1
|
Crestani C, Passet V, Rethoret-Pasty M, Zidane N, Brémont S, Badell E, Criscuolo A, Brisse S. Microevolution and genomic epidemiology of the diphtheria-causing zoonotic pathogen Corynebacterium ulcerans. Nat Commun 2025; 16:4843. [PMID: 40413184 PMCID: PMC12103533 DOI: 10.1038/s41467-025-60065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 05/13/2025] [Indexed: 05/27/2025] Open
Abstract
Corynebacterium ulcerans is an emerging zoonotic pathogen which causes diphtheria-like infections. Although C. ulcerans is found in multiple domestic and wild animal species, most human cases are linked with pets. Our ability to decipher cross-host species transmission dynamics and to understand the emergence of clinically relevant clones (e.g., diphtheria toxin-positive) is currently hampered by a limited knowledge of C. ulcerans strain diversity and genome evolution. Here, we explore the genomic population structure and evolution of C. ulcerans with 582 isolates from diverse hosts and geographical locations. A newly developed core genome genotyping scheme captures the population structure of C. ulcerans both at deep and shallow phylogenetic levels, uncovering its main sublineages and offering high strain subtyping resolution for epidemiological surveillance. Additionally, we reveal the diversity and distribution of the diphtheria toxin gene (tox), and those of its associated mobile elements. Considering the entire Corynebacterium diphtheriae Species Complex, we find four diphtheria toxin families, five tox-prophage families, and a novel tox-carrying genetic element. We show that some toxin families are shared across Corynebacterium species, revealing tox-prophage cross-species transfer. Our work enhances knowledge on the ecology and evolution of C. ulcerans and provides a genomic framework for tracking the dissemination of emerging sublineages.
Collapse
Affiliation(s)
- Chiara Crestani
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Virginie Passet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Martin Rethoret-Pasty
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Nora Zidane
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Sylvie Brémont
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Institut Pasteur, National Reference Center for Corynebacteria of the diphtheriae complex, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Institut Pasteur, National Reference Center for Corynebacteria of the diphtheriae complex, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.
- Institut Pasteur, National Reference Center for Corynebacteria of the diphtheriae complex, Paris, France.
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur, Paris, France.
| |
Collapse
|
2
|
Grandière Pérez L, Brisse S. Diphtheria antitoxin treatment: from pioneer to neglected. Mem Inst Oswaldo Cruz 2025; 120:e240214. [PMID: 39841756 PMCID: PMC11752783 DOI: 10.1590/0074-02760240214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 01/24/2025] Open
Abstract
Diphtheria, a severe respiratory infection, was a major killer of children until the early years of the 20th century. Although diphtheria is now largely controlled globally thanks to vaccination, it is still endemic in some world regions and large epidemics can occur where vaccination coverage is insufficient. The pathological effects caused by its main virulence factor, diphtheria toxin, can be diminished by passive transfer of antibodies. Equine diphtheria antitoxin (eDAT), the cornerstone of treatment against toxinic complications of diphtheria, was invented more than 130 years ago, in 1890, and is still in use today. A method to concentrate anti-diphtheria antibodies from hyperimmune equine serum was described in the first issue of Memórias do Instituto Oswaldo Cruz in 1909. On this historic occasion, we present recent knowledge on taxonomic, epidemiological and clinical aspects of diphtheria agents that produce diphtheria toxin, and provide a historical perspective on eDAT treatment, adverse effects, threats on its scarce international supply, and current avenues for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Grandière Pérez
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Le Mans, Le Mans, France
- Université d’Angers, Angers, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Institut Pasteur, French National Reference Centre for Corynebacteria of the Diphtheriae complex, Paris, France
| |
Collapse
|
3
|
