cover crop and potato cultivation) and in a neighboring native Cerrado area. For this, we used high-throughput amplicon sequencing of 16S rRNA genes (metabarcoding) to characterize the bacterial community at different taxonomic levels in a native Cerrado area, in a potato crop area, and in an area with cover crops. Our data indicated significant impacts on soil physicochemical properties and enzymatic activity, which directly reflect the dynamics of bacterial communities. The three bacterial phyla with the highest relative abundance in the three areas were Proteobacteria, Actinobacteriota, and Acidobacteriota. At the taxonomic class level, small variations were observed among areas, while at the amplicon sequence variant (ASV) level, these variations were more pronounced. The alpha diversity indices showed that the bacterial communities among the areas are rich and diverse. Bray-Curtis and Jaccard distance-based PCoA demonstrated an overlap of bacterial communities present in the cover crop area with the native Cerrado area and separation from the potato cultivation area. The in silico prediction demonstrated that the native Cerrado area presented the highest values of functional diversity of the soil bacterial community compared to the others. Thus, our results provide a holistic view of how different land use systems in the Cerrado can influence the taxonomic and functional diversity of soil bacterial communities.
Collapse
Affiliation(s)
| | - Thayssa Monize Rosa de Oliveira
- Centro de Excelência em Bioinsumos (CEBIO), Instituto Federal Goiano, Campus Morrinhos, Morrinhos 75650-000, GO, Brazil; (T.M.R.d.O.); (N.d.C.P.)
| | | | | | | | - Nadson de Carvalho Pontes
- Centro de Excelência em Bioinsumos (CEBIO), Instituto Federal Goiano, Campus Morrinhos, Morrinhos 75650-000, GO, Brazil; (T.M.R.d.O.); (N.d.C.P.)
| | - Helson Mario Martins do Vale
- University of Brasilia, Institute of Biological Sciences, Brasília 70910-900, DF, Brazil; (J.B.A.d.R.); (M.R.S.S.d.S.)
| |
Collapse
|
2
|
Li F, Luo Q, Wang J, Li X, Wang F, Han Q, Huang B. Effects of root-irrigation with metalaxyl-M and hymexazol on soil physical and chemical properties, enzyme activity, and the fungal diversity, community structure and function. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:767-777. [PMID: 39555951 DOI: 10.1080/03601234.2024.2428911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Fungicides are commonly applied through root irrigation in tobacco fields to control soil-borne diseases, and they affect soil microorganisms. However, the effects of metalaxyl-M and hymexazol, used to manage tobacco black shank disease, on these soil microecology remain poorly understood. This study employed high-throughput sequencing technology to explore the soil physical and chemical properties, soil enzyme activity, and the diversity, community structure and function of soil fungi in tobacco fields following root irrigation with metalaxyl-M and hymexazol. The results revealed that ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), soil organic matter (SOM), electrical conductivity (EC) and soil urease (UE) in soil were significantly increased and the pH decreased after root-irrigation with these two fungicides. The abundance of soil fungal community was significantly reduced after the root-irrigation of metalaxyl-M and hymexazol. The relative abundance of Ascomycota increased significantly after the treatment with metalaxyl-M. Following hymexazol treatment, the abundance of Achroiostachys, Nigrospora, Ustilaginoidea, and Trichoderma significantly decreased. Functional prediction analysis indicated an increase in the relative abundance of functional genes of saprophytic fungi after treatment with both fungicides. This study provides a foundational understanding of the environmental behavior and supports the scientific and rational use of metalaxyl-M and hymexazol in soil.
Collapse
Affiliation(s)
- Fengyu Li
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Qianqian Luo
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinjian Li
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Feng Wang
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Qingli Han
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Bin Huang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
3
|
Li X, Gong Q, Li Z. Response characteristics of soil microorganisms under strong disturbance conditions in the riparian zone of the three Gorges reservoir Area. Sci Rep 2024; 14:18394. [PMID: 39117855 PMCID: PMC11310319 DOI: 10.1038/s41598-024-69533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
The normal operation of the Three Gorges Reservoir, which involves periodic water storage and discharge, has led to strong disturbances in environmental conditions that alter soil microbial habitats in the riparian zones. Riparian zones are an important part of controlling pollution in the Three Gorges Reservoir area, since they act as a final ecological barrier that intercepts pollutants. Meanwhile, monitoring the health of microbial communities in the riparian zone is crucial for maintaining the ecological security of the reservoir area. We specifically investigate the Daning River, which are tributaries of the Three Gorges Reservoir and have typical riparian zones. Soil samples from these areas were subjected to high-throughput sequencing of 16S rRNA genes and 18S rRNA genes, in order to obtain the characteristics of the present microbial communities under strong disturbances in the riparian zones. We studied the characteristics and distribution patterns of microbial communities and their relationship with soil physicochemical properties. The study results indicate that microbial communities exhibit high diversity and evenness, and spatial heterogeneity is present. The ASV dataset contains many sequences not assigned to known genera, suggesting the presence of new fungal genera in the riparian zone. Redundancy analysis (RDA) revealed that pH andNH 4 + -N were the primary environmental factors driving bacterial community variation in the riparian zone, while pH, total carbon (TC) content, andNO 3 - -N were identified as the main drivers of soil archaeal community variation.
Collapse
Affiliation(s)
- Xiaolong Li
- Ocean College, Zhejiang University, Zhoushan, 316021, China
- Ministry of Water Resources of the People's Republic of China, Beijing, 100054, China
| | - Qianhui Gong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430000, China
| | - Zilong Li
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
4
|
Uchimiya M, DeRito CM, Hay AG. Sugarcane mill mud-induced putative host (soybean (Glycine max))-rhizobia symbiosis in sandy loam soil. PLoS One 2023; 18:e0293317. [PMID: 37917645 PMCID: PMC10621829 DOI: 10.1371/journal.pone.0293317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Domestic production of controlled-release, compost-based, and microbe-enhanced fertilizers is being expanded in the U.S. as a part of rural development. Sugarcane mill mud is a sterilized (≈90°C) agricultural byproduct in surplus that has received interests as a soil amendment in several Southern states, because of its high phosphorus and organic carbon contents. Addition of mill mud to sandy loam significantly increased the nodule formation compared to fertilized and unfertilized controls. Mill mud addition also resulted in pod yields similar to the fertilized control. Though not found in mill mud itself, mill mud additions correlated with an increase in soil Rhizobia as determined by deep 16S rRNA gene sequencing. We hypothesize that Firmicutes in sterilized mill mud induced Rhizobia that in turn enhanced soybean (Glycine max) growth. Collectively, mill mud enhanced the plant growth promoting bacteria when applied to a silt loam, although the relative influence of mill mud-derived bacteria, organic carbon, and nutrients is yet to be determined.
Collapse
Affiliation(s)
- Minori Uchimiya
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Christopher M. DeRito
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Anthony G. Hay
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
5
|
Khan MH, Liu H, Zhu A, Khan MH, Hussain S, Cao H. Conservation tillage practices affect soil microbial diversity and composition in experimental fields. Front Microbiol 2023; 14:1227297. [PMID: 37601340 PMCID: PMC10433396 DOI: 10.3389/fmicb.2023.1227297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Conservation tillage is a widely used technique worldwide, but the effects of conservation tillage on bacterial community structure are poorly understood. We explored proportional alterations in the bacterial community under different tillage treatments. Methodology Hence, this study utilized high-throughput sequencing technique to investigate the structure and assembly processes of microbial communities in different tillage treatments. Results and discussion Tillage treatments included tillage no-straw retention (CntWt), no-tillage with straw retention (CntWntS), tillage with straw retention (CntWtS), no-tillage and no-straw retention (CntWnt). The influence of tillage practices on soil bacterial communities was investigated using Illumina MiSeq sequencing. Different tillage methods and straw retention systems significantly influenced soil parameters such as total potassium and pH were not affected by tillage practices, while straw retention significantly affected soil parameters including nitrogen content, available phosphorus and available potassium. Straw retention decreased bacterial diversity while increased bacterial richness. The effect of straw retention and tillage on bacterial communities was greater than with no tillage. Phylogenetic β-diversity analysis showed that deterministic homogeneous selection processes were dominated, while stochastic processes were more pronounced in tillage without straw retention. Ecological network analysis showed that microbial community correlation was increased in CntWntS and CntWnt. Straw retention treatment significantly increased the relative abundance of bacterial taxa Proteobacteria, Bacteroidetes, and OD1, while Nitrospirae, Actinobacteria, and Verrucomicrobia significantly decreased. Conclusion The conservation tillage practices significantly affect soil properties, bacterial composition, and assembly processes; however, further studies are required to investigate the impact of different crops, tillage practices and physiological characteristics on bacterial community structure and functions.
