1
|
Peng J, Zhang L, Lu K, Chen X, Pang H, Yao X, Li P, Cao P, Li X, Wang Z, Qin L, Zhou M, Wang M, Li Q, Qiu C, Sun M, Li Y, Gong L, Wei X, Wang S, Chen J, Lu C, Zou S, Ding X, Chen L, Zhang M, Dong H. Plant PI4P is required for bacteria to translocate type-3 effectors. THE NEW PHYTOLOGIST 2025; 245:748-766. [PMID: 39568298 DOI: 10.1111/nph.20248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Type-3 effectors (T3E) of phytopathogenic Gram-negative bacteria fulfill a virulent role, causing disease, or an avirulent role, inducing immunity, following their translocation into plant cells. This study aimed to validate the hypothesis that bacterial T3E translocation requires lipidic compounds in plant cell membranes. Based on genetic, molecular, and biochemical assays, we determined that phosphatidylinositol 4-phosphate (PI4P) associated with plant cell membranes is essential for the translocation of T3E by bacterial pathogens. Replicate experimental data revealed that PI4P cooperates with the type-3 translocase HrpF to facilitate the translocation of effectors TAL and Xop from Xanthomonas oryzae and Hop from Pseudomonas syringae into the cells of Oryza sativa and Nicotiana benthamiana, respectively. Genetic and molecular analyses confirmed that, once translocated into plant cells, the distinct effectors induce disease or immunity. Combined genetic and pharmacological analyses revealed that when PI4P content is suppressed via genetic or pharmacological measures, the T3 effector translocation is considerably suppressed, resulting in serious inhibition of bacterial infection. Overall, these findings demonstrate that cooperative functioning of HrpF-PI4P is conserved in bacterial effectors and plants.
Collapse
Affiliation(s)
- Jinfeng Peng
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Liyuan Zhang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Kai Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xiaochen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Hao Pang
- Hainan Province Sanya City Bureau for Business Environment Construction, Sanya, 572022, China
| | - Xiaohui Yao
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Ping Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Peng Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Xiaoxu Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Zuodong Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lina Qin
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Miao Zhou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Maoling Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Qizhen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Chunyu Qiu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Mingxin Sun
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Yufen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Liping Gong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinlin Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Siyi Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Jiajia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Chongchong Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Shenshen Zou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinhua Ding
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lei Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Hansong Dong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
2
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
3
|
Patoliya J, Thaker K, Rabadiya K, Patel D, Jain NK, Joshi R. Uncovering the Interaction Interface Between Harpin (Hpa1) and Rice Aquaporin (OsPIP1;3) Through Protein-Protein Docking: An In Silico Approach. Mol Biotechnol 2024; 66:756-768. [PMID: 36807270 DOI: 10.1007/s12033-023-00690-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Hpa1 (a type of harpin) is involved in T3SS (Type III Secretion System) assembly in the infection mechanism by Xanthomonas Oryzae pv. oryzae (Xoo). Hpa1 interacts with the plasma membrane components of plants thereby assisting effector proteins toward the cytoplasm, wherein effectors execute their pathological functions. Independently, harpins also induce hypersensitive response and systemic acquired resistance in plants. However, lack of knowledge regarding the plant-harpin interaction mechanism constrains the pathway of its agricultural application. Although an in vitro study proved that Hpa1 protein can interact with OsPIP1;3, a rice aquaporin, the structural basis of the interaction is yet to be discovered. The presented work is the first of its kind where an in silico approach is used for the PPI (protein-protein interaction) of harpin protein. The study discovered participation of Hpa1 N-terminal amino acids at the interface. Besides, MD simulation studies were performed to assess the stability. RMSD values were 0.35 ± 0.049, 0.73 ± 0.11, and 0.50 ± 0.065 nm for OsPIP1;3, Hpa1, and Hpa1-OsPIP1;3 complex, respectively. Additionally, Residue-wise fluctuations have also been studied post-MDS. Taken together, these findings not only give a solid foundation for a deeper knowledge of various interacting target molecules with Harpin protein orthologs but also bring a new avenue for the structural-functional relationship study of harpin proteins.