Wadop YN, Vasquez EL, Mathews JJ, Muhammad JAS, Mavarez RP, Satizabal C, Gonzales MM, Tanner J, Maestre G, Fonteh AN, Seshadri S, Kautz TF, Fongang B. Differential Patterns of Gut and Oral Microbiomes in Hispanic Individuals with Cognitive Impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605455. [PMID: 39211240 PMCID: PMC11361189 DOI: 10.1101/2024.07.27.605455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease and related dementias (ADRD) have been associated with alterations in both oral and gut microbiomes. While extensive research has focused on the role of gut dysbiosis in ADRD, the contribution of the oral microbiome remains relatively understudied. Furthermore, the potential synergistic interactions between oral and gut microbiomes in ADRD pathology are largely unexplored. This study aims to evaluate distinct patterns and potential synergistic effects of oral and gut microbiomes in a cohort of predominantly Hispanic individuals with cognitive impairment (CI) and without cognitive impairment (NC). We conducted 16S rRNA gene sequencing on stool and saliva samples from 32 participants (17 CI, 15 NC; 62.5% female, mean age = 70.4 ± 6.2 years) recruited in San Antonio, Texas, USA. Correlation analysis through MaAslin2 assessed the relationship between participants' clinical measurements (e.g., fasting glucose and blood cholesterol) and their gut and saliva microbial contents. Differential abundance analysis evaluated taxa with significant differences between CI and NC groups, and alpha and beta diversity metrics assessed within-sample and group compositional differences. Our analyses revealed no significant differences between NC and CI groups in fasting glucose or blood cholesterol levels. However, a clear association was observed between gut microbiome composition and levels of fasting glucose and blood cholesterol. While alpha and beta diversity metrics showed no significant differences between CI and NC groups, differential abundance analysis revealed an increased presence of oral genera such as Dialister , Fretibacterium , and Mycoplasma in CI participants. Conversely, CI individuals exhibited a decreased abundance of gut genera, including Shuttleworthia , Holdemania , and Subdoligranulum , which are known for their anti-inflammatory properties. No evidence was found for synergistic contributions between oral and gut microbiomes in the context of ADRD. Our findings suggest that similar to the gut microbiome, the oral microbiome undergoes significant modifications as individuals transition from NC to CI. Notably, the identified oral microbes have been previously associated with periodontal diseases and gingivitis. These results underscore the necessity for further investigations with larger sample sizes to validate our findings and elucidate the complex interplay between oral and gut microbiomes in ADRD pathogenesis.
Collapse
|
4
|
Ramos JN, Araújo MRB, Baio PVP, Sant'Anna LO, Veras JFC, Vieira ÉMD, Sousa MÂB, Camargo CH, Sacchi CT, Campos KR, Santos MBN, Bokermann S, Alvim LB, Sanches Dos Santos L, de Mattos-Guaraldi AL, Vieira VV. Molecular characterization and phylogenetic analysis of the first Corynebacterium rouxii strains isolated in Brazil: a recent member of Corynebacterium diphtheriae complex. BMC Genom Data 2023; 24:65. [PMID: 37940844 PMCID: PMC10634135 DOI: 10.1186/s12863-023-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Corynebacterium diphtheriae complex was formed by the species C. diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis in the recent past. In addition to C. diphtheriae, C. ulcerans and C. pseudotuberculosis species can carry the tox gene, which encodes diphtheria toxin. Currently, three new species have been included in the complex: Corynebacterium rouxii, Corynebacterium silvaticum, and Corynebacterium belfantii. C. rouxii is derived from the ancient Belfanti biovar of C. diptheriae. We provide the complete genome sequences of two non-toxigenic strains C. rouxii isolated from a cat with a purulent infection in Brazil. The taxonomic status and sequence type, as well as the presence of resistance and virulence genes, and CRISPR-Cas system were additionally defined. RESULTS The genomes showed an average size of 2.4 Mb and 53.2% GC content, similar to the type strain of the species deposited in Genbank/NCBI. Strains were identified as C. rouxii by the rMLST database, with 95% identity. ANI and DDH in silico were consistent with values above the proposed cut-off points for species limit, corroborating the identification of the strains as C. rouxii. MLST analyses revealed a new ST, which differs from ST-537 only by the fusA allele. No horizontal transfer resistance gene was predicted in both genomes and no mutation was detected in the constitutive genes gyrA and rpoB. Some mutations were found in the seven penicillin-binding proteins (PBPs) detected. The tox gene was not found, but its regulatory gene dtxR was present. Among the predicted virulence genes are those involved in iron uptake and adherence, in addition to the DIP0733 protein involved in epithelial cell adhesion and invasion. The CRISPR-Cas type I-E system was detected in both genomes, with 16 spacer sequences each. Of them, half are unknown according to the databases used, indicating that there is an unexplored reservoir of corynebacteriophages and plasmids. CONCLUSIONS This is the first genomic study of C. rouxii reported in Brazil. Here we performed taxonomic analysis and the prediction of virulence factors. The genomic analyses performed in this study may help to understand the potential pathogenesis of non-toxigenic C. rouxii strains.
