1
|
Valentin JDP, Kadakia P, Varidel LJ, Stuart MCA, Salentinig S. Colloidal Structure Dictates Antimicrobial Efficacy in LL-37 Self-Assemblies With Glycerol Monooleate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405131. [PMID: 39407429 PMCID: PMC11657029 DOI: 10.1002/smll.202405131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/03/2024] [Indexed: 12/20/2024]
Abstract
The antimicrobial peptide LL-37 is a promising alternative to conventional antibiotics to combat bacteria in suspension and biofilms. Its self-assembly with polar lipids is suggested to improve its potential for therapeutic applications with higher stability against degradation and bioavailability. This study investigates the self-assembly of LL-37 with glyceryl monooleate (GMO), establishing the link between colloidal structure and antimicrobial activity. Small-angle X-ray scattering, dynamic light scattering and cryogenic transmission electron microscopy show structural transformation from dispersions of inverse bicontinuous structure (cubosomes) to multilamellar vesicles and direct rod-like mixed-micelles upon increasing the content of LL-37 in GMO. In vitro assays against planktonic and biofilm cells demonstrate that 128 µg mL-1 of GMO cubosomes have no impact on Pseudomonas aeruginosa. Still, the cubosomes reduce the Staphylococcus aureus planktonic population by ≈ 1-log after 24 h. Cylindrical micelles formed at LL-37/GMO 9/1 and 8/2 with 128 µg mL-1 LL-37 decrease the Pseudomonas aeruginosa population by 6-log. This activity is gradually abolished when LL-37 is encapsulated in vesicles or cubosomes. They also demonstrate low antibiofilm efficacy and promote the biomass of Staphylococcus aureus biofilms. These results highlight the importance of colloidal structure for therapeutic outcomes, providing insights for advanced lipid nanocarrier designs.
Collapse
Affiliation(s)
- Jules D. P. Valentin
- Department of Chemistry and National Center of Competence in Research Bio‐inspired MaterialsUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Parth Kadakia
- Department of Chemistry and National Center of Competence in Research Bio‐inspired MaterialsUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Lucie J. Varidel
- Department of Chemistry and National Center of Competence in Research Bio‐inspired MaterialsUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Marc C. A. Stuart
- Centre for System ChemistryStratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology InstituteUniversity of GroningenNijenborgh 7Groningen9747AGThe Netherlands
| | - Stefan Salentinig
- Department of Chemistry and National Center of Competence in Research Bio‐inspired MaterialsUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| |
Collapse
|
2
|
Song M, Chen S, Lin W, Zhu K. Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery. Prog Lipid Res 2024; 96:101307. [PMID: 39566858 DOI: 10.1016/j.plipres.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Bacterial infections in humans and animals caused by multidrug-resistant (MDR) pathogens pose a serious threat to public health. New antibacterial targets are extremely urgent to solve the dilemma of cross-resistance. Phospholipids are critical components in bacterial envelopes and involve diverse crucial processes to maintain homeostasis and modulate metabolism. Targeting phospholipids and their synthesis pathways has been largely overlooked because conventional membrane-targeted substances are non-specific with cytotoxicity. In this review, we first introduce the structure and physiological function of phospholipids in bacteria. Subsequently, we describe the chemical diversity of novel ligands targeting phospholipids, structure-activity relationships (SAR), modes of action (MOA), and pharmacological effects. Finally, we prospect the advantage of bacterial phospholipids as promising antibacterial targets. In conclusion, these findings will shed light on discovering and developing new antibacterial drugs to combat MDR bacteria-associated infections.
Collapse
Affiliation(s)
- Meirong Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Gopalakrishnan AV, Kanagaraja A, Sakthivelu M, Devadasan V, Gopinath SCB, Raman P. Role of fatty acids in modulating quorum sensing in Pseudomonas aeruginosa and Chromobacterium violaceum: an integrated experimental and computational analysis. Int Microbiol 2024:10.1007/s10123-024-00590-y. [PMID: 39292411 DOI: 10.1007/s10123-024-00590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
The broad-spectrum antibacterial capabilities of fatty acids (FAs) and their reduced propensity to promote resistance have rendered as a promising substitute for conventional antibiotics. The structural significance of fatty acid production with the other lipids is a major energy source, and signal transduction has drawn a great deal of research attention to these biomolecules. Saturated and monounsaturated fatty acids reduce virulence by preventing harmful opportunistic bacteria like Pseudomonas aeruginosa and Chromobacterium violaceum from activating their quorum sensing (QS) systems. In this finding, the fatty acids capric acid, caprylic acid, and monoelaidin were selected to evaluate their anti-QS activity against the C. violaceum and P. aeruginosa. At the minimum inhibitory concentration (MIC) and sub-MIC concentration of the three fatty acids, the virulence factor production of both the bacteria was quantified. The virulence factors like EPS, biofilm quantification and visualization, and motility assays were inhibited in the dose-dependent manner (MIC and sub-MIC) for both the organisms whereas this pattern was followed in the pyocyanin, pyoverdine, rhamnolipid, protease of P. aeruginosa and the violacein, and chitinase of C. violaceum. In all these biochemical assays, the capric acid could effectively reduce the production and further validated at gene expression level by RT-qPCR. The study on the gene expression for all these virulence factors reveals that the capric acid inhibited the growth of both the organisms in a higher fold than the caprylic and monoelaidin. The in silico approach of structural validation for the binding of ligands with the proteins in the QS circuit was studied by molecular docking in Schrodinger software. The Las I and Las R in P. aeruginosa and the CviR of C. violaceum protein structures were docked with the selected three fatty acids. The capric acid binds to the pocket with the highest binding score of all the proteins than the caprylic and monoelaidin fatty acids. Thus, capric acid proves to be the therapeutic biomolecule for the anti-QS activity of opportunistic bacteria.
Collapse
Affiliation(s)
- Allwyn Vyas Gopalakrishnan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India
| | - Abinaya Kanagaraja
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India
| | - Meenakumari Sakthivelu
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India
| | - Velmurugan Devadasan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India
| | - Subash C B Gopinath
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Department of Technical Sciences, Western Caspian University, Baku, AZ, 1075, Azerbaijan
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India.