Collapse
Affiliation(s)
- Muzammil Hassan Khan
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hao Liu
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Anning Zhu
- Fengqiu Agro-Ecological Experimental Station, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Mudassir Hassan Khan
- Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan
| | - Sarfraz Hussain
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Hui Cao
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Dos Reis JBA, Pappas Junior GJ, Lorenzi AS, Pinho DB, Costa AM, Bustamante MMDC, Vale HMMD. How Deep Can the Endophytic Mycobiome Go? A Case Study on Six Woody Species from the Brazilian Cerrado. J Fungi (Basel) 2023; 9:jof9050508. [PMID: 37233219 DOI: 10.3390/jof9050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Elucidating the complex relationship between plants and endophytic fungi is very important in order to understand the maintenance of biodiversity, equity, stability, and ecosystem functioning. However, knowledge about the diversity of endophytic fungi from species of the native Brazilian Cerrado biome is poorly documented and remains largely unknown. These gaps led us to characterize the diversity of Cerrado endophytic foliar fungi associated with six woody species (Caryocar brasiliense, Dalbergia miscolobium, Leptolobium dasycarpum, Qualea parviflora, Ouratea hexasperma, and Styrax ferrugineus). Additionally, we investigated the influence of host plant identities on the structure of fungal communities. Culture-dependent methods coupled with DNA metabarcoding were employed. Irrespective of the approach, the phylum Ascomycota and the classes Dothideomycetes and Sordariomycetes were dominant. Using the cultivation-dependent method, 114 isolates were recovered from all the host species and classified into more than 20 genera and 50 species. Over 50 of the isolates belonged to the genus Diaporthe, and were distributed into more than 20 species. Metabarcoding revealed the phyla Chytridiomycota, Glomeromycota, Monoblepharomycota, Mortierellomycota, Olpidiomycota, Rozellomycota, and Zoopagomycota. These groups are reported for the first time as components of the endophytic mycobiome of Cerrado plant species. In total, 400 genera were found in all host species. A unique leaf endophytic mycobiome was identified in each host species, which differed not only by the distribution of fungal species, but also by the abundance of shared species. These findings highlight the importance of the Brazilian Cerrado as a reservoir of microbial species, and emphasize how endophytic fungal communities are diversified and adapted.
Collapse
Affiliation(s)
| | - Georgios Joannis Pappas Junior
- University of Brasília (UnB), Institute of Biological Sciences, Department of Cellular Biology, Brasília 70910-900, DF, Brazil
| | - Adriana Sturion Lorenzi
- University of Brasília (UnB), Institute of Biological Sciences, Department of Cellular Biology, Brasília 70910-900, DF, Brazil
| | - Danilo Batista Pinho
- University of Brasília (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília 70910-900, DF, Brazil
| | - Alexandra Martins Costa
- University of Brasília (UnB), Institute of Biological Sciences, Department of Ecology, Brasília 70910-900, DF, Brazil
| | | | - Helson Mario Martins do Vale
- University of Brasília (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília 70910-900, DF, Brazil
| |
Collapse
|
7
|
D'Alò F, Zucconi L, Onofri S, Canini F, Cannone N, Malfasi F, Morais DK, Starke R. Effects of 5-year experimental warming in the Alpine belt on soil Archaea: Multi-omics approaches and prospects. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 36999249 DOI: 10.1111/1758-2229.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
We currently lack a predictive understanding of how soil archaeal communities may respond to climate change, particularly in Alpine areas where warming is far exceeding the global average. Here, we characterized the abundance, structure, and function of total (by metagenomics) and active soil archaea (by metatranscriptomics) after 5-year experimental field warming (+1°C) in Italian Alpine grasslands and snowbeds. Our multi-omics approach unveiled an increasing abundance of Archaea during warming in snowbeds, which was negatively correlated with the abundance of fungi (by qPCR) and micronutrients (Ca and Mg), but positively correlated with soil water content. In the snowbeds transcripts, warming resulted in the enrichment of abundances of transcription and nucleotide biosynthesis. Our study provides novel insights into possible changes in soil Archaea composition and function in the climate change scenario.
Collapse
Affiliation(s)
- Federica D'Alò
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
- Institute of Polar Sciences, National Research Council of Italy (CNR-ISP), Messina, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
| | - Nicoletta Cannone
- Department of Science and High Technology, Insubria University, Como, CO, Italy
| | - Francesco Malfasi
- Department of Science and High Technology, Insubria University, Como, CO, Italy
| | - Daniel Kumazawa Morais
- Biological Institute of São Paulo - Vila Mariana, São Paulo, Brazil
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Robert Starke
- Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| |
Collapse
|
8
|
Guima SES, Piubeli F, Bonfá MRL, Pereira RM. New Insights into the Effect of Fipronil on the Soil Bacterial Community. Microorganisms 2022; 11:microorganisms11010052. [PMID: 36677344 PMCID: PMC9862053 DOI: 10.3390/microorganisms11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Fipronil is a broad-spectrum insecticide with remarkable efficacy that is widely used to control insect pests around the world. However, its extensive use has led to increasing soil and water contamination. This fact is of concern and makes it necessary to evaluate the risk of undesirable effects on non-target microorganisms, such as the microbial community in water and/or soil. Studies using the metagenomic approach to assess the effects of fipronil on soil microbial communities are scarce. In this context, the present study was conducted to identify microorganisms that can biodegrade fipronil and that could be of great environmental interest. For this purpose, the targeted metabarcoding approach was performed in soil microcosms under two environmental conditions: fipronil exposure and control (without fipronil). After a 35-day soil microcosm period, the 16S ribosomal RNA (rRNA) gene of all samples was sequenced using the ion torrent personal genome machine (PGM) platform. Our study showed the presence of Proteobacteria, Actinobacteria, and Firmicutes in all of the samples; however, the presence of fipronil in the soil samples resulted in a significant increase in the concentration of bacteria from these phyla. The statistical results indicate that some bacterial genera benefited from soil exposure to fipronil, as in the case of bacteria from the genus Thalassobacillus, while others were affected, as in the case of bacteria from the genus Streptomyces. Overall, the results of this study provide a potential contribution of fipronil-degrading bacteria.