Collapse
Affiliation(s)
- Jaimini Patoliya
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Khushali Thaker
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Khushbu Rabadiya
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dhaval Patel
- Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Nayan K Jain
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rushikesh Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
4
|
Song X, Kou Y, Duan M, Feng B, Yu X, Jia R, Zhao X, Ge H, Yang S. Genome-Wide Identification of the Rose SWEET Gene Family and Their Different Expression Profiles in Cold Response between Two Rose Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1474. [PMID: 37050100 PMCID: PMC10096651 DOI: 10.3390/plants12071474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Sugars Will Eventually be Exported Transporter (SWEET) gene family plays indispensable roles in plant physiological activities, development processes, and responses to biotic and abiotic stresses, but no information is known for roses. In this study, a total of 25 RcSWEET genes were identified in Rosa chinensis 'Old Blush' by genome-wide analysis and clustered into four subgroups based on their phylogenetic relationships. The genomic features, including gene structures, conserved motifs, and gene duplication among the chromosomes of RcSWEET genes, were characterized. Seventeen types of cis-acting elements among the RcSWEET genes were predicted to exhibit their potential regulatory roles during biotic and abiotic stress and hormone responses. Tissue-specific and cold-response expression profiles based on transcriptome data showed that SWEETs play widely varying roles in development and stress tolerance in two rose species. Moreover, the different expression patterns of cold-response SWEET genes were verified by qRT-PCR between the moderately cold-resistant species R. chinensis 'Old Blush' and the extremely cold-resistant species R. beggeriana. Especially, SWEET2a and SWEET10c exhibited species differences after cold treatment and were sharply upregulated in the leaves of R. beggeriana but not R. chinensis 'Old Blush', indicating that these two genes may be the crucial candidates that participate in cold tolerance in R. beggeriana. Our results provide the foundation for function analysis of the SWEET gene family in roses, and will contribute to the breeding of cold-tolerant varieties of roses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Ge
- Correspondence: (H.G.); (S.Y.); Tel.: +86-10-8210-9542 (S.Y.)
| | - Shuhua Yang
- Correspondence: (H.G.); (S.Y.); Tel.: +86-10-8210-9542 (S.Y.)
| |
Collapse
|
5
|
Li Z, Liu J, Ma W, Li X. Characteristics, Roles and Applications of Proteinaceous Elicitors from Pathogens in Plant Immunity. Life (Basel) 2023; 13:life13020268. [PMID: 36836624 PMCID: PMC9960299 DOI: 10.3390/life13020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
In interactions between pathogens and plants, pathogens secrete many molecules that facilitate plant infection, and some of these compounds are recognized by plant pattern recognition receptors (PRRs), which induce immune responses. Molecules in both pathogens and plants that trigger immune responses in plants are termed elicitors. On the basis of their chemical content, elicitors can be classified into carbohydrates, lipopeptides, proteinaceous compounds and other types. Although many studies have focused on the involvement of elicitors in plants, especially on pathophysiological changes induced by elicitors in plants and the mechanisms mediating these changes, there is a lack of up-to-date reviews on the characteristics and functions of proteinaceous elicitors. In this mini-review, we provide an overview of the up-to-date knowledge on several important families of pathogenic proteinaceous elicitors (i.e., harpins, necrosis- and ethylene-inducing peptide 1 (nep1)-like proteins (NLPs) and elicitins), focusing mainly on their structures, characteristics and effects on plants, specifically on their roles in plant immune responses. A solid understanding of elicitors may be helpful to decrease the use of agrochemicals in agriculture and gardening, generate more resistant germplasms and increase crop yields.
Collapse
Affiliation(s)
- Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Correspondence:
| | - Junnan Liu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Wenting Ma
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Xiaofang Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
| |
Collapse
|
6
|
Cordelier S, Crouzet J, Gilliard G, Dorey S, Deleu M, Dhondt-Cordelier S. Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2765-2784. [PMID: 35560208 DOI: 10.1093/jxb/erab517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 06/15/2023]
Abstract
Plants have to constantly face pathogen attacks. To cope with diseases, they have to detect the invading pathogen as early as possible via the sensing of conserved motifs called invasion patterns. The first step of perception occurs at the plasma membrane. While many invasion patterns are perceived by specific proteinaceous immune receptors, several studies have highlighted the influence of the lipid composition and dynamics of the plasma membrane in the sensing of invasion patterns. In this review, we summarize current knowledge on how some microbial invasion patterns could interact with the lipids of the plasma membrane, leading to a plant immune response. Depending on the invasion pattern, different mechanisms are involved. This review outlines the potential of combining biological with biophysical approaches to decipher how plasma membrane lipids are involved in the perception of microbial invasion patterns.