Collapse
Affiliation(s)
- Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Lincoln Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - João Flávio Carneiro Veras
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED) - Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4365. Pavilhão Cardoso Fontes, 1°. andar, sala 17. Manguinhos, Rio de Janeiro, CEP:21040-900, Brazil
| | - Érica Miranda Damásio Vieira
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED) - Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4365. Pavilhão Cardoso Fontes, 1°. andar, sala 17. Manguinhos, Rio de Janeiro, CEP:21040-900, Brazil
| | | | - Carlos Henrique Camargo
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Cláudio Tavares Sacchi
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | | | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Luige Biciati Alvim
- Operational Technical Nucleus, Research and Development, Hermes Pardini Institute, Belo Horizonte, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luiza de Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Verônica Viana Vieira
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED) - Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4365. Pavilhão Cardoso Fontes, 1°. andar, sala 17. Manguinhos, Rio de Janeiro, CEP:21040-900, Brazil.
| |
Collapse
|
5
|
Crestani C, Arcari G, Landier A, Passet V, Garnier D, Brémont S, Armatys N, Carmi-Leroy A, Toubiana J, Badell E, Brisse S. Corynebacterium ramonii sp. nov., a novel toxigenic member of the Corynebacterium diphtheriae species complex. Res Microbiol 2023; 174:104113. [PMID: 37572824 DOI: 10.1016/j.resmic.2023.104113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The Corynebacterium diphtheriae species complex comprises seven bacterial species, including Corynebacterium ulcerans, a zoonotic pathogen from multiple animal species. In this work, we characterise phenotypically and genotypically isolates belonging to two C. ulcerans lineages. Results from phylogenetic analyses, in silico DNA-DNA hybridization (DDH) and MALDI-TOF spectra differentiate lineage 2 from C. ulcerans lineage 1, which, together with their distinct transmission dynamics (probable human-to-human vs animal-to-human), indicates that lineage 2 is a separate Corynebacterium species, which we propose to name Corynebacterium ramonii. This species is of particular medical interest considering that its human-to-human transmission is likely, and that some C. ramonii isolates carry the diphtheria toxin gene.
Collapse
Affiliation(s)
- Chiara Crestani
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.
| | - Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Virginie Passet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Dorian Garnier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Sylvie Brémont
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France; Institut Pasteur, French National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Nathalie Armatys
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Annick Carmi-Leroy
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France; Institut Pasteur, French National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France; Institut Pasteur, French National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France; Necker-Enfants Malades University Hospital, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France; Institut Pasteur, French National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France; Institut Pasteur, French National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France.
| |
Collapse
|
6
|
Kimura H, Hayashi Y, Kitagawa M, Yoshizaki M, Saito K, Harada K, Okayama K, Miura Y, Kimura R, Shirai T, Fujita K, Machida S, Ito K, Kurosawa I. Pathogen Profiles in Outpatients with Non-COVID-19 during the 7th Prevalent Period of COVID-19 in Gunma, Japan. Microorganisms 2023; 11:2142. [PMID: 37763986 PMCID: PMC10536078 DOI: 10.3390/microorganisms11092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
The identification of pathogens associated with respiratory symptoms other than the novel coronavirus disease 2019 (COVID-19) can be challenging. However, the diagnosis of pathogens is crucial for assessing the clinical outcome of patients. We comprehensively profiled pathogens causing non-COVID-19 respiratory symptoms during the 7th prevalent period in Gunma, Japan, using deep sequencing combined with a next-generation sequencer (NGS) and advanced bioinformatics technologies. The study included nasopharyngeal swabs from 40 patients who tested negative for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) using immuno-chromatography and/or quantitative reverse transcription polymerase chain reaction (qRT-PCR) methods. Comprehensive pathogen sequencing was conducted through deep sequencing using NGS. Additionally, short reads obtained from NGS were analyzed for comprehensive pathogen estimation using MePIC (Metagenomic Pathogen Identification Pipeline for Clinical Specimens) and/or VirusTap. The results revealed the presence of various pathogens, including respiratory viruses and bacteria, in the present subjects. Notably, human adenovirus (HAdV) was the most frequently detected virus in 16 of the 40 cases (40.0%), followed by coryneforms, which were the most frequently detected bacteria in 21 of the 40 cases (52.5%). Seasonal human coronaviruses (NL63 type, 229E type, HKU1 type, and OC43 type), human bocaviruses, and human herpesviruses (human herpesvirus types 1-7) were not detected. Moreover, multiple pathogens were detected in 50% of the subjects. These results suggest that various respiratory pathogens may be associated with non-COVID-19 patients during the 7th prevalent period in Gunma Prefecture, Japan. Consequently, for an accurate diagnosis of pathogens causing respiratory infections, detailed pathogen analyses may be necessary. Furthermore, it is possible that various pathogens, excluding SARS-CoV-2, may be linked to fever and/or respiratory infections even during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan; (Y.H.); (K.H.); (K.O.); (Y.M.); (K.F.)