Collapse
Affiliation(s)
- Suzana Eiko Sato Guima
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Sao Paulo 05508000, Brazil
| | - Francine Piubeli
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Maricy Raquel Lindenbah Bonfá
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados 79804970, Brazil
| | - Rodrigo Matheus Pereira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados 79804970, Brazil
- Correspondence:
| |
Collapse
|
9
|
Mawarda PC, Mallon CA, Le Roux X, van Elsas JD, Salles JF. Interactions between Bacterial Inoculants and Native Soil Bacterial Community: the Case of Spore-forming Bacillus spp. FEMS Microbiol Ecol 2022; 98:6776013. [PMID: 36302145 PMCID: PMC9681130 DOI: 10.1093/femsec/fiac127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 01/21/2023] Open
Abstract
Microbial diversity can restrict the invasion and impact of alien microbes into soils via resource competition. However, this theory has not been tested on various microbial invaders with different ecological traits, particularly spore-forming bacteria. Here we investigated the survival capacity of two introduced spore-forming bacteria, Bacillus mycoides (BM) and B. pumillus (BP) and their impact on the soil microbiome niches with low and high diversity. We hypothesized that higher soil bacterial diversity would better restrict Bacillus survival via resource competition, and the invasion would alter the resident bacterial communities' niches only if inoculants do not escape competition with the soil community (e.g. through sporulation). Our findings showed that BP could not survive as viable propagules and transiently impacted the bacterial communities' niche structure. This may be linked to its poor resource usage and low growth rate. Having better resource use capacities, BM better survived in soil, though its survival was weakly related to the remaining resources left for them by the soil community. BM strongly affected the community niche structure, ultimately in less diverse communities. These findings show that the inverse diversity-invasibility relationship can be valid for some spore-forming bacteria, but only when they have sufficient resource use capacity.
Collapse
Affiliation(s)
| | - Cyrus A Mallon
- Microbial Community Ecology Cluster, expertise group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Xavier Le Roux
- INRAE, CNRS, Université Lyon 1, Université de Lyon, VetAgroSup, Laboratoire d'Ecologie Microbienne LEM, UMR 1418 INRAE, UMR 5557 CNRS, 69622 Villeurbanne Cedex, France
| | - Jan Dirk van Elsas
- Microbial Community Ecology Cluster, expertise group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology Cluster, expertise group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
10
|
Dos Reis JBA, do Vale HMM, Lorenzi AS. Insights into taxonomic diversity and bioprospecting potential of Cerrado endophytic fungi: a review exploring an unique Brazilian biome and methodological limitations. World J Microbiol Biotechnol 2022; 38:202. [PMID: 35999403 DOI: 10.1007/s11274-022-03386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Cerrado is the second largest biome in Brazil, and it is known for harboring a wide variety of endemic plant and microbial species, among which are endophytic fungi. Endophytic fungi are microorganisms capable of colonizing the interior of plant tissues without causing disease in host plants. Especially in the Cerrado biome, this group of microorganisms is still poorly studied and information on species estimation, ecological and evolutionary importance is not accurate and remains unknown. Also, it is extremely important to emphasize that great part of studies available on Cerrado endophytic fungi are national literature, including master's dissertations, course conclusion works or unpublished doctoral theses. The majority of these studies has highlighted that the endemic plant species are an important habitat for fungal endophytes, and new species have increasingly been described. Due to the lack of international literature on Cerrado endophytic fungi, the present review brings a bibliographic survey on taxonomic diversity and bioprospecting potential of fungal endophytes from a unique environment. This review also emphasizes the importance of studying Brazilian endophytic fungi from Cerrado as a source of new technologies (biofertilizer and biocontroller), since they are secondary metabolite-producing organisms with different biological activities for biotechnological, agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Helson Mário Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil.
| |
Collapse
|
11
|
Vieira AC, Lopes ÍS, Fonseca PLC, Olmo RP, Bittencourt F, de Vasconcelos LM, Pirovani CP, Gaiotto FA, Aguiar ERGR. Expanding the environmental virome: Infection profile in a native rainforest tree species. Front Microbiol 2022; 13:874319. [PMID: 35992690 PMCID: PMC9387356 DOI: 10.3389/fmicb.2022.874319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Agroforestry systems (AFS) for cocoa production combine traditional land-use practices with local biodiversity conservation, resulting in both ecological and agricultural benefits. The cacao-cabruca AFS model is widely implemented in regions of the Brazilian Atlantic Forest. Carpotroche brasiliensis (Raddi) A. Gray (Achariaceae) is a tree found in cabruca landscapes that is often used for reforestation and biotechnological applications. Despite its importance, we still lack information about viruses circulating in C. brasiliensis, particularly considering the possibility of spillover that could affect cocoa production. In our study, we analyzed the Carpotroche brasiliensis virome from Atlantic Forest and cacao-cabruca AFS regions using metatranscriptomics from several vegetative and reproductive organs. Our results revealed a diverse virome detecting near-complete or partial coding sequences of single- and double-stranded DNA and RNA viruses classified into at least six families (Botourmiaviridae, Bromoviridae, Caulimoviridae, Genomoviridae, Mitoviridae, and Rhabdoviridae) plus unclassified elements. We described with high confidence the near-complete and the partial genomes of two tentative novel viruses: Carpotroche-associated ilarvirus and Carpotroche-associated genomovirus, respectively. Interestingly, we also described sequences likely derived from a rhabdovirus, which could represent a novel member of the genus Gammanucleorhabdovirus. We observed higher viral diversity in cacao-cabruca AFS and reproductive organs of C. brasiliensis with preferential tropism to fruits, which could directly affect production. Altogether, our results provide data to better understand the virome in this unexplored agroecological interface, such as cacao-cabruca AFS and forest ecosystem, providing information on the aspects of virus–plant interactions.
Collapse
Affiliation(s)
- Anderson Carvalho Vieira
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Ícaro Santos Lopes
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Luize Camargos Fonseca
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Flora Bittencourt
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Carlos Priminho Pirovani
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Fernanda Amato Gaiotto
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- *Correspondence: Fernanda Amato Gaiotto,
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- Eric Roberto Guimarães Rocha Aguiar,
| |
Collapse
|
12
|
Richness of arbuscular mycorrhizal fungi (Glomeromycota) along a vegetation gradient of Brazilian Cerrado: responses to seasonality, soil types, and plant communities. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01785-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Bocatti CR, Ferreira E, Ribeiro RA, de Oliveira Chueire LM, Delamuta JRM, Kobayashi RKT, Hungria M, Nogueira MA. Microbiological quality analysis of inoculants based on Bradyrhizobium spp. and Azospirillum brasilense produced "on farm" reveals high contamination with non-target microorganisms. Braz J Microbiol 2022; 53:267-280. [PMID: 34984661 PMCID: PMC8882540 DOI: 10.1007/s42770-021-00649-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The use of inoculants carrying diazotrophic and other plant growth-promoting bacteria plays an essential role in the Brazilian agriculture, with a growing use of microorganism-based bioproducts. However, in the last few years, some farmers have multiplied microorganisms in the farm, known as "on farm" production, including inoculants of Bradyrhizobium spp. for soybean (Glycine max L. Merrill.) and Azospirillum brasilense for corn (Zea mays L.) or co-inoculation in soybean. The objective was to assess the microbiological quality of such inoculants concerning the target microorganisms and contaminants. In the laboratory, 18 samples taken in five states were serial diluted and spread on culture media for obtaining pure and morphologically distinct colonies of bacteria, totaling 85 isolates. Molecular analysis based on partial sequencing of the 16S rRNA gene revealed 25 genera of which 44% harbor species potentially pathogenic to humans; only one of the isolates was identified as Azospirillum brasilense, whereas no isolate was identified as Bradyrhizobium. Among 34 isolates belonging to genera harboring species potentially pathogenic to humans, 12 had no resistance to antibiotics, six presented intrinsic resistance, and 18 presented non-intrinsic resistance to at least one antibiotic. One of the samples analyzed with a shotgun-based metagenomics approach to check for the microbial diversity showed several genera of microorganisms, mainly Acetobacter (~ 32% of sequences) but not the target microorganism. The samples of inoculants produced on farm were highly contaminated with non-target microorganisms, some of them carrying multiple resistances to antibiotics.