Collapse
Affiliation(s)
- Sylvain Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Stéphan Dorey
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| |
Collapse
|
7
|
Rosenthal E, Potnis N, Bull CT. Comparative Genomic Analysis of the Lettuce Bacterial Leaf Spot Pathogen, Xanthomonas hortorum pv. vitians, to Investigate Race Specificity. Front Microbiol 2022; 13:840311. [PMID: 35516433 PMCID: PMC9062649 DOI: 10.3389/fmicb.2022.840311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Bacterial leaf spot (BLS) of lettuce caused by Xanthomonas hortorum pv. vitians (Xhv) was first described over 100 years ago and remains a significant threat to lettuce cultivation today. This study investigated the genetic relatedness of the Xhv strains and the possible genetic sources of this race-specific pathogenicity. Whole genome sequences of eighteen Xhv strains representing the three races, along with eight related Xanthomonas strains, were included in the analysis. A maximum likelihood phylogeny based on concatenated whole genome SNPs confirmed previous results describing two major lineages of Xhv strains. Gene clusters encoding secretion systems, secondary metabolites, and bacteriocins were assessed to identify putative virulence factors that distinguish the Xhv races. Genome sequences were mined for effector genes, which have been shown to be involved in race specificity in other systems. Two effectors identified in this study, xopAQ and the novel variant xopAF2, were revealed as possible mediators of a gene-for-gene interaction between Xhv race 1 and 3 strains and wild lettuce Lactuca serriola ARM-09-161-10-1. Transposase sequence identified downstream of xopAF2 and prophage sequence found nearby within Xhv race 1 and 3 insertion sequences suggest that this gene may have been acquired through phage-mediated gene transfer. No other factors were identified from these analyses that distinguish the Xhv races.
Collapse
Affiliation(s)
- Emma Rosenthal
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
8
|
Fan Q, Bibi S, Vallad GE, Goss EM, Hurlbert JC, Paret ML, Jones JB, Timilsina S. Identification of Genes in Xanthomonas euvesicatoria pv. rosa That Are Host Limiting in Tomato. PLANTS 2022; 11:plants11060796. [PMID: 35336678 PMCID: PMC8951399 DOI: 10.3390/plants11060796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
Xanthomonas euvesicatoria pv. rosa strain Xer07 causes a leaf spot on a Rosa sp. and is closely related to X. euvesicatoria pv. euvesicatoria (Xee) and X. perforans (Xp), causal agents of bacterial spot of tomato. However, Xer07 is not pathogenic on tomato and elicits a hypersensitive reaction (HR). We compared the genomes of the three bacterial species to identify the factors that limit Xer07 on tomato. Comparison of pathogenicity associated factors including the type III secretion systems identified two genes, xopA and xer3856, in Xer07 that have lower sequence homology in tomato pathogens. xer3856 is a homolog of genes in X. citri (xac3856) and X. fuscans pv. aurantifolii, both of which have been reported to elicit HRs in tomato. When xer3856 was expressed in X. perforans and infiltrated in tomato leaflets, the transconjugant elicited an HR and significantly reduced bacterial populations compared to the wildtype X. perforans strain. When xer3856 was mutated in Xer07, the mutant strain still triggered an HR in tomato leaflets. The second gene identified codes for type III secreted effector XopA, which contains a harpin domain that is distinct from the xopA homologs in Xee and Xp. The Xer07-xopA, when expressed in X. perforans, did not elicit an HR in tomato leaflets, but significantly reduced bacterial populations. This indicates that xopA and xer3856 genes in combination with an additional factor(s) limit Xer07 in tomato.
Collapse
Affiliation(s)
- Qiurong Fan
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
| | - Shaheen Bibi
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
| | - Gary E. Vallad
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- Gulf Coast Research and Education Center, University of Florida, Balm, FL 33598, USA
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jason C. Hurlbert
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA;
| | - Matthews L. Paret
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- Correspondence: (J.B.J.); (S.T.)
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- Correspondence: (J.B.J.); (S.T.)
| |
Collapse
|
9
|
Koseoglou E, van der Wolf JM, Visser RGF, Bai Y. Susceptibility reversed: modified plant susceptibility genes for resistance to bacteria. TRENDS IN PLANT SCIENCE 2022; 27:69-79. [PMID: 34400073 DOI: 10.1016/j.tplants.2021.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 05/26/2023]
Abstract
Plants have evolved complex defence mechanisms to avoid invasion of potential pathogens. Despite this, adapted pathogens deploy effector proteins to manipulate host susceptibility (S) genes, rendering plant defences ineffective. The identification and mutation of plant S genes exploited by bacterial pathogens are important for the generation of crops with durable and broad-spectrum resistance. Application of mutant S genes in the breeding of resistant crops is limited because of potential pleiotropy. New genome editing techniques open up new possibilities for the modification of S genes. In this review, we focus on S genes manipulated by bacteria and propose ways for their identification and precise modification. Finally, we propose that genes coding for transporter proteins represent a new group of S genes.