| |
Collapse
|
4
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Mohamed H, Marusich E, Divashuk M, Leonov S. A unique combination of natural fatty acids from Hermetia illucens fly larvae fat effectively combats virulence factors and biofilms of MDR hypervirulent mucoviscus Klebsiella pneumoniae strains by increasing Lewis acid-base/van der Waals interactions in bacterial wall membranes. Front Cell Infect Microbiol 2024; 14:1408179. [PMID: 39119288 PMCID: PMC11306206 DOI: 10.3389/fcimb.2024.1408179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Hypervirulent Klebsiella pneumoniae (hvKp) and carbapenem-resistant K. pneumoniae (CR-Kp) are rapidly emerging as opportunistic pathogens that have a global impact leading to a significant increase in mortality rates among clinical patients. Anti-virulence strategies that target bacterial behavior, such as adhesion and biofilm formation, have been proposed as alternatives to biocidal antibiotic treatments to reduce the rapid emergence of bacterial resistance. The main objective of this study was to examine the efficacy of fatty acid-enriched extract (AWME3) derived from the fat of Black Soldier Fly larvae (Hermetia illucens) in fighting against biofilms of multi-drug resistant (MDR) and highly virulent Klebsiella pneumoniae (hvKp) pathogens. Additionally, the study also aimed to investigate the potential mechanisms underlying this effect. Methods Crystal violet (CV) and ethidium bromide (EtBr) assays show how AWME3 affects the formation of mixed and mature biofilms by the KP ATCC BAA-2473, KPi1627, and KPM9 strains. AWME3 has shown exceptional efficacy in combating the hypermucoviscosity (HMV) virulent factors of KPi1627 and KPM9 strains when tested using the string assay. The rudimentary motility of MDR KPM9 and KP ATCC BAA-2473 strains was detected through swimming, swarming, and twitching assays. The cell wall membrane disturbances induced by AWME3 were detected by light and scanning electron microscopy and further validated by an increase in the bacterial cell wall permeability and Lewis acid-base/van der Waals characteristics of K. pneumoniae strains tested by MATS (microbial adhesion to solvents) method. Results After being exposed to 0.5 MIC (0.125 mg/ml) of AWME3, a significant reduction in the rudimentary motility of MDR KPM9 and KP ATCC BAA-2473 strains, whereas the treated bacterial strains exhibited motility between 4.23 ± 0.25 and 4.47 ± 0.25 mm, while the non-treated control groups showed significantly higher motility ranging from 8.5 ± 0.5 to 10.5 ± 0.5 mm. Conclusion In conclusion, this study demonstrates the exceptional capability of the natural AWME3 extract enriched with a unique combination of fatty acids to effectively eliminate the biofilms formed by the highly drug-resistant and highly virulent K. pneumoniae (hvKp) pathogens. Our results highlight the opportunity to control and minimize the rapid emergence of bacterial resistance through the treatment using AWME3 of biofilm-associated infections caused by hvKp and CRKp pathogens.
Collapse
Affiliation(s)
- Heakal Mohamed
- Agricultural Research Center (ARC), Plant Protection Research Institute (PPRI), Giza, Egypt
- The Laboratory of Personalized Chemoradiotherapy, Institute of Future Biophysics, Moscow, Russia
| | - Elena Marusich
- The Laboratory of Personalized Chemoradiotherapy, Institute of Future Biophysics, Moscow, Russia
| | - Mikhail Divashuk
- All-Russia Research Institute of Agricultural Biotechnology Kurchatov Genomic Center - VNIISB, Moscow, Russia
| | - Sergey Leonov
- The Laboratory of Personalized Chemoradiotherapy, Institute of Future Biophysics, Moscow, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Lou F, Luo S, Kang N, Yan L, Long H, Yang L, Wang H, Liu Y, Pu J, Xie P, Ji P, Jin X. Oral microbiota dysbiosis alters chronic restraint stress-induced depression-like behaviors by modulating host metabolism. Pharmacol Res 2024; 204:107214. [PMID: 38763328 DOI: 10.1016/j.phrs.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Studies have shown that the microbiota-gut-brain axis is highly correlated with the pathogenesis of depression in humans. However, whether independent oral microbiome that do not depend on gut microbes could affect the progression of depression in human beings remains unclear, neither does the presence and underlying mechanisms of the microbiota-oral-brain axis in the development of the condition. Hence this study that encompasses clinical and animal experiments aims at investigating the correlation between oral microbiota and the onset of depression via mediating the microbiota-oral-brain axis. We compared the oral microbial compositions and metabolomes of 87 patients with depressive symptoms versus 70 healthy controls. We found that the oral microbial and metabolic signatures were significantly different between the two groups. Significantly, germ-free (GF) mice transplanted with saliva from mice exposing to chronic restraint stress (CRS) displayed depression-like behavior and oral microbial dysbiosis. This was characterized by a significant differential abundance of bacterial species, including the enrichment of Pseudomonas, Pasteurellaceae, and Muribacter, as well as the depletion of Streptococcus. Metabolomic analysis showed the alternation of metabolites in the plasma of CRS-exposed GF mice, especially Eicosapentaenoic Acid. Furthermore, oral and gut barrier dysfunction caused by CRS-induced oral microbiota dysbiosis may be associated with increased blood-brain barrier permeability. Pseudomonas aeruginosa supplementation exacerbated depression-like behavior, while Eicosapentaenoic Acid treatment conferred protection against depression-like states in mice. These results suggest that oral microbiome and metabolic function dysbiosis may be relevant to the pathogenesis and pathophysiology of depression. The proposed microbiota-oral-brain axis provides a new way and targets for us to study the pathogenesis of depression.
Collapse
Affiliation(s)
- Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Ning Kang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Li Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Huiqing Long
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Lu Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China.
| |
Collapse
|
7
|
Song W, Zhang S, Majzoub ME, Egan S, Kjelleberg S, Thomas T. The impact of interspecific competition on the genomic evolution of Phaeobacter inhibens and Pseudoalteromonas tunicata during biofilm growth. Environ Microbiol 2024; 26:e16553. [PMID: 38062568 DOI: 10.1111/1462-2920.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Interspecific interactions in biofilms have been shown to cause the emergence of community-level properties. To understand the impact of interspecific competition on evolution, we deep-sequenced the dispersal population of mono- and co-culture biofilms of two antagonistic marine bacteria (Phaeobacter inhibens 2.10 and Pseudoalteromononas tunicata D2). Enhanced phenotypic and genomic diversification was observed in the P. tunicata D2 populations under both mono- and co-culture biofilms in comparison to P. inhibens 2.10. The genetic variation was exclusively due to single nucleotide variants and small deletions, and showed high variability between replicates, indicating their random emergence. Interspecific competition exerted an apparent strong positive selection on a subset of P. inhibens 2.10 genes (e.g., luxR, cobC, argH, and sinR) that could facilitate competition, while the P. tunicata D2 population was genetically constrained under competition conditions. In the absence of interspecific competition, the P. tunicata D2 replicate populations displayed high levels of mutations affecting the same genes involved in cell motility and biofilm formation. Our results show that interspecific biofilm competition has a complex impact on genomic diversification, which likely depends on the nature of the competing strains and their ability to generate genetic variants due to their genomic constraints.