Collapse
Affiliation(s)
- Camila Rafaeli Bocatti
- Department of Microbiology, Universidade Estadual de Londrina, C. Postal 10.011, Londrina, PR, 86057-970, Brazil
| | - Eduara Ferreira
- Embrapa Soja, C. Postal 4006, Londrina, PR, 86081-981, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Yin Y, Yuan Y, Zhang X, Huhe, Cheng Y, Borjigin S. Comparison of the Responses of Soil Fungal Community to Straw, Inorganic Fertilizer, and Compost in a Farmland in the Loess Plateau. Microbiol Spectr 2022; 10:e0223021. [PMID: 35019779 PMCID: PMC8754151 DOI: 10.1128/spectrum.02230-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
The Loess Plateau is located in the arid and semi-arid regions in northern China. The ecosystem is particularly sensitive to natural and anthropogenic disturbances. Fungi can produce extracellular enzymes, decompose a variety of organic matter, and regulate carbon and nutrient balance. We studied the changes of soil fungal community compositions in response to straw, inorganic fertilizer, and compost in a typical farmland in the Loess Plateau. Our results demonstrated that the addition of straw significantly reduces the Shannon index of the fungal community, in addition, the participation of straw significantly affects the composition of the fungal community. Functional prediction based on FUNGuild showed that straw significantly reduced the relative abundance of saprotrophs, pathotrophs, symbiotrophs, lichenized, ectomycorrhizal, and plant pathogens. Although fertilization practices destroyed the co-occurrence pattern among the fungal species, the addition of straw alleviated this affect. No significant effect of straw, compost, and inorganic fertilizers on the co-occurrence pattern among species in the soil fungal community was observed. Compared with compost and inorganic fertilizer, the addition of straw shaped the community composition by changing the relative abundance of fungal functional taxa. Thus, in the fragile Loess Plateau environment, over-fertilizing or non-order-fertilizing may destroy the co-occurrence pattern of the fungal communities and Loess Plateau ecosystem. IMPORTANCE Determining the response of soil fungi in sensitive ecosystems to external environmental disturbances is an important, yet little-known, topic in microbial ecology. In this study, we evaluated the impact of traditional fertilization management practices on the composition, co-occurrence pattern, and functional groups of fungal communities in loessial soil. Our results show that in the fragile Loess Plateau environment, fertilizer management changed the composition of the fungal community and disrupted the co-occurrence pattern between fungi. The application of straw alleviates the destroying of the co-occurrence pattern. The current research emphasizes the necessity of rational fertilization of farmland in loessial soil.
Collapse
Affiliation(s)
- Yalin Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ye Yuan
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xiaowen Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Huhe
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Hohhot, China
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, China
| | - Yunxiang Cheng
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Hohhot, China
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, China
| | - Shinchilelt Borjigin
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, Japan
| |
Collapse
|
15
|
de Souza LC, Procópio L. The adaptations of the microbial communities of the savanna soil over a period of wildfire, after the first rains, and during the rainy season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14070-14082. [PMID: 34601674 DOI: 10.1007/s11356-021-16731-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Annually, the Cerrado ecosystem alternates between dry periods and long rainy seasons. During the dry season, severe forest fires occur, consuming a considerable part of the native vegetation, which impacts directly on the microbiome of the soil. Evaluate the adaptations of the soil microbiome to drought, rain and wildfire. Sequencing of the 16S rRNA gene was carried out for three significant conditions: drought and forest fires ("Fire"), after the first recorded rains ("First_Rain"), and during the rainy season ("Rainy"). It has been shown that under the "Fire" condition, there was a predominance of Phylum Actinobacteria, followed by Proteobacteria and Firmicutes. With the advent of the rainy season, "First_Rain," there was a change in the predominant taxonomic groups, with a higher prevalence of members of Proteobacteria and Firmicutes. During the rainy season, Proteobacteria and Firmicutes continued as the most prevalent groups. However, it was noted that in this period, there was an increase in bacterial diversity when compared with other periods analyzed. These results show how environmental factors influence adaptations in microbial communities. This allows for a better understanding of how to link the structure of the microbial community to the performance of ecosystems, and assist in preventing the consequences of increased frequency of wildfires, and long periods of drought.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Cezar RM, Vezzani FM, Kaschuk G, Balsanelli E, de Souza EM, Vargas LK, Molin R. Crop rotation reduces the frequency of anaerobic soil bacteria in Red Latosol of Brazil. Braz J Microbiol 2021; 52:2169-2177. [PMID: 34319574 DOI: 10.1007/s42770-021-00578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/11/2021] [Indexed: 10/20/2022] Open
Abstract
Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession (Triticum aestivum-Glycine max) and rotation (Vicia sativa-Zea mays-Avena sativa-Glycine max-Triticum aestivum-Glycine max). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria, Holophagae, Spirochaetes, Euryarchaeota, and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability.
Collapse
Affiliation(s)
- Raul Matias Cezar
- Post-Graduate in Soil Science, Federal University of Paraná, Rua Dos Funcionários, 1540, Curitiba, PR, CEP 80035-050, Brazil
| | - Fabiane Machado Vezzani
- Post-Graduate in Soil Science, Federal University of Paraná, Rua Dos Funcionários, 1540, Curitiba, PR, CEP 80035-050, Brazil
| | - Glaciela Kaschuk
- Post-Graduate in Soil Science, Federal University of Paraná, Rua Dos Funcionários, 1540, Curitiba, PR, CEP 80035-050, Brazil.
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Rua Francisco H. Dos Santos S/N, Curitiba, PR, CEP 81531-990, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry, Federal University of Paraná, Rua Francisco H. Dos Santos S/N, Curitiba, PR, CEP 81531-990, Brazil
| | - Luciano Kayser Vargas
- Department of Agricultural Diagnosis and Research, Secretary of Agriculture and Livestock of the State of Rio Grande Do Sul, Rua Gonçalves Dias, 570, Porto Alegre, RS, CEP 90130-060, Brazil
| | - Rudimar Molin
- ABC Foundation, Rod. PR 151 km 288, Caixa-postal: 1003, Castro, PR, CEP 84165-700, Brazil
| |
Collapse
|
17
|
Selari PJRG, Olchanheski LR, Ferreira AJ, Paim TDP, Calgaro Junior G, Claudio FL, Alves EM, Santos DDC, Araújo WL, Silva FG. Short-Term Effect in Soil Microbial Community of Two Strategies of Recovering Degraded Area in Brazilian Savanna: A Pilot Case Study. Front Microbiol 2021; 12:661410. [PMID: 34177841 PMCID: PMC8221397 DOI: 10.3389/fmicb.2021.661410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
The Brazilian Cerrado is a highland tropical savanna considered a biodiversity hotspot with many endemic species of plants and animals. Over the years, most of the native areas of this biome became arable areas, and with inadequate management, some are nowadays at varying levels of degradation stage. Crop-livestock integrated systems (CLIS) are one option for the recovery of areas in degradation, improving the physicochemical and biological characteristics of the soil while increasing income and mitigating risks due to product diversification. Little is known about the effect of CLIS on the soil microbial community. Therefore, we perform this pilot case study to support further research on recovering degraded areas. The bacterial and fungal soil communities in the area with CLIS were compared to an area under moderate recovery (low-input recovering - LI) and native savanna (NS) area. Bacterial and fungal communities were investigated by 16S and ITS rRNA gene sequencing (deep rRNA sequencing). Ktedonobacteraceae and AD3 families were found predominantly in LI, confirming the relationship of the members of the Chloroflexi phylum in challenging environmental conditions, which can be evidenced in LI. The CLIS soil presented 63 exclusive bacterial families that were not found in LI or NS and presented a higher bacterial richness, which can be related to good land management. The NS area shared 21 and 6 families with CLIS and LI, respectively, suggesting that the intervention method used in the analyzed period brings microbial diversity closer to the conditions of the native area, demonstrating a trend of approximation between NS and CLIS even in the short term. The most abundant fungal phylum in NS treatment was Basidiomycota and Mucoromycota, whereas Ascomycota predominated in CLIS and LI. The fungal community needs more time to recover and to approximate from the native area than the bacterial community. However, according to the analysis of bacteria, the CLIS area behaved differently from the LI area, showing that this treatment induces a faster response to the increase in species richness, tending to more accelerated recovery. Results obtained herein encourage CLIS as a sustainable alternative for recovery and production in degraded areas.