Collapse
Affiliation(s)
- Eleni Koseoglou
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan M van der Wolf
- Biointeractions & Plant Health, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Wang X, Lu K, Yao X, Zhang L, Wang F, Wu D, Peng J, Chen X, Du J, Wei J, Ma J, Chen L, Zou S, Zhang C, Zhang M, Dong H. The Aquaporin TaPIP2;10 Confers Resistance to Two Fungal Diseases in Wheat. PHYTOPATHOLOGY 2021; 111:2317-2331. [PMID: 34058861 DOI: 10.1094/phyto-02-21-0048-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants employ aquaporins (AQPs) of the plasma membrane intrinsic protein (PIP) family to import environmental substrates, thereby affecting various processes, such as the cellular responses regulated by the signaling molecule hydrogen peroxide (H2O2). Common wheat (Triticum aestivum) contains 24 candidate members of the PIP family, designated as TaPIP1;1 to TaPIP1;12 and TaPIP2;1 to TaPIP2;12. None of these TaPIP candidates have been characterized for substrate selectivity or defense responses in their source plant. Here, we report that T. aestivum AQP TaPIP2;10 facilitates the cellular uptake of H2O2 to confer resistance against powdery mildew and Fusarium head blight, two devastating fungal diseases in wheat throughout the world. In wheat, the apoplastic H2O2 signal is induced by fungal attack, while TaPIP2;10 is stimulated to translocate this H2O2 into the cytoplasm, where it activates defense responses to restrict further attack. TaPIP2;10-mediated transport of H2O2 is essential for pathogen-associated molecular pattern-triggered plant immunity (PTI). Typical PTI responses are induced by the fungal infection and intensified by overexpression of the TaPIP2;10 gene. TaPIP2;10 overexpression causes a 70% enhancement in wheat resistance to powdery mildew and an 86% enhancement in resistance to Fusarium head blight. By reducing the disease severities, TaPIP2;10 overexpression brings about >37% increase in wheat grain yield. These results verify the feasibility of using an immunity-relevant AQP to concomitantly improve crop productivity and immunity.
Collapse
Affiliation(s)
- Xiaobing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Fubin Wang
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jinfeng Peng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xiaochen Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jiankun Wei
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Jingyu Ma
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Chunling Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Meixiang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| |
Collapse
|
11
|
Chen X, Ma J, Wang X, Lu K, Liu Y, Zhang L, Peng J, Chen L, Yang M, Li Y, Cheng Z, Xiao S, Yu J, Zou S, Liang Y, Zhang M, Yang Y, Ding X, Dong H. Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:330-346. [PMID: 34273211 DOI: 10.1111/tpj.15427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Plant aquaporins are a recently noted biological resource with a great potential to improve crop growth and defense traits. Here, we report the functional modulation of the rice (Oryza sativa) aquaporin OsPIP1;3 to enhance rice photosynthesis and grain production and to control bacterial blight and leaf streak, the most devastating worldwide bacterial diseases in the crop. We characterize OsPIP1;3 as a physiologically relevant CO2 -transporting facilitator, which supports 30% of rice photosynthesis on average. This role is nullified by interaction of OsPIP1;3 with the bacterial protein Hpa1, an essential component of the Type III translocon that supports translocation of the bacterial Type III effectors PthXo1 and TALi into rice cells to induce leaf blight and streak, respectively. Hpa1 binding shifts OsPIP1;3 from CO2 transport to effector translocation, aggravates bacterial virulence, and blocks rice photosynthesis. On the contrary, the external application of isolated Hpa1 to rice plants effectively prevents OsPIP1;3 from interaction with Hpa1 secreted by the bacteria that are infecting the plants. Blockage of the OsPIP1;3-Hpa1 interaction reverts OsPIP1;3 from effector translocation to CO2 transport, abrogates bacterial virulence, and meanwhile induces defense responses in rice. These beneficial effects can combine to enhance photosynthesis by 29-30%, reduce bacterial disease by 58-75%, and increase grain yield by 11-34% in different rice varieties investigated in small-scale field trials conducted during the past years. Our results suggest that crop productivity and immunity can be coordinated by modulating the physiological and pathological functions of a single aquaporin to break the growth-defense tradeoff barrier.