Collapse
Affiliation(s)
- Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Shan Zhang
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Staffan Kjelleberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
8
|
Ellermann M. Emerging mechanisms by which endocannabinoids and their derivatives modulate bacterial populations within the gut microbiome. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11359. [PMID: 38389811 PMCID: PMC10880783 DOI: 10.3389/adar.2023.11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
Bioactive lipids such as endocannabinoids serve as important modulators of host health and disease through their effects on various host functions including central metabolism, gut physiology, and immunity. Furthermore, changes to the gut microbiome caused by external factors such as diet or by disease development have been associated with altered endocannabinoid tone and disease outcomes. These observations suggest the existence of reciprocal relationships between host lipid signaling networks and bacterial populations that reside within the gut. Indeed, endocannabinoids and their congeners such as N-acylethanolamides have been recently shown to alter bacterial growth, functions, physiology, and behaviors, therefore introducing putative mechanisms by which these bioactive lipids directly modulate the gut microbiome. Moreover, these potential interactions add another layer of complexity to the regulation of host health and disease pathogenesis that may be mediated by endocannabinoids and their derivatives. This mini review will summarize recent literature that exemplifies how N-acylethanolamides and monoacylglycerols including endocannabinoids can impact bacterial populations in vitro and within the gut microbiome. We also highlight exciting preclinical studies that have engineered gut bacteria to synthesize host N-acylethanolamides or their precursors as potential strategies to treat diseases that are in part driven by aberrant lipid signaling, including obesity and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
9
|
Saksena S, Forbes K, Rajan N, Giles D. Phylogenetic investigation of Gammaproteobacteria proteins involved in exogenous long-chain fatty acid acquisition and assimilation. Biochem Biophys Rep 2023; 35:101504. [PMID: 37601446 PMCID: PMC10439403 DOI: 10.1016/j.bbrep.2023.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background The incorporation of exogenous fatty acids into the cell membrane yields structural modifications that directly influence membrane phospholipid composition and indirectly contribute to virulence. FadL and FadD are responsible for importing and activating exogenous fatty acids, while acyltransferases (PlsB, PlsC, PlsX, PlsY) incorporate fatty acids into the cell membrane. Many Gammaproteobacteria species possess multiple homologs of these proteins involved in exogenous fatty acid metabolism, suggesting the evolutionary acquisition and maintenance of this transport pathway. Methods This study developed phylogenetic trees based on amino acid and nucleotide sequences of homologs of FadL, FadD, PlsB, PlsC, PlsX, and PlsY via Mr. Bayes and RAxML algorithms. We also explored the operon arrangement of genes encoding for FadL. Additionally, FadL homologs were modeled via SWISS-MODEL, validated and refined by SAVES, Galaxy Refine, and GROMACS, and docked with fatty acids via AutoDock Vina. Resulting affinities were analyzed by 2-way ANOVA test and Tukey's post-hoc test. Results Our phylogenetic trees revealed grouping based on operon structure, original homolog blasted from, and order of the homolog, suggesting a more ancestral origin of the multiple homolog phenomena. Our molecular docking simulations indicated a similar binding pattern for the fatty acids between the different FadL homologs. General significance Our study is the first to illustrate the phylogeny of these proteins and to investigate the binding of various FadL homologs across orders with fatty acids. This study helps unravel the mystery surrounding these proteins and presents topics for future research.
Collapse
Affiliation(s)
- Saksham Saksena
- College of Arts and Sciences, Vanderbilt University, 2201 West End Ave., Nashville, TN, 37235, USA
| | - Kwame Forbes
- College of Science and Mathematics, The University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, USVI, 00802-9990, USA
| | - Nipun Rajan
- East Hamilton High School, 2015 Ooltewah Ringgold Road, Ootlewah, TN, 37363, USA
| | - David Giles
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN, 37403, USA
| |
Collapse
|
10
|
Dreab A, Bayse CA. The effect of metalation on antimicrobial piscidins imbedded in normal and oxidized lipid bilayers. RSC Chem Biol 2023; 4:573-586. [PMID: 37547452 PMCID: PMC10398361 DOI: 10.1039/d3cb00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/02/2023] [Indexed: 08/08/2023] Open
Abstract
Metalation of the N-terminal Amino Terminal Cu(ii)- and Ni(ii)-binding (ATCUN) motif may enhance the antimicrobial properties of piscidins. Molecular dynamics simulations of free and nickelated piscidins 1 and 3 (P1 and P3) were performed in 3 : 1 POPC/POPG and 2.6 : 1 : 0.4 POPC/POPG/aldo-PC bilayers (POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; aldo-PC, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine) bilayer models. Nickel(ii) binding decreases the conformation dynamics of the ATCUN motif and lowers the charge of the N-terminus to allow it to embed deeper in the bilayer without significantly changing the overall depth due to interactions of the charged half-helix of the peptide with the headgroups. Phe1⋯Ni2+ cation-π and Phe2-Phe1 CH-π interactions contribute to a small fraction of structures within the nickelated P1 simulations and may partially protect a bound metal from metal-centered chemical activity. The substitution of Phe2 for Ile2 in P3 sterically blocks conformations with cation-π interactions offering less protection to the metal. This difference between metalated P1 and P3 may indicate a mechanism by which peptide sequence can influence antimicrobial properties. Any loss of bilayer integrity due to chain reversal of the oxidized phospholipid chains of aldo-PC may be enhanced in the presence of metalated piscidins.
Collapse
Affiliation(s)
- Ana Dreab
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| |
Collapse
|
11
|
Abstract
OBJECTIVE This work addressing complexities in wound infection, seeks to test the reliance of bacterial pathogen Pseudomonas aeruginosa (PA) on host skin lipids to form biofilm with pathological consequences. BACKGROUND PA biofilm causes wound chronicity. Both CDC as well as NIH recognizes biofilm infection as a threat leading to wound chronicity. Chronic wounds on lower extremities often lead to surgical limb amputation. METHODS An established preclinical porcine chronic wound biofilm model, infected with PA or Pseudomonas aeruginosa ceramidase mutant (PA ∆Cer ), was used. RESULTS We observed that bacteria drew resource from host lipids to induce PA ceramidase expression by three orders of magnitude. PA utilized product of host ceramide catabolism to augment transcription of PA ceramidase. Biofilm formation was more robust in PA compared to PA ∆Cer . Downstream products of such metabolism such as sphingosine and sphingosine-1-phosphate were both directly implicated in the induction of ceramidase and inhibition of peroxisome proliferator-activated receptor (PPAR)δ, respectively. PA biofilm, in a ceram-idastin-sensitive manner, also silenced PPARδ via induction of miR-106b. Low PPARδ limited ABCA12 expression resulting in disruption of skin lipid homeostasis. Barrier function of the wound-site was thus compromised. CONCLUSIONS This work demonstrates that microbial pathogens must co-opt host skin lipids to unleash biofilm pathogenicity. Anti-biofilm strategies must not necessarily always target the microbe and targeting host lipids at risk of infection could be productive. This work may be viewed as a first step, laying fundamental mechanistic groundwork, toward a paradigm change in biofilm management.