Collapse
Affiliation(s)
- Priscila Jane Romano Gonçalves Selari
- Laboratory of Microbiology, Department of Biology, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Ceres, Brazil
| | - Luiz Ricardo Olchanheski
- Laboratory of Microbiology, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Almir José Ferreira
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Tiago do Prado Paim
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Guido Calgaro Junior
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Flavio Lopes Claudio
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Estenio Moreira Alves
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Darliane de Castro Santos
- Laboratory of Agricultural Chemistry, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Rio Verde, Brazil
| | - Welington Luiz Araújo
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Plant Tissue and Culture, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Rio Verde, Brazil
| |
Collapse
|
18
|
de Souza LC, Procópio L. The profile of the soil microbiota in the Cerrado is influenced by land use. Appl Microbiol Biotechnol 2021; 105:4791-4803. [PMID: 34061229 DOI: 10.1007/s00253-021-11377-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023]
Abstract
Extensive areas of the Cerrado biome have been deforested by the rapid advance of agricultural frontiers, especially by agricultural monocultures, and cultivated pastures. The objective of this study was to characterize the soil microbial community of an environment without anthropogenic interference and to compare it with soybean soil and pasture areas. For that, metagenomic sequencing techniques of the 16S rRNA gene were employed. Consistent changes in the profiles of diversity and abundance were described between communities in relation to the type of soil. The soil microbiome of the native environment was influenced by the pH level and content of Al3+, whereas the soil microbiomes cultivated with soybean and pasture were associated with the levels of nutrients N and P and the ions Ca2+ and Mg2+, respectively. The analysis of bacterial communities in the soil of the native environment showed a high abundance of members of the Proteobacteria phylum, with emphasis on the Bradyrhizobium and Burkholderia genera. In addition, significant levels of species of the Bacillus genus, and Dyella ginsengisoli, and Edaphobacter aggregans of the Acidobacteria phylum were detected. In the soil community with soybean cultivation, there was a predominance of Proteobacteria, mainly of the Sphingobium and Sphingomonas genera. In the pasture, the soil microbiota was dominated by the Firmicutes, which was almost entirely represented by the Bacillus genus. These results suggest an adaptation of the bacterial community to the soybean and pasture cultivations and will support understanding how environmental and anthropogenic factors shape the soil microbial community. KEY POINTS: • The Cerrado soil microbiota is sensitive to impacts on the biome. • Microbial communities have been altered at all taxonomic levels.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil.
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Vargas Hoyos HA, Chiaramonte JB, Barbosa-Casteliani AG, Fernandez Morais J, Perez-Jaramillo JE, Nobre Santos S, Nascimento Queiroz SC, Soares Melo I. An Actinobacterium Strain From Soil of Cerrado Promotes Phosphorus Solubilization and Plant Growth in Soybean Plants. Front Bioeng Biotechnol 2021; 9:579906. [PMID: 33968908 PMCID: PMC8100043 DOI: 10.3389/fbioe.2021.579906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The huge biological diversity of the Brazilian Cerrado is an important source of economically interesting microbial agents. The phylum Actinobacteria plays an important role in nutrient cycling, potentially improving their availability to plants. In this study, we isolated an actinobacteria (strain 3AS4) from wheat rhizospheres of crops cultivated in the Cerrado biome. Strain 3AS4 was identified as belonging to the genus Streptomyces and had phosphorus mobilization ability, mineralizing approximately 410 μg ml–1 from phytate, 300 μg ml–1 from calcium phosphate, and 200 μg ml–1 from rock phosphate. The analysis of the actinobacteria crude extract by spectrometric techniques revealed the presence of gluconic and 2-ketogluconic acid, and a greenhouse experiment was carried out to evaluate its plant growth promotion activity in soybean. Soil in its natural condition (with no phosphorus addition), 40 kg ha–1 rock phosphate from Bayovar (RP) added to soil, and triple super phosphate (SPT) added to soil were used. Significant differences in plant height were observed at 6 weeks when the plants were inoculated with the 3AS4 strain. The growth of inoculated plants in natural condition was promoted in 17% compared with the RP and SPT non-inoculated conditions, suggesting that inoculation can enable plants to grow with lower chemical P fertilizers. In the plants that were inoculated with the 3AS4 strain in the RP condition, the plant height increased by approximately 80% and the shoot:root ratio was approximately 30% higher compared to control conditions (non-inoculated plants in natural conditions). 3AS4 has P-solubilizing potential and can be exploited as an inoculant for soybean cultivation. These results suggest that this actinobacterium is a valuable resource for sustainable agriculture and will allow the reduction of phosphate fertilization in the future.
Collapse
Affiliation(s)
- Harold Alexander Vargas Hoyos
- Program for the Study and Control of Tropical Diseases-PECET, School of Medicine, University of Antioquia, Medellín, Colombia.,Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariúna, Brazil
| | | | | | | | - Juan Esteban Perez-Jaramillo
- Program for the Study and Control of Tropical Diseases-PECET, School of Medicine, University of Antioquia, Medellín, Colombia
| | | | | | - Itamar Soares Melo
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariúna, Brazil
| |
Collapse
|
20
|
Seasonal and long-term effects of nutrient additions and liming on the nifH gene in cerrado soils under native vegetation. iScience 2021; 24:102349. [PMID: 33870141 PMCID: PMC8044383 DOI: 10.1016/j.isci.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation (BNF) represents the main input source of N in tropical savannas. BNF could be particularly important for Brazilian savannas (known as Cerrado) that show a highly conservative N cycle. We evaluated the effects of seasonal precipitation and nutrient additions on the nifH gene abundance in soils from a long-term fertilization experiment in a Cerrado's native area. The experiment consists of five treatments: (1) control, (2) liming, (3) nitrogen (N), (4) nitrogen + phosphorus (NP), and (5) phosphorus (P) additions. The nifH gene sequence was related to Bradyrhizobium members. Seasonal effects on N-fixing potential were observed by a decrease in the nifH relative abundance from rainy to dry season in control, N, and NP treatments. A significant reduction in nifH abundance was found in the liming treatment in both seasons. The findings evidenced the multiple factors controlling the potential N-fixing by free-living diazotrophs in these nutrient-limited and seasonally dry ecosystems.
Collapse
|
21
|
Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PI, Melo IS, Quecine MC. Beneficial Plant-Associated Microorganisms From Semiarid Regions and Seasonally Dry Environments: A Review. Front Microbiol 2021; 11:553223. [PMID: 33519722 PMCID: PMC7845453 DOI: 10.3389/fmicb.2020.553223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Semiarid regions are apparently low biodiversity environments; however, these environments may host a phylogenetically diverse microbial community associated with plants. Their microbial inhabitants are often recruited to withstand stressful settings and improve plant growth under harsh conditions. Thus, plant-associated microorganisms isolated from semiarid and seasonally dry environments will be detailed in the present review, focusing on plant growth promotion potential and the microbial ability to alleviate plant abiotic stress. Initially, we explored the role of microbes from dry environments around the world, and then, we focused on seasonally dry Brazilian biomes, the Caatinga and the Cerrado. Cultivable bacteria from semiarid and seasonally dry environments have demonstrated great plant growth promotion traits such as plant hormone production, mobilization of insoluble nutrients, and mechanisms related to plant abiotic stress alleviation. Several of these isolates were able to improve plant growth under stressful conditions commonly present in typical semiarid regions, such as high salinity and drought. Additionally, we highlight the potential of plants highly adapted to seasonal climates from the Caatinga and Cerrado biomes as a suitable pool of microbial inoculants to maintain plant growth under abiotic stress conditions. In general, we point out the potential for the exploitation of new microbial inoculants from plants growing in dry environments to ensure a sustainable increase in agricultural productivity in a future climate change scenario.