Collapse
Affiliation(s)
- Xiaochen Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jinbiao Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xuan Wang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Yan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Jinfeng Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Minkai Yang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Zaiquan Cheng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, China
| | - Suqin Xiao
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, China
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Yuancun Liang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yonghua Yang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinhua Ding
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| |
Collapse
|
12
|
Bai J, Wang X, Yao X, Chen X, Lu K, Hu Y, Wang Z, Mu Y, Zhang L, Dong H. Rice aquaporin OsPIP2;2 is a water-transporting facilitator in relevance to drought-tolerant responses. PLANT DIRECT 2021; 5:e338. [PMID: 34430793 PMCID: PMC8365552 DOI: 10.1002/pld3.338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 05/30/2023]
Abstract
In rice (Oryza sativa), the PLASMA MEMBRANE INTRINSIC PROTEIN (PIP) family of aquaporin has 11 members, OsPIP1;1 to OsPIP1;3, and OsPIP2;1 to OsPIP2;8, which are hypothesized to facilitate the transport of H2O and other small compounds across cell membranes. To date, however, only OsPIP1;2, OsPIP2;1, and OsPIP2;4 have been demonstrated for substrate selectivity in their source plant (rice). In this study, OsPIP2;2 was characterized as the most efficient facilitator of H2O transport across cell membranes in comparison with the other 10 OsPIPs. In concomitant tests of all OsPIPs, four genes (OsPIP1;3, OsPIP2;1, OsPIP2;2, and OsPIP2;4) were induced to express in leaves of rice plants following a physiological drought stress, while OsPIP2;2 was expressed to the highest level. After de novo expression in frog oocytes and yeast cells, the four OsPIP proteins were localized to the plasma membranes in trimer and tetramer and displayed the activity to increase the membrane permeability to H2O. In comparison, OsPIP2;2 was most supportive to H2O import to oocytes and yeast cells. After de novo expression in tobacco protoplasts, OsPIP2;2 exceeded OsPIP1;3, OsPIP2;1, and OsPIP2;4 to support H2O transport across the plasma membranes. OsPIP2;2-mediated H2O transport was accompanied by drought-tolerant responses, including increases in concentrations of proline and polyamines, both of which are physiological markers of drought tolerance. In rice protoplasts, H2O transport and drought-tolerant responses, which included expression of marker genes of drought tolerance pathway, were considerably enhanced by OsPIP2;2 overexpression but strongly inhibited by the gene silencing. Furthermore, OsPIP2;2 played a role in maintenance of the cell membrane integrity and effectively protected rice cells from electrolyte leakage caused by the physiological drought stress. These results suggest that OsPIP2;2 is a predominant facilitator of H2O transport in relevance to drought tolerance in the plant.
Collapse
Affiliation(s)
- Jiaqi Bai
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xuan Wang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
- School of Life SciencesNanjing UniversityNanjingChina
| | - Xiaohui Yao
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Xiaochen Chen
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Kai Lu
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Yiqun Hu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Institute of Plant Protection and Agroproduct SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Zuodong Wang
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Yanjie Mu
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Liyuan Zhang
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
| | - Hansong Dong
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
| |
Collapse
|
13
|
Ji ZL, Yu MH, Ding YY, Li J, Zhu F, He JX, Yang LN. Coiled-Coil N21 of Hpa1 in Xanthomonas oryzae pv. oryzae Promotes Plant Growth, Disease Resistance and Drought Tolerance in Non-Hosts via Eliciting HR and Regulation of Multiple Defense Response Genes. Int J Mol Sci 2020; 22:E203. [PMID: 33379173 PMCID: PMC7795061 DOI: 10.3390/ijms22010203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Acting as a typical harpin protein, Hpa1 of Xanthomonas oryzae pv. oryzae is one of the pathogenic factors in hosts and can elicit hypersensitive responses (HR) in non-hosts. To further explain the underlying mechanisms of its induced resistance, we studied the function of the most stable and shortest three heptads in the N-terminal coiled-coil domain of Hpa1, named N21Hpa1. Proteins isolated from N21-transgenic tobacco elicited HR in Xanthi tobacco, which was consistent with the results using N21 and full-length Hpa1 proteins expressed in Escherichia coli. N21-expressing tobacco plants showed enhanced resistance to tobacco mosaic virus (TMV) and Pectobacterium carotovora subsp. carotovora (Pcc). Spraying of a synthesized N21 peptide solution delayed the disease symptoms caused by Botrytis cinerea and Monilinia fructicola and promoted the growth and drought tolerance of plants. Further analysis indicated that N21 upregulated the expression of multiple plant defense-related genes, such as genes mediated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling, and genes related to reactive oxygen species (ROS) biosynthesis. Further, the bioavailability of N21 peptide was better than that of full-length Hpa1Xoo. Our studies support the broad application prospects of N21 peptide as a promising succedaneum to biopesticide Messenger or Illite or other biological pharmaceutical products, and provide a basis for further development of biopesticides using proteins with similar structures.