Collapse
|
12
|
Ugwuodo CJ, Colosimo F, Adhikari J, Shen Y, Badireddy AR, Mouser PJ. Salinity and hydraulic retention time induce membrane phospholipid acyl chain remodeling in Halanaerobium congolense WG10 and mixed cultures from hydraulically fractured shale wells. Front Microbiol 2022; 13:1023575. [PMID: 36439785 PMCID: PMC9687094 DOI: 10.3389/fmicb.2022.1023575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2023] Open
Abstract
Bacteria remodel their plasma membrane lipidome to maintain key biophysical attributes in response to ecological disturbances. For Halanaerobium and other anaerobic halotolerant taxa that persist in hydraulically fractured deep subsurface shale reservoirs, salinity, and hydraulic retention time (HRT) are important perturbants of cell membrane structure, yet their effects remain poorly understood. Membrane-linked activities underlie in situ microbial growth kinetics and physiologies which drive biogeochemical reactions in engineered subsurface systems. Hence, we used gas chromatography-mass spectrometry (GC-MS) to investigate the effects of salinity and HRT on the phospholipid fatty acid composition of H. congolense WG10 and mixed enrichment cultures from hydraulically fractured shale wells. We also coupled acyl chain remodeling to membrane mechanics by measuring bilayer elasticity using atomic force microscopy (AFM). For these experiments, cultures were grown in a chemostat vessel operated in continuous flow mode under strict anoxia and constant stirring. Our findings show that salinity and HRT induce significant changes in membrane fatty acid chemistry of H. congolense WG10 in distinct and complementary ways. Notably, under nonoptimal salt concentrations (7% and 20% NaCl), H. congolense WG10 elevates the portion of polyunsaturated fatty acids (PUFAs) in its membrane, and this results in an apparent increase in fluidity (homeoviscous adaptation principle) and thickness. Double bond index (DBI) and mean chain length (MCL) were used as proxies for membrane fluidity and thickness, respectively. These results provide new insight into our understanding of how environmental and engineered factors might disrupt the physical and biogeochemical equilibria of fractured shale by inducing physiologically relevant changes in the membrane fatty acid chemistry of persistent microbial taxa. GRAPHICAL ABSTRACTSalinity significantly alters membrane bilayer fluidity and thickness in Halanaerobium congolense WG10.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH, United States
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| | | | - Jishnu Adhikari
- Sanborn, Head and Associates, Inc., Concord, NH, United States
| | - Yuxiang Shen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Paula J. Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
13
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
14
|
Turgeson A, Morley L, Giles D, Harris B. Simulated Docking Predicts Putative Channels for the Transport of Long-Chain Fatty Acids in Vibrio cholerae. Biomolecules 2022; 12:biom12091269. [PMID: 36139109 PMCID: PMC9496633 DOI: 10.3390/biom12091269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Fatty acids (FA) play an important role in biological functions, such as membrane homeostasis, metabolism, and as signaling molecules. FadL is the only known protein that uptakes long-chain fatty acids in Gram-negative bacteria, and this uptake has traditionally been thought to be limited to fatty acids up to 18 carbon atoms in length. Recently however, it was found Vibrio cholerae has the ability to uptake fatty acids greater than 18 carbon atoms and this uptake corresponds to bacterial survivability. Using E. coli’s FadL as a template, V. cholerae FadL homologs vc1042, vc1043, and vca0862 have been computationally folded, simulated on an atomistic level using Molecular Dynamics, and docked in silico to analyze the FadL transport channels. For the vc1042 and vc1043 homologs, these transport channels have more structural accommodations for the many rigid unsaturated bonds of long-chain polyunsaturated fatty acids, while the vca0862 homolog was found to lack transport channels within the signature beta barrel of FadL proteins.
Collapse
Affiliation(s)
- Andrew Turgeson
- Department of Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Lucas Morley
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Giles
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Bradley Harris
- Department of Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
- Correspondence: ; Tel.: +1-423-425-2209
| |
Collapse
|
15
|
Contribution of Membrane Vesicle to Reprogramming of Bacterial Membrane Fluidity in Pseudomonas aeruginosa. mSphere 2022; 7:e0018722. [PMID: 35603537 PMCID: PMC9241526 DOI: 10.1128/msphere.00187-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of resisting environmental insults by applying various strategies, including regulating membrane fluidity and producing membrane vesicles (MVs). This study examined the difference in membrane fluidity between planktonic and biofilm modes of growth in P. aeruginosa and whether the ability to alter membrane rigidity in P. aeruginosa could be transferred via MVs. To this end, planktonic and biofilm P. aeruginosa were compared with respect to the lipid composition of their membranes and their MVs and the expression of genes contributing to alteration of membrane fluidity. Additionally, viscosity maps of the bacterial membrane in planktonic and biofilm lifestyles and under the effect of incubation with bacterial MVs were obtained. Further, the growth rate and biofilm formation capability of P. aeruginosa in the presence of MVs were compared. Results showed that the membrane of the biofilm bacteria is significantly less fluid than the membrane of the planktonic bacteria and is enriched with saturated fatty acids. Moreover, the enzymes involved in altering the structure of existing lipids and favoring membrane rigidification are overexpressed in the biofilm bacteria. MVs of biofilm P. aeruginosa elicit membrane rigidification and delay the bacterial growth in the planktonic lifestyle; conversely, they enhance biofilm development in P. aeruginosa. Overall, the study describes the interplay between the planktonic and biofilm bacteria by shedding light on the role of MVs in altering membrane fluidity. IMPORTANCE Membrane rigidification is a survival strategy in Pseudomonas aeruginosa exposed to stress. Despite various studies dedicated to the mechanism behind this phenomenon, not much attention has been paid to the contribution of the bacterial membrane vesicles (MVs) in this regard. This study revealed that P. aeruginosa rigidifies its membrane in the biofilm mode of growth. Additionally, the capability of decreasing membrane fluidity is transferable to the bacterial population via the bacterial MVs, resulting in reprogramming of bacterial membrane fluidity. Given the importance of membrane rigidification for decreasing the pathogen’s susceptibility to antimicrobials, elucidation of the conditions leading to such biophysicochemical modulation of the P. aeruginosa membrane should be considered for the purpose of developing therapeutic approaches against this resistant pathogen.
Collapse
|
16
|
Mohamed H, Marusich E, Afanasev Y, Leonov S. Bacterial Outer Membrane Permeability Increase Underlies the Bactericidal Effect of Fatty Acids From Hermetia illucens (Black Soldier Fly) Larvae Fat Against Hypermucoviscous Isolates of Klebsiella pneumoniae. Front Microbiol 2022; 13:844811. [PMID: 35602017 PMCID: PMC9121012 DOI: 10.3389/fmicb.2022.844811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Behind expensive treatments, Klebsiella pneumoniae infections account for extended hospitalization’s high mortality rates. This study aimed to evaluate the activity and mechanism of the antimicrobial action of a fatty acid-containing extract (AWME3) isolated from Hermetia illucens (HI) larvae fat against K. pneumoniae subsp. pneumoniae standard NDM-1 carbapenemase-producing ATCC BAA-2473 strain, along with a wild-type hypermucoviscous clinical isolate, strain K. pneumoniae subsp. pneumoniae KPi1627, and an environmental isolate, strain K. pneumoniae subsp. pneumoniae KPM9. We classified these strains as extensive multidrug-resistant (XDR) or multiple antibiotic-resistant (MDR) demonstrated by a susceptibility assay against 14 antibiotics belonging to ten classes of antibiotics. Antibacterial properties of fatty acids extracted from the HI larvae fat were evaluated using disk diffusion method, microdilution, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), half of the inhibitory concentration (MIC50), and bactericidal assays. In addition, the cytotoxocity of AWME3 was tested on human HEK293 cells, and AWME3 lipid profile was determined by gas chromatography-mass spectrometry (GC-MS) analysis. For the first time, we demonstrated that the inhibition zone diameter (IZD) of fatty acid-containing extract (AWME3) of the HI larvae fat tested at 20 mg/ml was 16.52 ± 0.74 and 14.23 ± 0.35 mm against colistin-resistant KPi1627 and KPM9, respectively. It was 19.72 ± 0.51 mm against the colistin-susceptible K. pneumoniae ATCC BAA-2473 strain. The MIC and MBC were 250 μg/ml for all the tested bacteria strains, indicating the bactericidal effect of AWME3. The MIC50 values were 155.6 ± 0.009 and 160.1 ± 0.008 μg/ml against the KPi1627 and KPM9 isolates, respectively, and 149.5 ± 0.013 μg/ml against the ATCC BAA-2473 strain in the micro-dilution assay. For the first time, we demonstrated that AWME3 dose-dependently increased bacterial cell membrane permeability as determined by the relative electric conductivity (REC) of the K. pneumoniae ATCC BAA-2473 suspension, and that none of the strains did not build up resistance to extended AWME3 treatment using the antibiotic resistance assay. Cytotoxicity assay showed that AWME3 is safe for human HEK293 cells at IC50 266.1 μg/ml, while bactericidal for all the strains of bacteria at the same concentration. Free fatty acids (FFAs) and their derivatives were the significant substances among 33 compounds identified by the GC-MS analysis of AWME3. Cis-oleic and palmitoleic acids represent the most abundant unsaturated FAs (UFAs), while palmitic, lauric, stearic, and myristic acids were the most abundant saturated FAs (SFAs) of the AWME3 content. Bactericidal resistant-free AWM3 mechanism of action provides a rationale interpretations and the utility of HI larvae fat to develop natural biocidal resistance-free formulations that might be promising therapeutic against Gram-negative MDR bacteria causing nosocomial infections.