Collapse
Affiliation(s)
- Maria Leticia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | | | - Itamar Soares Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
22
|
Faria PSA, Marques VDO, Selari PJRG, Martins PF, Silva FG, Sales JDF. Multifunctional potential of endophytic bacteria from Anacardium othonianum Rizzini in promoting in vitro and ex vitro plant growth. Microbiol Res 2020; 242:126600. [PMID: 33011553 DOI: 10.1016/j.micres.2020.126600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023]
Abstract
Anacardium othonianum Rizzini, a cashew tree native to the Brazilian Cerrado, is economically important due to its applications in the food, chemical and pharmaceutical industries. However, A. othonianum yields a crop with low productivity due to a number of factors, such as nutritionally poor soils, drought and losses due to pests and diseases. Brazil is one of the nine largest cashew nut producers worldwide, and sustainable technologies are needed to increase the productivity of this crop. In this context, the use of endophytic microorganisms could promote plant growth and provide protection against phytopathogens. In this study, the isolation of the root endophytic community of A. othonianum led to the characterization of 22 distinct bacterial strains with multifunctional traits for plant growth promotion. The results of in vitro assays to assess auxin synthesis, phosphate solubilization, phosphatase and siderophore production and biocontrol against Fusarium oxysporum led to the selection of Acinetobacter lwoffii Bac109 and Pantoea agglomerans Bac131 as the most promising strains. The reinoculation of the Bac109 and Bac131 strains onto A. othonianum seeds showed that the treatment containing a mixture of these strains was the most effective in promoting increases in the biometric parameters of early plant growth. Thus, this study highlights the biotechnological potential of a consortium of A. lwoffii Bac109 and P. agglomerans Bac131 for future applications in sustainable cashew cultivation.
Collapse
Affiliation(s)
- Paula Sperotto Alberto Faria
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Vinicius de Oliveira Marques
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Priscila Jane Romano Gonçalves Selari
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Ceres, Goiás, Brazil.
| | - Paula Fabiane Martins
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Juliana de Fátima Sales
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| |
Collapse
|
23
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
24
|
Sarto MVM, Borges WLB, Bassegio D, Pires CAB, Rice CW, Rosolem CA. Soil microbial community, enzyme activity, C and N stocks and soil aggregation as affected by land use and soil depth in a tropical climate region of Brazil. Arch Microbiol 2020; 202:2809-2824. [PMID: 32747999 DOI: 10.1007/s00203-020-01996-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 11/24/2022]
Abstract
The impact of agricultural land-use on soil microbial community composition and enzyme activity has not been extensively investigated in Ultisols. We investigated soil health parameters by analyzing phospholipid fatty acids (PLFAs), extracellular enzyme activity, C and N stocks, and soil structure. Four land uses were established in a tropical climate region of Brazil: native Cerrado (savanna), monoculture pasture [Urochloa brizantha (Hochst. Ex A. Rich.) R. Webster 'Marandu'], an integrated crop-livestock system (ICLS), and maize (Zea mays)-fallow in a no-tillage system. Soil microbial biomass was 40% higher in the native Cerrado than in the monoculture pasture, ICLS, and no-tillage maize. Soil organic carbon was positively correlated with microbial community composition (MB; gram-; AC; AMF; Fungi; F: B ratio) and enzyme activity (bG, AP, NAG). Large macroaggregates were positively correlated with bG, AP, and AMF. In summary, the native Cerrado had a higher level of carbon at the soil surface and greater soil structure with increased microbial biomass, gram+ bacteria, AMF, fungi, and F:B ratio in a tropical region of Brazil. However, bG and AP enzyme activities were lower in the ICLS and no-till maize at the soil surface (0-5 cm) compared to the native Cerrado. The conversion of native Cerrado to agricultural systems shifted the soil microbial community composition, enzyme activity, C and N, and soil structure of this sandy soil of the Brazilian Cerrado.
Collapse
Affiliation(s)
- Marcos V M Sarto
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA. .,, 1712 Claflin Rd, Manhattan, KS, 66502, USA.
| | - Wander L B Borges
- Advanced Research Center of Rubber Tree and Agroforestry Systems, Agronomic Institute/IAC, Votuporanga, SP, Brazil
| | - Doglas Bassegio
- Western Parana State University, UNIOESTE, Cascavel, PR, CEP 85819-130, Brazil
| | - Carlos A B Pires
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Charles W Rice
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Ciro A Rosolem
- São Paulo State University, UNESP, Av. Universitária 3780, Botucatu, SP, CEP 18610-034, Brazil
| |
Collapse
|
25
|
Soil bacterial communities in the Brazilian Cerrado: Response to vegetation type and management. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2019. [DOI: 10.1016/j.actao.2019.103463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Mania D, Woliy K, Degefu T, Frostegård Å. A common mechanism for efficient N2O reduction in diverse isolates of nodule‐forming bradyrhizobia. Environ Microbiol 2019; 22:17-31. [DOI: 10.1111/1462-2920.14731] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/02/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Mania
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
| | - Kedir Woliy
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
| | - Tulu Degefu
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
- International Crops Research Institute for the Semi‐Arid Tropics Addis Ababa Ethiopia
| | - åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
| |
Collapse
|
27
|
Changes in soil taxonomic and functional diversity resulting from gamma irradiation. Sci Rep 2019; 9:7894. [PMID: 31133738 PMCID: PMC6536540 DOI: 10.1038/s41598-019-44441-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/05/2019] [Indexed: 12/30/2022] Open
Abstract
Little is known of the effects of ionizing radiation exposure on soil biota. We exposed soil microcosms to weekly bursts of 60Co gamma radiation over six weeks, at three levels of exposure (0.1 kGy/hr/wk [low], 1 kGy/hr/wk [medium] and 3 kGy/hr/wk [high]). Soil DNA was extracted, and shotgun metagenomes were sequenced and characterised using MG-RAST. We hypothesized that with increasing radiation exposure there would be a decrease in both taxonomic and functional diversity. While bacterial diversity decreased, diversity of fungi and algae unexpectedly increased, perhaps because of release from competition. Despite the decrease in diversity of bacteria and of biota overall, functional gene diversity of algae, bacteria, fungi and total biota increased. Cycles of radiation exposure may increase the range of gene functional strategies viable in soil, a novel ecological example of the effects of stressors or disturbance events promoting some aspects of diversity. Moreover, repeated density-independent population crashes followed by population expansion may allow lottery effects, promoting coexistence. Radiation exposure produced large overall changes in community composition. Our study suggests several potential novel radiation-tolerant groups: in addition to Deinococcus-Thermus, which reached up to 20% relative abundance in the metagenome, the phyla Chloroflexi (bacteria), Chytridiomycota (fungi) and Nanoarcheota (archaea) may be considered as radiation-tolerant.