Collapse
Affiliation(s)
- Zhao-Lin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Mei-Hui Yu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
| | - Ya-Yan Ding
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Jian Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
| | - Li-Na Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| |
Collapse
|
14
|
Mo X, Zhang L, Liu Y, Wang X, Bai J, Lu K, Zou S, Dong H, Chen L. Three Proteins (Hpa2, HrpF and XopN) Are Concomitant Type III Translocators in Bacterial Blight Pathogen of Rice. Front Microbiol 2020; 11:1601. [PMID: 32793141 PMCID: PMC7390958 DOI: 10.3389/fmicb.2020.01601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Type III (T3) proteic effectors occupy most of the virulence determinants in eukaryote-pathogenic Gram-negative bacteria. During infection, bacteria may deploy a nanomachinery called translocon to deliver T3 effectors into host cells, wherein the effectors fulfill their pathological functions. T3 translocon is hypothetically assembled by bacterial translocators, which have been identified as one hydrophilic and two hydrophobic proteins in animal-pathogenic bacteria but remain unclear in plant pathogens. Now we characterize Hpa2, HrpF, and XopN proteins as concomitant T3 translocators in rice bacterial blight pathogen by analyzing pathological consequences of single, double, and triple gene knockout or genetic complementation. Based on these genetic analyses, Hpa2, HrpF, and XopN accordingly contribute to 46.9, 60.3, and 69.8% proportions of bacterial virulence on a susceptible rice variety. Virulence performances of Hpa2, HrpF, and XopN were attributed to their functions in essentially mediating from-bacteria-into-rice-cell translocation of PthXo1, the bacterial T3 effector characteristic of transcription factors targeting plant genes. On average, 61, 62, and 71% of PthXo1 translocation are provided correspondingly by Hpa2, HrpF, and XopN, while they cooperate to support PthXo1 translocation at a greater-than-95% extent. As a result, rice disease-susceptibility gene SWEET11, which is the regulatory target of PthXo1, is activated to confer bacterial virulence and induce the leaf blight disease in rice. Furthermore, the three translocators also undergo translocation, but only XopN is highly translocated to suppress rice defense responses, suggesting that different components of a T3 translocon deploy distinct virulence mechanisms in addition to the common function in mediating bacterial effector translocation.
Collapse
Affiliation(s)
- Xuyan Mo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Yan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xuan Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| |
Collapse
|
15
|
Liu Y, Zhou X, Liu W, Huang J, Liu Q, Sun J, Cai X, Miao W. HpaXpm, a novel harpin of Xanthomonas phaseoli pv. manihotis, acts as an elicitor with high thermal stability, reduces disease, and promotes plant growth. BMC Microbiol 2020; 20:4. [PMID: 31906854 PMCID: PMC6945534 DOI: 10.1186/s12866-019-1691-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Harpins are proteins secreted by the type III secretion system of Gram-negative bacteria during pathogen-plant interactions that can act as elicitors, stimulating defense and plant growth in many types of non-host plants. Harpin-treated plants have higher resistance, quality and yields and, therefore, harpin proteins may potentially have many valuable agricultural applications. Harpins are characterized by high thermal stability at 100 °C. However, it is unknown whether harpins are still active at temperatures above 100 °C or whether different temperatures affect the activity of the harpin protein in different ways. The mechanism responsible for the heat stability of harpins is also unknown. RESULTS We identified a novel harpin, HpaXpm, from the cassava blight bacteria Xanthomonas phaseoli pv. manihotis HNHK. The predicted secondary structure and 3-D structure indicated that the HpaXpm protein has two β-strand domains and two major α-helical domains located at the N- and C-terminal regions, respectively. A phylogenetic tree generated using the maximum likelihood method grouped HpaXpm in clade I of the Hpa1 group along with harpins produced by other Xanthomonas spp. (i.e., HpaG-Xag, HpaG-Xcm, Hpa1-Xac, and Hpa1Xm). Phenotypic assays showed that HpaXpm induced the hypersensitive response (HR), defense responses, and growth promotion in non-host plants more effectively than Hp1Xoo (X. oryzae pv. oryzae). Quantitative real-time PCR analysis indicated that HpaXpm proteins subjected to heat treatments at 100 °C, 150 °C, or 200 °C were still able to stimulate the expression of function-related genes (i.e., the HR marker genes Hin1 and Hsr203J, the defense-related gene NPR1, and the plant growth enhancement-related gene NtEXP6); however, the ability of heat-treated HpaXpm to induce HR was different at different temperatures. CONCLUSIONS These findings add a new member to the harpin family. HpaXpm is heat-stable up to 200 °C and is able to stimulate powerful beneficial biological functions that could potentially be more valuable for agricultural applications than those stimulated by Hpa1Xoo. We hypothesize that the extreme heat resistance of HpaXpm is because the structure of harpin is very stable and, therefore, the HpaXpm structure is less affected by temperature.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Xiaoyun Zhou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Wenbo Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Jiamin Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Qinghuan Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Jianzhang Sun
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Xinfeng Cai
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Weiguo Miao
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China.