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi 377-0008, Gunma, Japan; (R.K.); (T.S.); (K.I.)
| | - Yuriko Hayashi
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan; (Y.H.); (K.H.); (K.O.); (Y.M.); (K.F.)
| | - Masanari Kitagawa
- Project Department, Takara Bio Inc., Kusatsu-shi 525-0058, Shiga, Japan; (M.K.); (M.Y.); (K.S.)
| | - Miwa Yoshizaki
- Project Department, Takara Bio Inc., Kusatsu-shi 525-0058, Shiga, Japan; (M.K.); (M.Y.); (K.S.)
| | - Kensuke Saito
- Project Department, Takara Bio Inc., Kusatsu-shi 525-0058, Shiga, Japan; (M.K.); (M.Y.); (K.S.)
| | - Kazuhiko Harada
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan; (Y.H.); (K.H.); (K.O.); (Y.M.); (K.F.)
- Kurosawa Hospital, Takasaki-shi 370-1203, Gunma, Japan; (S.M.); (I.K.)
| | - Kaori Okayama
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan; (Y.H.); (K.H.); (K.O.); (Y.M.); (K.F.)
| | - Yusuke Miura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan; (Y.H.); (K.H.); (K.O.); (Y.M.); (K.F.)
| | - Ryusuke Kimura
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi 377-0008, Gunma, Japan; (R.K.); (T.S.); (K.I.)
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8514, Gunma, Japan
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi 377-0008, Gunma, Japan; (R.K.); (T.S.); (K.I.)
| | - Kiyotaka Fujita
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan; (Y.H.); (K.H.); (K.O.); (Y.M.); (K.F.)
| | - Suguru Machida
- Kurosawa Hospital, Takasaki-shi 370-1203, Gunma, Japan; (S.M.); (I.K.)
| | - Kazuto Ito
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi 377-0008, Gunma, Japan; (R.K.); (T.S.); (K.I.)
- Kurosawa Hospital, Takasaki-shi 370-1203, Gunma, Japan; (S.M.); (I.K.)
| | - Isao Kurosawa
- Kurosawa Hospital, Takasaki-shi 370-1203, Gunma, Japan; (S.M.); (I.K.)
| |
Collapse
|
7
|
Sting R, Pölzelbauer C, Eisenberg T, Bonke R, Blazey B, Peters M, Riße K, Sing A, Berger A, Dangel A, Rau J. Corynebacterium ulcerans Infections in Eurasian Beavers ( Castor fiber). Pathogens 2023; 12:979. [PMID: 37623939 PMCID: PMC10459376 DOI: 10.3390/pathogens12080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
The Eurasian beaver (Castor fiber) has been reintroduced successfully in Germany since the 1990s. Since wildlife is an important source of zoonotic infectious diseases, monitoring of invasive and reintroduced species is crucial with respect to the One Health approach. Three Eurasian beavers were found dead in the German federal states of Bavaria, North Rhine-Westphalia and Baden-Wuerttemberg in 2015, 2021 and 2022, respectively. During post-mortem examinations, Corynebacterium (C.) ulcerans could be isolated from the abscesses of two beavers and from the lungs of one of the animals. Identification of the bacterial isolates at the species level was carried out by spectroscopic analysis using MALDI-TOF MS, FT-IR and biochemical profiles and were verified by molecular analysis based on 16-23S internal transcribed spacer (ITS) region sequencing. Molecular characterization of the C. ulcerans isolates using whole-genome sequencing (WGS) revealed a genome size of about 2.5 Mbp and a GC content of 53.4%. Multilocus sequence typing (MLST) analysis classified all three isolates as the sequence type ST-332. A minimum spanning tree (MST) based on cgMLST allelic profiles, including 1211 core genes of the sequenced C. ulcerans isolates, showed that the beaver-derived isolates clearly group on the branch of C. ulcerans with the closest relationship to each other, in close similarity to an isolate from a dog. Antibiotic susceptibility testing revealed resistance to clindamycin and, in one strain, to erythromycin according to EUCAST, while all isolates were susceptible to the other antimicrobials tested.