Collapse
|
28
|
de Oliveira CP, Francelino MR, Daher M, de Araújo EJG, de Souza Sanches L, de Andrade KDC, de Campos JSN. Estimation of the aboveground biomass and carbon stocks in open Brazilian Savannah developed on sandy soils. CARBON BALANCE AND MANAGEMENT 2019; 14:5. [PMID: 31055669 PMCID: PMC7227269 DOI: 10.1186/s13021-019-0121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The Cerrado is the second largest biome in Brazil and the most biodiverse tropical savannah in the world and acts as a great sequester of atmospheric carbon. The lack of studies related to the quantification of its total biomass compromises the understanding of the dynamics of CO2 in this biome. Thus, it is relevant to develop studies aiming at obtaining accurate estimates of the carbon stock in the different phytophysiognomies that make the Cerrado, to include them in appropriate forest management models. Based on the hypothesis that the amount of carbon stored can vary according to the vegetation typology and vegetation compartments, the aerial stock of dry biomass and carbon were estimated in different compartments (arboreal, herbaceous-shrub and litter). The study was developed in open Brazilian savannah and soils on the sandstone and discussed the effect of fire on this phytophysiognomy. For the arboreal compartment were adjusted mathematical models to fit the biomass equations to estimate the individual stock of the trees in this compartment. The results of the stocks were discussed considering the effect of fire on the phytophysiognomy. RESULTS Based on the precision and extra distribution measures, the Schumacher-Hall (non-logarithmic) equation presented better results to estimate the individual biomass and carbon stocks of the open Brazilian savannah trees. The aboveground biomass was 12.88 Mg ha-1, corresponding to a total carbon stock of 5.91 Mg ha-1, where most of the stocks are in the herbaceous-shrub compartment (44%). The arboreal compartment accounts for the smallest part of the stocks, followed by the litter. CONCLUSIONS The observed values are in the interval verified for other areas of savannah studied in Brazil. The values verified for the open Brazilian savannah in sandy soils are at the lower limit of this range, due to the nutrient-poor nature of this type of soil. The distribution of stocks in the different compartments above the ground points to the fragility of this environment to the random fire effect, common in the region. That shows the need for conservation measures for vegetation maintenance and soil protection to preserve adequate nutrient cycling in the ecosystem.
Collapse
Affiliation(s)
- Camila Paula de Oliveira
- Departamento de Silvicultura, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, BR 465 km 7, Seropédica, 23890-000 Brazil
| | - Márcio Rocha Francelino
- Pós-Graduação em Ciências Ambientais e Florestais, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, BR 465 km 7, Seropédica, 23890-000 Brazil
- Departamento de Solos, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, 36570-900 Brazil
| | - Mayara Daher
- Departamento de Solos, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, 36570-900 Brazil
| | - Emanuel José Gomes de Araújo
- Departamento de Silvicultura, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, BR 465 km 7, Seropédica, 23890-000 Brazil
| | - Leonardo de Souza Sanches
- Departamento de Silvicultura, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, BR 465 km 7, Seropédica, 23890-000 Brazil
| | - Kauanna Domingues Cabral de Andrade
- Departamento de Silvicultura, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, BR 465 km 7, Seropédica, 23890-000 Brazil
| | - Júlia Santos Nunes de Campos
- Departamento de Silvicultura, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, BR 465 km 7, Seropédica, 23890-000 Brazil
| |
Collapse
|
29
|
Birolli WG, Arai MS, Nitschke M, Porto ALM. The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:129-137. [PMID: 31027572 DOI: 10.1016/j.pestbp.2019.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Chiral pesticides have been used in agriculture, including (±)-lambda-cyhalothrin ((±)-LC), which is a pyrethroid insecticide widely employed on crops for protection against different types of insects. However, enantioselectivity is poorly studied in biodegradation processes. Therefore, the (±)-LC enantioselective biodegradation by bacteria from Brazilian savannah was reported in this study with a validated analytical method. All bacterial strains biodegraded (±)-LC with different efficiencies. Residual concentrations of LC (3.7-43.1% of biodegradation) and its enantiomeric excesses (0-27% ee) were determined. Additionally, the formation of the main biodegradation metabolite 3-phenoxybenzoic acid was also quantified. A Bacillus consortium composed of the three most efficient strains biodegraded more LC than any isolated strain solely employed in this work, showing that the use of a consortium is an interesting approach. In addition, 13 metabolites were identified and a biodegradation pathway with biochemical reactions of hydrolysis, reduction, esterification, amidation, elimination and group transfer were proposed, confirming the bioremediation potential of these strains. The LC stereoisomer with the highest insecticidal activity (1R,3R,αS-enantiomer, also known as gamma-cyhalothrin) was preferentially biodegraded by the studied bacteria. Therefore, crops protection with gamma-cyhalothrin, which can be applied in lower concentrations than (±)-LC because it is a more effective product against insects, may also be biodegraded faster than the racemic mixture in the environment, decreasing the toxic effects on non-target organisms.
Collapse
Affiliation(s)
- Willian G Birolli
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, 13563-120, Ed. Química Ambiental, J. Santa Angelina, São Carlos, São Paulo, Brazil.
| | - Marylyn S Arai
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, 13563-120, Ed. Química Ambiental, J. Santa Angelina, São Carlos, São Paulo, Brazil
| | - Marcia Nitschke
- Laboratório de Biotecnologia Microbiana, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, 13563-120, Ed. Química Ambiental, J. Santa Angelina, São Carlos, São Paulo, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, 13563-120, Ed. Química Ambiental, J. Santa Angelina, São Carlos, São Paulo, Brazil
| |
Collapse
|
30
|
Pedrinho A, Mendes LW, Merloti LF, da Fonseca MDC, Cannavan FDS, Tsai SM. Forest-to-pasture conversion and recovery based on assessment of microbial communities in Eastern Amazon rainforest. FEMS Microbiol Ecol 2018; 95:5245175. [DOI: 10.1093/femsec/fiy236] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandre Pedrinho
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Luis Fernando Merloti
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Mariley de Cassia da Fonseca
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Fabiana de Souza Cannavan
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| |
Collapse
|
31
|
Souza RC, Cantão ME, Nogueira MA, Vasconcelos ATR, Hungria M. Outstanding impact of soil tillage on the abundance of soil hydrolases revealed by a metagenomic approach. Braz J Microbiol 2018; 49:723-730. [PMID: 29636299 PMCID: PMC6175745 DOI: 10.1016/j.bjm.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
The soil represents the main source of novel biocatalysts and biomolecules of industrial relevance. We searched for hydrolases in silico in four shotgun metagenomes (4,079,223 sequences) obtained in a 13-year field trial carried out in southern Brazil, under the no-tillage (NT), or conventional tillage (CT) managements, with crop succession (CS, soybean/wheat), or crop rotation (CR, soybean/maize/wheat/lupine/oat). We identified 42,631 hydrolases belonging to five classes by comparing with the KEGG database, and 44,928 sequences by comparing with the NCBI-NR database. The abundance followed the order: lipases>laccases>cellulases>proteases>amylases>pectinases. Statistically significant differences were attributed to the tillage system, with the NT showing about five times more hydrolases than the CT system. The outstanding differences can be attributed to the management of crop residues, left on the soil surface in the NT, and mechanically broken and incorporated into the soil in the CT. Differences between the CS and the CR were slighter, 10% higher for the CS, but not statistically different. Most of the sequences belonged to fungi (Verticillium, and Colletotrichum for lipases and laccases, and Aspergillus for proteases), and to the archaea Sulfolobus acidocaldarius for amylases. Our results indicate that agricultural soils under conservative managements may represent a hotspot for bioprospection of hydrolases.
Collapse
Affiliation(s)
- Renata Carolini Souza
- Embrapa Soja, C.P. 231, 86001-970 Londrina, PN, Brazil; CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
| | | | - Marco Antonio Nogueira
- Embrapa Soja, C.P. 231, 86001-970 Londrina, PN, Brazil; CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil; Laboratório Nacional de Computação Científica, Labinfo, Av. Getúlio Vargas 333, 25651-071 Petrópolis, RJ, Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970 Londrina, PN, Brazil; CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil.
| |
Collapse
|
32
|
Vargas-Albores F, Martínez-Córdova LR, Martínez-Porchas M, Calderón K, Lago-Lestón A. Functional metagenomics: a tool to gain knowledge for agronomic and veterinary sciences. Biotechnol Genet Eng Rev 2018; 35:69-91. [PMID: 30221593 DOI: 10.1080/02648725.2018.1513230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increased global demand for food production has motivated agroindustries to increase their own levels of production. Scientific efforts have contributed to improving these production systems, aiding to solve problems and establishing novel conceptual views and sustainable alternatives to cope with the increasing demand. Although microorganisms are key players in biological systems and may drive certain desired responses toward food production, little is known about the microbial communities that constitute the microbiomes associated with agricultural and veterinary activities. Understanding the diversity, structure and in situ interactions of microbes, together with how these interactions occur within microbial communities and with respect to their environments (including hosts), constitutes a major challenge with an enormous relevance for agriculture and biotechnology. The emergence of high-throughput sequencing technologies, together with novel and more accessible bioinformatics tools, has allowed researchers to learn more about the functional potential and functional activity of these microbial communities. These tools constitute a relevant approach for understanding the metabolic processes that can occur or are currently occurring in a given system and for implementing novel strategies focused on solving production problems or improving sustainability. Several 'omics' sciences and their applications in agriculture are discussed in this review, and the usage of functional metagenomics is proposed to achieve substantial advances for food agroindustries and veterinary sciences.