| |
Collapse
|
16
|
The Type III Accessory Protein HrpE of Xanthomonas oryzae pv. oryzae Surpasses the Secretion Role, and Enhances Plant Resistance and Photosynthesis. Microorganisms 2019; 7:microorganisms7110572. [PMID: 31752133 PMCID: PMC6921029 DOI: 10.3390/microorganisms7110572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022] Open
Abstract
Many species of plant-pathogenic gram-negative bacteria deploy the type III (T3) secretion system to secrete virulence components, which are mostly characteristic of protein effectors targeting the cytosol of the plant cell following secretion. Xanthomonas oryzae pv. oryzae (Xoo), a rice pathogen causing bacterial blight disease, uses the T3 accessory protein HrpE to assemble the pilus pathway, which in turn secretes transcription activator-like (TAL) effectors. The hrpE gene can execute extensive physiological and pathological functions beyond effector secretion. As evidenced in this study, when the hrpE gene was deleted from the Xoo genome, the bacteria incur seriouimpairments in multiplication, motility, and virulence. The virulence nullification is attributed to reduced secretion and translocation of PthXo1, which is a TAL effector that determines the bacterial virulence in the susceptible rice varieties. When the HrpE protein produced by prokaryotic expression is applied to plants, the recombinant protein is highly effective at inducing the defense response. Moreover, leaf photosynthesis efficiency is enhanced in HrpE-treated plants. These results provide experimental avenues to modulate the plant defense and growth tradeoff by manipulating a bacterial T3 accessory protein.
Collapse
|
17
|
Jiang S, He M, Xiang XW, Adnan M, Cui ZN. Novel S-Thiazol-2-yl-furan-2-carbothioate Derivatives as Potential T3SS Inhibitors Against Xanthomonas oryzae on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11867-11876. [PMID: 31584805 DOI: 10.1021/acs.jafc.9b04085] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is considered as the most destructive disease of rice. The use of bactericides is among the most widely used traditional methods to control this destructive disease. The excessive and repeated use of the same bactericides is also becoming the reason behind the development of bactericide resistance. The widely used method for finding the new antimicrobial agents often involves the bacterial virulence factors as a target without affecting bacterial growth. Type III secretion system (T3SS) is a protein appendage and is considered as having essential virulence factors in most Gram-negative bacteria. Due to the conserved construct, T3SS has been regarded as an important mark for the blooming of novel antimicrobial drugs. Toward the search of new T3SS inhibitors, an alternative series of 1,3-thiazole derivatives were designed and synthesized. Their structures were characterized and confirmed by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of hpa1 gene significantly. Eight of them showed better inhibition than our previous T3SS inhibitor TS006 (o-coumaric acid, OCA). The treatment of Xoo with eight compounds significantly attenuated HR without affecting bacterial growth. The mRNA levels of some representative genes (hrp/hrc genes) were reduced up to different extents. In vivo bioassay results showed that eight T3SS inhibitors could reduce bacterial leaf blight and bacterial leaf streak symptoms on rice, significantly.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Min He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Xu-Wen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Muhammad Adnan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
18
|
Bian H, Zhang L, Chen L, Wang W, Ji H, Dong H. Real-time monitoring of translocation of selected type-III effectors from Xanthomonas oryzae pv. oryzae into rice cells. J Biosci 2019; 44:82. [PMID: 31502560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Type-III (T3) effectors PthXo1 and AvrXa10 of Xanthomonas oryzae pv. oryzae are translocated into rice cells to induce virulence and avirulence on susceptible- and resistant-rice varieties Nipponbare and IRBB10, respectively. The translocation needs the bacterial T3 translocator Hpa1 and rice Oryza sativa plasma membrane protein OsPIP1;3. Here, we employed the beta-lactamase (BlaM) reporter system to observe PthXo1 and AvrXa10 translocation. The system was established to monitor effectors of animal-pathogenic bacteria by quantifying the BlaM hydrolysis product [P] and fluorescence resonance energy transfer (FRET) of the substrate. The feasibility of the BlaM reporter in rice protoplasts was evaluated by three criteria. The first criterion indicated differences between both [P] and FRET levels among wild types and OsPIP1;3-overexpressing and OsPIP1;3-silenced lines of both Nipponbare and IRBB10. The second criterion indicated differences between [P] and FRET levels in the presence and absence of Hpa1. The last criterion elucidated the coincidence of PthXo1 translocation with induced expression of the PthXo1 target gene in protoplasts of Nipponbare and the coincidence of AvrXa10 translocation with induced expression of the AvrXa10 target gene in protoplasts of IRBB10. These results provide an experimental avenue for real-time monitoring of bacterial T3 effector translocation into plant cells with a pathological consequence.