Collapse
Affiliation(s)
- Heakal Mohamed
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elena Marusich
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- *Correspondence: Elena Marusich,
| | - Yuriy Afanasev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
- Sergey Leonov,
| |
Collapse
|
17
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
18
|
Al Ghaithi A, Al Bimani A, Al Maskari S. Investigating the Growth of Pseudomonas aeruginosa and Its Influence on Osteolysis in Human Bone: An In Vitro Study. Strategies Trauma Limb Reconstr 2022; 16:127-131. [PMID: 35111250 PMCID: PMC8778729 DOI: 10.5005/jp-journals-10080-1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Isolation of the causal microorganisms in osteomyelitis presents a major challenge for treating clinicians. Several methods have been proposed to rapidly and accurately identify microorganisms. There has been an increasing interest in using Raman spectroscopy in the field of microbial detection and characterisation. This paper explores the use of Raman spectroscopy identification as one of the most difficult-to-isolate microorganisms causing osteomyelitis. Methods and results Fresh healthy human bone samples were collected from patients undergoing a total knee replacement. These samples were then inoculated with fresh overnight Pseudomonas aeruginosa (PAO) cultures. Bacteria growth and bone ultrastructural changes were monitored over a period of 6 weeks. The experiment demonstrated ultrastructural bony destruction caused by osteolytic PAO secretions. Raman-specific spectral signatures related to the cellular membranes of PAO structures were spotted indicating survival of bacteria on the bone surface. Conclusion This study showed the promising ability of Raman spectroscopy to identify the presence of bacteria on the surface of inoculated bone samples over time. It was able to detect the osteolytic activity of the bacteria as well as ultrastructure specific to PAO virulence. This method may have a role as an aid to existing diagnostic methods for fast and accurate bacterial identification in bone infection. How to cite this article Al Ghaithi A, Al Bimani A, Al Maskari S. Investigating the Growth of Pseudomonas aeruginosa and Its Influence on Osteolysis in Human Bone: An In Vitro Study. Strategies Trauma Limb Reconstr 2021;16(3):127–131.
Collapse
Affiliation(s)
- Ahmed Al Ghaithi
- Orthopaedic Surgery Division, College of Medicine, Sultan Qaboos University, Muscat, Oman
- Ahmed Al Ghaithi, Orthopaedic Surgery Division, College of Medicine, Sultan Qaboos University, Muscat, Oman, Phone: +96899166911, e-mail:
| | - Atika Al Bimani
- Department of Microbiology, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Sultan Al Maskari
- Orthopaedic Surgery Division, College of Medicine, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
19
|
Smith DS, Houck C, Lee A, Simmons TB, Chester ON, Esdaile A, Symes SJK, Giles DK. Polyunsaturated fatty acids cause physiological and behavioral changes in Vibrio alginolyticus and Vibrio fischeri. Microbiologyopen 2021; 10:e1237. [PMID: 34713610 PMCID: PMC8494716 DOI: 10.1002/mbo3.1237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/08/2021] [Indexed: 11/06/2022] Open
Abstract
Vibrio alginolyticus and Vibrio (Aliivibrio) fischeri are Gram-negative bacteria found globally in marine environments. During the past decade, studies have shown that certain Gram-negative bacteria, including Vibrio species (cholerae, parahaemolyticus, and vulnificus) are capable of using exogenous polyunsaturated fatty acids (PUFAs) to modify the phospholipids of their membrane. Moreover, exposure to exogenous PUFAs has been shown to affect certain phenotypes that are important factors of virulence. The purpose of this study was to investigate whether V. alginolyticus and V. fischeri are capable of responding to exogenous PUFAs by remodeling their membrane phospholipids and/or altering behaviors associated with virulence. Thin-layer chromatography (TLC) analyses and ultra-performance liquid chromatography-electrospray ionization mass spectrometry (UPLC/ESI-MS) confirmed incorporation of all PUFAs into membrane phosphatidylglycerol and phosphatidylethanolamine. Several growth phenotypes were identified when individual fatty acids were supplied in minimal media and as sole carbon sources. Interestingly, several PUFAs acids inhibited growth of V. fischeri. Significant alterations to membrane permeability were observed depending on fatty acid supplemented. Strikingly, arachidonic acid (20:4) reduced membrane permeability by approximately 35% in both V. alginolyticus and V. fischeri. Biofilm assays indicated that fatty acid influence was dependent on media composition and temperature. All fatty acids caused decreased swimming motility in V. alginolyticus, while only linoleic acid (18:2) significantly increased swimming motility in V. fischeri. In summary, exogenous fatty acids cause a variety of changes in V. alginolyticus and V. fischeri, thus adding these bacteria to a growing list of Gram-negatives that exhibit versatility in fatty acid utilization and highlighting the potential for environmental PUFAs to influence phenotypes associated with planktonic, beneficial, and pathogenic associations.
Collapse
Affiliation(s)
- David S. Smith
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Carina Houck
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Allycia Lee
- Department of Chemistry and PhysicsThe University of Tennessee at ChattanoogaChattanoogaTennesseeUSA
| | - Timothy B. Simmons
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Olivia N. Chester
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Ayanna Esdaile
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Steven J. K. Symes
- Department of Chemistry and PhysicsThe University of Tennessee at ChattanoogaChattanoogaTennesseeUSA
| | - David K. Giles
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| |
Collapse
|
20
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
21
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
22
|
Maitra R, Fogel E, Parakrama R, Goel S. Molecular Tools for Metastatic Colorectal Cancer Characterization. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 2:359-363. [PMID: 33426543 PMCID: PMC7793569 DOI: 10.33696/immunology.2.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In our recent publication [1], we have explored at the molecular level the consequences of reovirus administration to patients with KRAS mutated colorectal cancer (CRC). This was the first reported study where transcriptome assay was performed on KRAS mutated CRC patients receiving reovirus (pelareorep) therapy. Using peripheral mononuclear cells as a tumor surrogate, we have identified several hundred genes that were significantly altered in a transcriptome assay of patients receiving pelareorep serving as their own controls (pre and post reovirus administration) and compared to untreated controls [2]. We focused primarily on 884 immune related genes and published the data for genes with significance probability of 0.001 (1 in thousand for a perfect random occurrence). Samples were collected at 48 hours, day 8 and day 15 post reovirus administration and compared for dynamic gene expression alterations over time. Using PBMC we also performed flow cytometry, cytokine ELISA, immunohistochemistry, and determination of the expression level of CRC specific microRNA miR-29a-3p. Our data supports the therapeutic competence of reovirus and identifies the four major ways by which it exerts its antitumor effects.