Collapse
Affiliation(s)
- Reinhard Sting
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
- Consiliary Laboratory for Corynebacterium pseudotuberculosis (DVG), 70736 Fellbach, Germany
| | - Catharina Pölzelbauer
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
| | - Tobias Eisenberg
- Hessian State Laboratory (LHL), 35392 Giessen, Germany; (T.E.); (R.B.); (K.R.)
| | - Rebecca Bonke
- Hessian State Laboratory (LHL), 35392 Giessen, Germany; (T.E.); (R.B.); (K.R.)
| | - Birgit Blazey
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
| | - Martin Peters
- Chemical and Veterinary Investigation Office Westfalen, 59821 Arnsberg, Germany;
| | - Karin Riße
- Hessian State Laboratory (LHL), 35392 Giessen, Germany; (T.E.); (R.B.); (K.R.)
| | - Andreas Sing
- Germany National Consiliary Laboratory for Diphtheria, 85764 Oberschleißheim, Germany; (A.S.); (A.B.)
| | - Anja Berger
- Germany National Consiliary Laboratory for Diphtheria, 85764 Oberschleißheim, Germany; (A.S.); (A.B.)
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany;
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
| |
Collapse
|
8
|
Museux K, Arcari G, Rodrigo G, Hennart M, Badell E, Toubiana J, Brisse S. Corynebacteria of the diphtheriae Species Complex in Companion Animals: Clinical and Microbiological Characterization of 64 Cases from France. Microbiol Spectr 2023; 11:e0000623. [PMID: 37022195 PMCID: PMC10269909 DOI: 10.1128/spectrum.00006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Corynebacteria of the diphtheriae species complex (CdSC) can cause diphtheria in humans and have been reported from companion animals. We aimed to describe animal infection cases caused by CdSC isolates. A total of 18,308 animals (dogs, cats, horses, and small mammals) with rhinitis, dermatitis, nonhealing wounds, and otitis were sampled in metropolitan France (August 2019 to August 2021). Data on symptoms, age, breed, and the administrative region of origin were collected. Cultured bacteria were analyzed for tox gene presence, production of the diphtheria toxin, and antimicrobial susceptibility and were genotyped by multilocus sequence typing. Corynebacterium ulcerans was identified in 51 cases, 24 of which were toxigenic. Rhinitis was the most frequent presentation (18/51). Eleven cases (6 cats, 4 dogs, and 1 rat) were monoinfections. Large-breed dogs, especially German shepherds (9 of 28 dogs; P < 0.00001), were overrepresented. C. ulcerans isolates were susceptible to all tested antibiotics. tox-positive C. diphtheriae was identified in 2 horses. Last, 11 infections cases (9 dogs and 2 cats; mostly chronic otitis and 2 sores) had tox-negative C. rouxii, a recently defined species. C. rouxii and C. diphtheriae isolates were susceptible to most antibiotics tested, and almost all of these infections were polymicrobial. Monoinfections with C. ulcerans point toward a primary pathogenic potential to animals. C. ulcerans represents an important zoonotic risk, and C. rouxii may represent a novel zoonotic agent. This case series provides novel clinical and microbiological data on CdSC infections and underlines the need for management of animals and their human contacts. IMPORTANCE We report on the occurrence and clinical and microbiological characteristics of infections caused by members of the CdSC in companion animals. This is the first study based on the systematic analysis of a very large animal cohort (18,308 samples), which provides data on the frequency of CdSC isolates in various types of clinical samples from animals. Awareness of this zoonotic bacterial group remains low among veterinarians and veterinary laboratories, among which it is often considered commensal in animals. We suggest that in the case of CdSC detection in animals, the veterinary laboratories should be encouraged to send the samples to a reference laboratory for analysis of the presence of the tox gene. This work is relevant to the development of guidelines in the case of CdSC infections in animals and underlines their public health relevance given the zoonotic transmission risk.