Collapse
Affiliation(s)
- Huijie Bian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Bian H, Zhang L, Chen L, Wang W, Ji H, Dong H. Real-time monitoring of translocation of selected type-III effectors from Xanthomonas oryzae pv. oryzae into rice cells. J Biosci 2019. [DOI: 10.1007/s12038-019-9916-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Li P, Zhang L, Mo X, Ji H, Bian H, Hu Y, Majid T, Long J, Pang H, Tao Y, Ma J, Dong H. Rice aquaporin PIP1;3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3057-3073. [PMID: 30921464 PMCID: PMC6598099 DOI: 10.1093/jxb/erz130] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
Varieties of Gram-negative bacterial pathogens infect their eukaryotic hosts by deploying the type III translocon to deliver effector proteins into the cytosol of eukaryotic cells in which effectors execute their pathological functions. The translocon is hypothetically assembled by bacterial translocators in association with the assumed receptors situated on eukaryotic plasma membranes. This hypothesis is partially verified in the present study with genetic, biochemical, and pathological evidence for the role of a rice aquaporin, plasma membrane intrinsic protein PIP1;3, in the cytosolic import of the transcription activator-like effector PthXo1 from the bacterial blight pathogen. PIP1;3 interacts with the bacterial translocator Hpa1 at rice plasma membranes to control PthXo1 translocation from cells of a well-characterized strain of the bacterial blight pathogen into the cytosol of cells of a susceptible rice variety. An extracellular loop sequence of PIP1;3 and the α-helix motif of Hpa1 determine both the molecular interaction and its consequences with respect to the effector translocation and the bacterial virulence on the susceptible rice variety. Overall, these results provide multiple experimental avenues to support the hypothesis that interactions between bacterial translocators and their interactors at the target membrane are essential for bacterial effector translocation.
Collapse
Affiliation(s)
- Ping Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Liyuan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xuyan Mo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Biology, Jiangsu Formal University, Xuzhou, Jiangsu Province, China
| | - Huijie Bian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yiqun Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Taha Majid
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Juying Long
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Hao Pang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yuan Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jinbiao Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong Province, China
- Correspondence:
| |
Collapse
|
21
|
Zhang L, Chen L, Dong H. Plant Aquaporins in Infection by and Immunity Against Pathogens - A Critical Review. FRONTIERS IN PLANT SCIENCE 2019; 10:632. [PMID: 31191567 PMCID: PMC6546722 DOI: 10.3389/fpls.2019.00632] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/26/2019] [Indexed: 05/18/2023]
Abstract
Plant aquaporins (AQPs) of the plasma membrane intrinsic protein (PIP) family face constant risk of hijack by pathogens aiming to infect plants. PIPs can also be involved in plant immunity against infection. This review will utilize two case studies to discuss biochemical and structural mechanisms that govern the functions of PIPs in the regulation of plant infection and immunity. The first example concerns the interaction between rice Oryza sativa and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). To infect rice, Xoo uses the type III (T3) secretion system to secrete the proteic translocator Hpa1, and Hpa1 subsequently mediates the translocation of T3 effectors secreted by this system. Once shifted from bacteria into rice cells, effectors exert virulent or avirulent effects depending on the susceptibility of the rice varieties. The translocator function of Hpa1 requires cooperation with OsPIP1;3, the rice interactor of Hpa1. This role of OsPIP1;3 is related to regulatory models of effector translocation. The regulatory models have been proposed as, translocon-dependent delivery, translocon-independent pore formation, and effector endocytosis with membrane protein/lipid trafficking. The second case study includes the interaction of Hpa1 with the H2O2 transport channel AtPIP1;4, and the associated consequence for H2O2 signal transduction of immunity pathways in Arabidopsis thaliana, a non-host of Xoo. H2O2 is generated in the apoplast upon induction by a pathogen or microbial pattern. H2O2 from this source translocates quickly into Arabidopsis cells, where it interacts with pathways of intracellular immunity to confer plant resistance against diseases. To expedite H2O2 transport, AtPIP1;4 must adopt a specific conformation in a number of ways, including channel width extension through amino acid interactions and selectivity for H2O2 through amino acid protonation and tautomeric reactions. Both topics will reference relevant studies, conducted on other organisms and AQPs, to highlight possible mechanisms of T3 effector translocation currently under debate, and highlight the structural basis of AtPIP1;4 in H2O2 transport facilitated by gating and trafficking regulation.
Collapse
Affiliation(s)
- Liyuan Zhang
- Plant Immunity Research Group, National Key Laboratory of Crop Science, Department of Plant Pathology, Shandong Agricultural University, Tai’an, China
| | - Lei Chen
- Plant Immunity Research Group, National Key Laboratory of Crop Science, Department of Plant Pathology, Shandong Agricultural University, Tai’an, China
| | - Hansong Dong
- Plant Immunity Research Group, National Key Laboratory of Crop Science, Department of Plant Pathology, Shandong Agricultural University, Tai’an, China
- Plant Immunity Laboratory, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|