Collapse
Affiliation(s)
- Radhashree Maitra
- Montefiore Medical Center, 1695 Eastchester Road Bronx, New York 10461, USA.,Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.,Department of Biology, Yeshiva University, 500 West W 185th Street, New York NY, 10033, USA
| | - Elisha Fogel
- Department of Biology, Yeshiva University, 500 West W 185th Street, New York NY, 10033, USA
| | - Ruwan Parakrama
- Montefiore Medical Center, 1695 Eastchester Road Bronx, New York 10461, USA
| | - Sanjay Goel
- Montefiore Medical Center, 1695 Eastchester Road Bronx, New York 10461, USA.,Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
23
|
Alvares DS, Monti MR, Ruggiero Neto J, Wilke N. The antimicrobial peptide Polybia-MP1 differentiates membranes with the hopanoid, diplopterol from those with cholesterol. BBA ADVANCES 2021; 1:100002. [PMID: 37082019 PMCID: PMC10074923 DOI: 10.1016/j.bbadva.2021.100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polybia-MP1 is an antimicrobial peptide that shows a decreased activity in membranes with cholesterol (CHO). Since it is now accepted that hopanoids act as sterol-surrogates in some sterol-lacking bacteria, we here inquire about the impact of Polybia-MP1 on membranes containing the hopanoid diplopterol (DP) in comparison to membranes with CHO. We found that, despite the properties induced on lipid membranes by DP are similar to those induced by CHO, the effect of Polybia-MP1 on membranes with CHO or DP was significantly different. DP did not prevent dye release from LUVs, nor the insertion of Polybia-MP1 into monolayers, and peptide-membrane affinity was higher for those with DP than with CHO. Zeta potentials ( ζ ) for DP-containing LUVs showed a complex behavior at increasing peptide concentration. The effect of the peptide on membrane elasticity, investigated by nanotube retraction experiments, showed that peptide addition softened all membrane compositions, but membranes with DP got stiffer at long times. Considering this, and the ζ results, we propose that peptides accumulate at the interface adopting different arrangements, leading to a non-monotonic behavior. Possible correlations with cell membranes were inquired testing the antimicrobial activity of Polybia-MP1 against hopanoid-lacking bacteria pre-incubated with DP or CHO. The fraction of surviving cells was lower in cultures incubated with DP compared to those incubated with CHO. We propose that the higher activity of Polybia-MP1 against some bacteria compared to mammalian cells is not only related to membrane electrostatics, but also the composition of neutral lipids, particularly the hopanoids, could be important.
Collapse
|
24
|
Joshi AS, Singh P, Mijakovic I. Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. Int J Mol Sci 2020; 21:E7658. [PMID: 33081366 PMCID: PMC7589962 DOI: 10.3390/ijms21207658] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Many bacteria have the capability to form a three-dimensional, strongly adherent network called 'biofilm'. Biofilms provide adherence, resourcing nutrients and offer protection to bacterial cells. They are involved in pathogenesis, disease progression and resistance to almost all classical antibiotics. The need for new antimicrobial therapies has led to exploring applications of gold and silver nanoparticles against bacterial biofilms. These nanoparticles and their respective ions exert antimicrobial action by damaging the biofilm structure, biofilm components and hampering bacterial metabolism via various mechanisms. While exerting the antimicrobial activity, these nanoparticles approach the biofilm, penetrate it, migrate internally and interact with key components of biofilm such as polysaccharides, proteins, nucleic acids and lipids via electrostatic, hydrophobic, hydrogen-bonding, Van der Waals and ionic interactions. Few bacterial biofilms also show resistance to these nanoparticles through similar interactions. The nature of these interactions and overall antimicrobial effect depend on the physicochemical properties of biofilm and nanoparticles. Hence, study of these interactions and participating molecular players is of prime importance, with which one can modulate properties of nanoparticles to get maximal antibacterial effects against a wide spectrum of bacterial pathogens. This article provides a comprehensive review of research specifically directed to understand the molecular interactions of gold and silver nanoparticles with various bacterial biofilms.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
25
|
Herndon JL, Peters RE, Hofer RN, Simmons TB, Symes SJ, Giles DK. Exogenous polyunsaturated fatty acids (PUFAs) promote changes in growth, phospholipid composition, membrane permeability and virulence phenotypes in Escherichia coli. BMC Microbiol 2020; 20:305. [PMID: 33046008 PMCID: PMC7552566 DOI: 10.1186/s12866-020-01988-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The utilization of exogenous fatty acids by Gram-negative bacteria has been linked to many cellular processes, including fatty acid oxidation for metabolic gain, assimilation into membrane phospholipids, and control of phenotypes associated with virulence. The expanded fatty acid handling capabilities have been demonstrated in several bacteria of medical importance; however, a survey of the polyunsaturated fatty acid responses in the model organism Escherichia coli has not been performed. The current study examined the impacts of exogenous fatty acids on E. coli. RESULTS All PUFAs elicited higher overall growth, with several fatty acids supporting growth as sole carbon sources. Most PUFAs were incorporated into membrane phospholipids as determined by Ultra performance liquid chromatography-mass spectrometry, whereas membrane permeability was variably affected as measured by two separate dye uptake assays. Biofilm formation, swimming motility and antimicrobial peptide resistance were altered in the presence of PUFAs, with arachidonic and docosahexaenoic acids eliciting strong alteration to these phenotypes. CONCLUSIONS The findings herein add E. coli to the growing list of Gram-negative bacteria with broader capabilities for utilizing and responding to exogenous fatty acids. Understanding bacterial responses to PUFAs may lead to microbial behavioral control regimens for disease prevention.
Collapse
Affiliation(s)
- Joshua L. Herndon
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Rachel E. Peters
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Rachel N. Hofer
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Timothy B. Simmons
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Steven J. Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - David K. Giles
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| |
Collapse
|
26
|
Abstract
Molecular mechanisms by which sex steroids interact with P. aeruginosa to modulate its virulence have yet to be reported. Our work provides the first characterization of a steroid-induced membrane stress mechanism promoting P. aeruginosa virulence, which includes the release of proinflammatory outer membrane vesicles, resulting in inflammation, host tissue damage, and reduced bacterial clearance. We further demonstrate that at nanomolar (physiological) concentrations, male and female sex steroids promote virulence in clinical strains of P. aeruginosa based on their dynamic membrane fluidic properties. This work provides, for the first-time, mechanistic insight to better understand and predict the P. aeruginosa related response to sex steroids and explain the interindividual patient variability observed in respiratory diseases such as cystic fibrosis that are complicated by gender differences and chronic P. aeruginosa infection. Estrogen, a major female sex steroid hormone, has been shown to promote the selection of mucoid Pseudomonas aeruginosa in the airways of patients with chronic respiratory diseases, including cystic fibrosis. This results in long-term persistence, poorer clinical outcomes, and limited therapeutic options. In this study, we demonstrate that at physiological concentrations, sex steroids, including testosterone and estriol, induce membrane stress responses in P. aeruginosa. This is characterized by increased virulence and consequent inflammation and release of proinflammatory outer membrane vesicles promoting in vivo persistence of the bacteria. The steroid-induced P. aeruginosa response correlates with the molecular polarity of the hormones and membrane fluidic properties of the bacteria. This novel mechanism of interaction between sex steroids and P. aeruginosa explicates the reported increased disease severity observed in females with cystic fibrosis and provides evidence for the therapeutic potential of the modulation of sex steroids to achieve better clinical outcomes in patients with hormone-responsive strains.