Collapse
Affiliation(s)
- Francisco Vargas-Albores
- a Centro de Investigación en Alimentación y Desarrollo , A.C. Coordinación de Tecnología de Alimentos de Origen Animal , Hermosillo , Mexico
| | - Luis R Martínez-Córdova
- b Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora , Universidad de Sonora , Hermosillo , Mexico
| | - Marcel Martínez-Porchas
- a Centro de Investigación en Alimentación y Desarrollo , A.C. Coordinación de Tecnología de Alimentos de Origen Animal , Hermosillo , Mexico
| | - Kadiya Calderón
- b Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora , Universidad de Sonora , Hermosillo , Mexico
| | | |
Collapse
|
33
|
Choudhary M, Sharma PC, Jat HS, Dash A, Rajashekar B, McDonald AJ, Jat ML. Soil bacterial diversity under conservation agriculture-based cereal systems in Indo-Gangetic Plains. 3 Biotech 2018; 8:304. [PMID: 30002994 DOI: 10.1007/s13205-018-1317-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/18/2018] [Indexed: 11/28/2022] Open
Abstract
In Indo-Gangetic plains (IGP) of India, natural resources (soil, water, and environment) are degrading under the conventional-till (CT)-based management practices in rice-wheat cropping system. A long-term field experiment was conducted to understand the soil bacterial diversity and abundance under different sets of management scenarios (Sc). The study comprised of four scenarios, namely, -Sc.I CT-based rice-wheat system (farmers' practice); Sc.II, partial conservation agriculture (CA) based in which rice is under CT-wheat and mungbean under zero-tillage (ZT); Sc.III, full CA-based in which rice-wheat-mungbean are under ZT and Sc.IV, where maize-wheat-mungbean are under ZT. These scenarios varied in cropping system, tillage, and crop residue management practices. Using Illumina MiSeq sequencing technology, the variable regions V3-V4 of 16S rRNA were sequenced and the obtained reads were analyzed to study the diversity patterns in the scenarios. Results showed the presence of 53 bacterial phyla across scenarios. The predominant phyla in all scenarios were Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes which accounted for more than 70% of the identified phyla. However, the rice-based systems (Sc.I, Sc.II, and Sc.III) were dominated by phylum Proteobacteria; however, maize-based system (Sc.IV) was dominated by Acidobacteria. The class DA052 and Acidobacteriia of Acidobacteria and Bacteroidetes of Bacteroidia were exceptionally higher in Sc.IV. Shannon diversity index was 8.8% higher in Sc.I, 7.5% in Sc.II, and 2.7% in Sc.III compared to Sc.IV. The findings revealed that soil bacterial diversity and abundance are influenced by agricultural management practices as bacterial diversity under full CA-based management systems (Sc.III and Sc.IV) was lower when compared to farmer's practice (Sc.I) and partial CA (Sc.II) scenarios.
Collapse
Affiliation(s)
- Madhu Choudhary
- 1Division of Soil and Crop Management, ICAR-Central Soil Salinity Research Institute (ICAR-CSSRI), Karnal, Haryana 132001 India
| | - Parbodh C Sharma
- 1Division of Soil and Crop Management, ICAR-Central Soil Salinity Research Institute (ICAR-CSSRI), Karnal, Haryana 132001 India
| | - Hanuman S Jat
- International Maize and Wheat Improvement Centre (CIMMYT), New Delhi, India
| | | | | | - Andrew J McDonald
- International Maize and Wheat Improvement Centre (CIMMYT), Kathmandu, Nepal
| | - Mangi L Jat
- International Maize and Wheat Improvement Centre (CIMMYT), New Delhi, India
| |
Collapse
|
34
|
Pereira APA, Zagatto MRG, Brandani CB, Mescolotti DDL, Cotta SR, Gonçalves JLM, Cardoso EJBN. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations. Front Microbiol 2018; 9:655. [PMID: 29670606 PMCID: PMC5893836 DOI: 10.3389/fmicb.2018.00655] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/20/2018] [Indexed: 12/02/2022] Open
Abstract
Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0–20 cm) and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E) and A. mangium (A) plantations, pure E. grandis plantations with N fertilizer (E+N) and an E. grandis, and A. mangium intercropped plantations (E+A). The results showed that intercropped plantations (E+A) increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient (qCO2) showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF) and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our results are mostly relevant to plantations in sandy soil areas with low levels of OM, suggesting and efficient method for improving nutrient availability in the soil and optimizing eucalyptus growth and development.
Collapse
Affiliation(s)
- Arthur P A Pereira
- Soil Microbiology Laboratory, Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Maurício R G Zagatto
- Soil Microbiology Laboratory, Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Carolina B Brandani
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Denise de Lourdes Mescolotti
- Soil Microbiology Laboratory, Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Simone R Cotta
- Soil Microbiology Laboratory, Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - José L M Gonçalves
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Elke J B N Cardoso
- Soil Microbiology Laboratory, Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
35
|
Noronha MF, Lacerda Júnior GV, Gilbert JA, de Oliveira VM. Taxonomic and functional patterns across soil microbial communities of global biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1064-1074. [PMID: 28787780 DOI: 10.1016/j.scitotenv.2017.07.159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 05/24/2023]
Affiliation(s)
- Melline Fontes Noronha
- Microbial Resources Division, Multidisciplinary Center for Chemistry, Biology and Agriculture Research (CPQBA), Campinas University, Brazil; Institute of Biology, Campinas University, Brazil.
| | - Gileno Vieira Lacerda Júnior
- Microbial Resources Division, Multidisciplinary Center for Chemistry, Biology and Agriculture Research (CPQBA), Campinas University, Brazil; Institute of Biology, Campinas University, Brazil
| | - Jack A Gilbert
- The Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, USA; The Microbiome Center, Bioscience Division, Argonne National Laboratory, Lemont, IL, USA
| | - Valéria Maia de Oliveira
- Microbial Resources Division, Multidisciplinary Center for Chemistry, Biology and Agriculture Research (CPQBA), Campinas University, Brazil
| |
Collapse
|
36
|
Foo JL, Ling H, Lee YS, Chang MW. Microbiome engineering: Current applications and its future. Biotechnol J 2017; 12. [PMID: 28133942 DOI: 10.1002/biot.201600099] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/07/2023]
Abstract
Microbiomes exist in all ecosystems and are composed of diverse microbial communities. Perturbation to microbiomes brings about undesirable phenotypes in the hosts, resulting in diseases and disorders, and disturbs the balance of the associated ecosystems. Engineering of microbiomes can be used to modify structures of the microbiota and restore ecological balance. Consequently, microbiome engineering has been employed for improving human health and agricultural productivity. The importance and current applications of microbiome engineering, particularly in humans, animals, plants and soil is reviewed. Furthermore, we explore the challenges in engineering microbiome and the future of this field, thus providing perspectives and outlook of microbiome engineering.
Collapse
Affiliation(s)
- Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore
| | - Hua Ling
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|