Collapse
Affiliation(s)
| | - Gabriele Arcari
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | | | - Melanie Hennart
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Collège doctoral, Sorbonne Université, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Institut Pasteur, National Reference Center for Corynebacteria of the diphtheriae complex, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Institut Pasteur, National Reference Center for Corynebacteria of the diphtheriae complex, Paris, France
- Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université de Paris, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Institut Pasteur, National Reference Center for Corynebacteria of the diphtheriae complex, Paris, France
| |
Collapse
|
9
|
Raeisi H, Noori M, Azimirad M, Mohebbi SR, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives. Gut Pathog 2023; 15:21. [PMID: 37161478 PMCID: PMC10169144 DOI: 10.1186/s13099-023-00550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Melnikov VG, Berger A, Dangel A, Sing A. Lateral flow immunoassay-based laboratory algorithm for rapid diagnosis of diphtheria. OPEN RESEARCH EUROPE 2023; 3:62. [PMID: 37645492 PMCID: PMC10445807 DOI: 10.12688/openreseurope.15038.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 08/31/2023]
Abstract
Background: In industrialised countries diphtheria is a rare but still life-threatening disease with a recent increase in cases due to migration and zoonotic aspects. Due to the rarity of the disease, laboratory diagnosis of diphtheria is often carried out in central reference laboratories and involves the use of sophisticated equipment and specially trained personnel. The result of the diphtheria agent detection can usually be obtained after 5-6 days or more. Authors suggest a Lateral Flow Immunoassay (LFIA)-based laboratory algorithm for the diagnosis of diphtheria, which may render less time in issuing a result and could promote the testing be performed in laboratories closer to the patient. Methods: LFIA for diphtheria toxin (DT) detection was designed using a pair of monoclonal antibodies to receptor-binding subunit B of the DT, and validated with 322 corynebacterial cultures as well as 360 simulated diphtheria specimens. Simulated diphtheria specimens were obtained by spiking of human pharyngeal samples with test strains of corynebacteria. The simulated specimens were plated on selective tellurite agar and after 18-24 hours of incubation, grey/black colonies characteristic of the diphtheria corynebacteria were examined for the DT using LFIA. Results: The diagnostic sensitivity of the LFIA for DT detection on bacterial cultures was 99.35%, and the specificity was 100%. Also, the LFIA was positive for all pharyngeal samples with toxigenic strains and negative for all samples with non-toxigenic strains. For setting LFIA, a 6-hour culture on Elek broth was used; thus, under routine conditions, the causative agent of diphtheria could be detected within two working days after plating of the clinical specimen on the tellurite medium of primary inoculation. Conclusions: The availability of such a simple and reliable methodology will speed up and increase the accuracy of diphtheria diagnosis globally.