Collapse
|
27
|
Deschamps E, Schaumann A, Schmitz-Afonso I, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Membrane phospholipid composition of Pseudomonas aeruginosa grown in a cystic fibrosis mucus-mimicking medium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183482. [PMID: 33002450 DOI: 10.1016/j.bbamem.2020.183482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is a bacterium able to induce serious pulmonary infections in cystic fibrosis (CF) patients. This bacterium is very often antibiotic resistant, partly because of its membrane impermeability, which is linked to the membrane lipid composition. This work aims to study the membrane phospholipids of P. aeruginosa grown in CF sputum-like media. METHODS Three media were used: Mueller Hilton broth (MHB), synthetic cystic fibrosis medium (SCFM) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) complemented SCFM (SCFM-PC). Lipids were extracted and LC-MS/MS analyses were performed. Growth curves, atomic force microscopy images and minimal inhibitory concentration determination were performed in order to compare the growth and potentially link lipid modifications to antibiotic resistance. RESULTS Semi-quantification showed phospholipid quantity variation depending on the growth medium. Phosphatidylcholines were detected in traces in SCFM. MS/MS experiments showed an increase of phospholipids derived from DOPC in SCFM-PC. We observed no influence of the medium on the bacterial growth and a minor influence on the bacterial shape. MIC values were generally higher in SCFM and SCFM-PC than in MHB. CONCLUSIONS We defined a CF sputum-like media which can be used for the membrane lipid extraction of P. aeruginosa. We also showed that the growth medium does have an influence on its membrane lipid composition and antibiotic resistance, especially for SCFM-PC in which P. aeruginosa uses DOPC, in order to make its own membrane. GENERAL SIGNIFICANCE Our results show that considerable caution must be taken when choosing a medium for lipid identification and antibiotic testing -especially for phospholipids-enriched media.
Collapse
Affiliation(s)
- Estelle Deschamps
- Normandie Univ, PBS, UMR 6270 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, CURIB, Bvd De Broglie, 76821 Mont-Saint-Aignan, Cedex, France; Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan, Cedex, France
| | - Annick Schaumann
- Normandie Univ, PBS, UMR 6270 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, CURIB, Bvd De Broglie, 76821 Mont-Saint-Aignan, Cedex, France
| | - Isabelle Schmitz-Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan, Cedex, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan, Cedex, France
| | - Emmanuelle Dé
- Normandie Univ, PBS, UMR 6270 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, CURIB, Bvd De Broglie, 76821 Mont-Saint-Aignan, Cedex, France
| | - Corinne Loutelier-Bourhis
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan, Cedex, France
| | - Stéphane Alexandre
- Normandie Univ, PBS, UMR 6270 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, CURIB, Bvd De Broglie, 76821 Mont-Saint-Aignan, Cedex, France.
| |
Collapse
|
28
|
Kim HS, Cha E, Ham SY, Park JH, Nam S, Kwon H, Byun Y, Park HD. Linoleic acid inhibits Pseudomonas aeruginosa biofilm formation by activating diffusible signal factor-mediated quorum sensing. Biotechnol Bioeng 2020; 118:82-93. [PMID: 32880907 DOI: 10.1002/bit.27552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/09/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
Bacterial biofilm formation causes serious problems in various fields of medical, clinical, and industrial settings. Antibiotics and biocide treatments are typical methods used to remove bacterial biofilms, but biofilms are difficult to remove effectively from surfaces due to their increased resistance. An alternative approach to treatment with antimicrobial agents is using biofilm inhibitors that regulate biofilm development without inhibiting bacterial growth. In the present study, we found that linoleic acid (LA), a plant unsaturated fatty acid, inhibits biofilm formation under static and continuous conditions without inhibiting the growth of Pseudomonas aeruginosa. LA also influenced the bacterial motility, extracellular polymeric substance production, and biofilm dispersion by decreasing the intracellular cyclic diguanylate concentration through increased phosphodiesterase activity. Furthermore, quantitative gene expression analysis demonstrated that LA induced the expression of genes associated with diffusible signaling factor-mediated quorum sensing that can inhibit or induce the dispersion of P. aeruginosa biofilms. These results suggest that LA is functionally and structurally similar to a P. aeruginosa diffusible signaling factor (cis-2-decenoic acid) and, in turn, act as an agonist molecule in biofilm dispersion.
Collapse
Affiliation(s)
- Han-Shin Kim
- Korean Peninsula Infrastructure Special Committee, Korea Institute of Civil Engineering and Building Technology, Goyang, South Korea
| | - Eunji Cha
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - So-Young Ham
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- Clean Innovation Technology Group, Korea Institute of Industrial Technology, Jeju, South Korea
| | - SangJin Nam
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Hongmok Kwon
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, South Korea.,Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| |
Collapse
|
29
|
Wheelock CE, Strandvik B. Abnormal n-6 fatty acid metabolism in cystic fibrosis contributes to pulmonary symptoms. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102156. [PMID: 32750662 DOI: 10.1016/j.plefa.2020.102156] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023]
Abstract
Cystic fibrosis (CF) is a recessively inherited fatal disease that is the subject of extensive research and ongoing development of therapeutics targeting the defective protein, cystic fibrosis transmembrane conductance regulator (CFTR). Despite progress, the link between CFTR and clinical symptoms is incomplete. The severe CF phenotypes are associated with a deficiency of linoleic acid, which is the precursor of arachidonic acid. The release of arachidonic acid from membranes via phospholipase A2 is the rate-limiting step for eicosanoid synthesis and is increased in CF, which contributes to the observed inflammation. A potential deficiency of docosahexaenoic acid may lead to decreased levels of specialized pro-resolving mediators. This pathophysiology may contribute to an early and sterile inflammation, mucus production, and to bacterial colonization, which further increases inflammation and potentiates the clinical symptoms. Advances in lipid technology will assist in elucidating the role of lipid metabolism in CF, and stimulate therapeutic modulations of inflammation.
Collapse
Affiliation(s)
- Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Strandvik
- Dept of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Munsch-Alatossava P, Alatossava T. Potential of N 2 Gas Flushing to Hinder Dairy-Associated Biofilm Formation and Extension. Front Microbiol 2020; 11:1675. [PMID: 32849349 PMCID: PMC7399044 DOI: 10.3389/fmicb.2020.01675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Worldwide, the dairy sector remains of vital importance for food production despite severe environmental constraints. The production and handling conditions of milk, a rich medium, promote inevitably the entrance of microbial contaminants, with notable impact on the quality and safety of raw milk and dairy products. Moreover, the persistence of high concentrations of microorganisms (especially bacteria and bacterial spores) in biofilms (BFs) present on dairy equipment or environments constitutes an additional major source of milk contamination from pre- to post-processing stages: in dairies, BFs represent a major concern regarding the risks of disease outbreaks and are often associated with significant economic losses. One consumption trend toward "raw or low-processed foods" combined with current trends in food production systems, which tend to have more automation and longer processing runs with simultaneously more stringent microbiological requirements, necessitate the implementation of new and obligatory sustainable strategies to respond to new challenges regarding food safety. Here, in light of studies, performed mainly with raw milk, that considered dominant "planktonic" conditions, we reexamine the changes triggered by cold storage alone or combined with nitrogen gas (N2) flushing on bacterial populations and discuss how the observed benefits of the treatment could also contribute to limiting BF formation in dairies.
Collapse
Affiliation(s)
| | - Tapani Alatossava
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Paredes SD, Kim S, Rooney MT, Greenwood AI, Hristova K, Cotten ML. Enhancing the membrane activity of Piscidin 1 through peptide metallation and the presence of oxidized lipid species: Implications for the unification of host defense mechanisms at lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183236. [DOI: 10.1016/j.bbamem.2020.183236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
|
32
|
Perczyk P, Wójcik A, Hachlica N, Wydro P, Broniatowski M. The composition of phospholipid model bacterial membranes determines their endurance to secretory phospholipase A2 attack – The role of cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183239. [DOI: 10.1016/j.bbamem.2020.183239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
|
33
|
Mangiarotti A, Genovese DM, Naumann CA, Monti MR, Wilke N. Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183060. [DOI: 10.1016/j.bbamem.2019.183060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
34
|
Al-Bakri AG, Mahmoud NN. Photothermal-Induced Antibacterial Activity of Gold Nanorods Loaded into Polymeric Hydrogel against Pseudomonas aeruginosa Biofilm. Molecules 2019; 24:E2661. [PMID: 31340472 PMCID: PMC6680386 DOI: 10.3390/molecules24142661] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
In this study, the photothermal-induced bactericidal activity of phospholipid-decorated gold nanorods (DSPE-AuNR) suspension against Pseudomonas aeruginosa planktonic and biofilm cultures was investigated. We found that the treatment of planktonic culture of Pseudomonas aeruginosa with DSPE-AuNR suspension (0.25-0.03 nM) followed by a continuous laser beam exposure resulted in ~6 log cycle reduction of the bacterial viable count in comparison to the control. The percentage reduction of Pseudomonas aeruginosa biofilm viable count was ~2.5-6.0 log cycle upon laser excitation with different concentrations of DSPE-AuNR as compared to the control. The photothermal ablation activity of DSPE-AuNR (0.125 nM) loaded into poloxamer 407 hydrogel against Pseudomonas aeruginosa biofilm resulted in ~4.5-5 log cycle reduction in the biofilm viable count compared to the control. Moreover, transmission electron microscope (TEM) images of the photothermally-treated bacteria revealed a significant change in the bacterial shape and lysis of the bacterial cell membrane in comparison to the untreated bacteria. Furthermore, the results revealed that continuous and pulse laser beam modes effected a comparable photothermal-induced bactericidal activity. Therefore, it can be concluded that phospholipid-coated gold nanorods present a promising nanoplatform to eradicate Pseudomonas aeruginosa biofilm responsible for common skin diseases.
Collapse
Affiliation(s)
- Amal G Al-Bakri
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan.
| | - Nouf N Mahmoud
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
35
|
Moossavi S, Atakora F, Miliku K, Sepehri S, Robertson B, Duan QL, Becker AB, Mandhane PJ, Turvey SE, Moraes TJ, Lefebvre DL, Sears MR, Subbarao P, Field CJ, Bode L, Khafipour E, Azad MB. Integrated Analysis of Human Milk Microbiota With Oligosaccharides and Fatty Acids in the CHILD Cohort. Front Nutr 2019; 6:58. [PMID: 31157227 PMCID: PMC6532658 DOI: 10.3389/fnut.2019.00058] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 01/25/2023] Open
Abstract
Background: Human milk contains many bioactive components that are typically studied in isolation, including bacteria. We performed an integrated analysis of human milk oligosaccharides and fatty acids to explore their associations with milk microbiota. Methods: We studied a sub-sample of 393 mothers in the CHILD birth cohort. Milk was collected at 3-4 months postpartum. Microbiota was analyzed by 16S rRNA gene V4 sequencing. Oligosaccharides and fatty acids were analyzed by rapid high-throughput high performance and gas liquid chromatography, respectively. Dimension reduction was performed with principal component analysis for oligosaccharides and fatty acids. Center log-ratio transformation was applied to all three components. Associations between components were assessed using Spearman rank correlation, network visualization, multivariable linear regression, redundancy analysis, and structural equation modeling. P-values were adjusted for multiple comparisons. Key covariates were considered, including fucosyltransferase-2 (FUT2) secretor status of mother and infant, method of feeding (direct breastfeeding or pumped breast milk), and maternal fish oil supplement use. Results: Overall, correlations were strongest between milk components of the same type. For example, FUT2-dependent HMOs were positively correlated with each other, and Staphylococcus was negatively correlated with other core taxa. Some associations were also observed between components of different types. Using redundancy analysis and structural equation modeling, the overall milk fatty acid profile was significantly associated with milk microbiota composition. In addition, some individual fatty acids [22:6n3 (docosahexaenoic acid), 22:5n3, 20:5n3, 17:0, 18:0] and oligosaccharides (fucosyl-lacto-N-hexaose, lacto-N-hexaose, lacto-N-fucopentaose I) were associated with microbiota α diversity, while others (C18:0, 3'-sialyllactose, disialyl-lacto-N-tetraose) were associated with overall microbiota composition. Only a few significant associations between individual HMOs and microbiota were observed; notably, among mothers using breast pumps, Bifidobacterium prevalence was associated with lower abundances of disialyl-lacto-N-hexaose. Additionally, among non-secretor mothers, Staphylococcus was positively correlated with sialylated HMOs. Conclusion: Using multiple approaches to integrate and analyse milk microbiota, oligosaccharides, and fatty acids, we observed several associations between different milk components and microbiota, some of which were modified by secretor status and/or breastfeeding practices. Additional research is needed to further validate and mechanistically characterize these associations and determine their relevance to infant gut and respiratory microbiota development and health.
Collapse
Affiliation(s)
- Shirin Moossavi
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faisal Atakora
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Kozeta Miliku
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Shadi Sepehri
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Bianca Robertson
- Department of Pediatrics and Larson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, San Diego, CA, United States
| | - Qing Ling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Allan B. Becker
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | | | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Theo J. Moraes
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Malcolm R. Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Padmaja Subbarao
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Catherine J. Field
- Department of Agricultural Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lars Bode
- Department of Pediatrics and Larson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, San Diego, CA, United States
| | - Ehsan Khafipour
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Meghan B. Azad
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|