Collapse
Affiliation(s)
- Vyacheslav G. Melnikov
- National Conciliary Laboratory on Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, 85764, Germany
| | - Anja Berger
- Public Health Microbiology, National Conciliary Laboratory on Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, 85764, Germany
| | - Alexandra Dangel
- Public Health Microbiology, National Conciliary Laboratory on Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, 85764, Germany
| | - Andreas Sing
- Public Health Microbiology, National Conciliary Laboratory on Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, 85764, Germany
| |
Collapse
|
11
|
Viana MVC, Galdino JH, Profeta R, Oliveira M, Tavares L, de Castro Soares S, Carneiro P, Wattam AR, Azevedo V. Analysis of Corynebacterium silvaticum genomes from Portugal reveals a single cluster and a clade suggested to produce diphtheria toxin. PeerJ 2023; 11:e14895. [PMID: 36919166 PMCID: PMC10008321 DOI: 10.7717/peerj.14895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/24/2023] [Indexed: 03/11/2023] Open
Abstract
Background Corynebacterium silvaticum is a pathogenic, gram-positive bacterial species that causes caseous lymphadenitis in wild boars, domestic pigs and roe deer in Western Europe. It can affect animal production and cause zoonosis. Genome analysis has suggested that one strain from Portugal and one from Austria could probably produce the diphtheria toxin (DT), which inhibits protein synthesis and can cause death. Methods To further investigate the species genetic diversity and probable production of DT by Portuguese strains, eight isolates from this country were sequenced and compared to 38 public ones. Results Strains from Portugal are monophyletic, nearly identical, form a unique cluster and have 27 out of 36 known Corynebacterium virulence or niche factors. All of them lack a frameshift in the tox gene and were suggested to produce DT. A phylogenetic analysis shows that the species has diverged into two clades. Clade 1 is composed of strains that were suggested to have the ability to produce DT, represented by the monophyletic strains from Portugal and strain 05-13 from Austria. Clade 2 is composed of strains unable to produce DT due to a frameshifted tox gene. The second clade is represented by strains from Austria, Germany and Switzerland. Ten genome clusters were detected, in which strains from Germany are the most diverse. Strains from Portugal belong to an exclusive cluster. The pangenome has 2,961 proteins and is nearly closed (α = 0.968). Exclusive genes shared by clusters 1 and 2, and Portuguese strains are probably not related to disease manifestation as they share the same host but could play a role in their extra-host environmental adaptation. These results show the potential of the species to cause zoonosis, possibly diphtheria. The identified clusters, exclusively shaded genes, and exclusive STs identified in Portugal could be applied in the identification and epidemiology of the species.
Collapse
Affiliation(s)
- Marcus Vinicius Canario Viana
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Henrique Galdino
- Department of Biological Sciences, State University of Southwest of Bahia, Jequié, Bahia, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Luís Tavares
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Siomar de Castro Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Paulo Carneiro
- Department of Biological Sciences, State University of Southwest of Bahia, Jequié, Bahia, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, United States of America
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Prygiel M, Polak M, Mosiej E, Wdowiak K, Formińska K, Zasada AA. New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens 2022; 11:1264. [PMID: 36365015 PMCID: PMC9693595 DOI: 10.3390/pathogens11111264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Only three Corynebacterium species are known to produce a lethal exotoxin called diphtheria toxin. These are C. diphtheriae, C. ulcerans and C. pseudotuberculosis. The diphtheria toxin gene (tox) is carried in a family of closely related corynebacteriophages and therefore the toxin can be produced only through lysogenisation, in which the corynephage encoding tox is stably inserted into the chromosome. However, 'nontoxigenic tox gene-bearing' (NTTB) strains, which are genotypically tox-positive but do not express the protein, have been described. The emergence of NTTB strains was first observed during the 1990s diphtheria epidemic in Eastern Europe and nowadays such isolates have been detected in many countries in the world. Recently, novel species of Corynebacterium genus have been described which might have the potential of producing the diphtheria toxin due to the possession of the diphtheria toxin gene but it has not produced toxin in laboratory tests. The circulation of NTTB strains could be related to the increased risk for diphtheria disease arising from the risk of re-emerging toxin expression. The article presents the mechanism of diphtheria toxin expression and action, recently described novel species of NTTB corynebacteria as well as the taxonomic changes within the C. diphtheriae group.
Collapse
|
13
|
Guglielmini J, Hennart M, Badell E, Toubiana J, Criscuolo A, Brisse S. Genomic Epidemiology and Strain Taxonomy of Corynebacterium diphtheriae. J Clin Microbiol 2021; 59:e0158121. [PMID: 34524891 PMCID: PMC8601238 DOI: 10.1128/jcm.01581-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Corynebacterium diphtheriae is highly transmissible and can cause large diphtheria outbreaks where vaccination coverage is insufficient. Sporadic cases or small clusters are observed in high-vaccination settings. The phylogeography and short timescale evolution of C. diphtheriae are not well understood, in part due to a lack of harmonized analytical approaches of genomic surveillance and strain tracking. We combined 1,305 genes with highly reproducible allele calls into a core genome multilocus sequence typing (cgMLST) scheme. We analyzed cgMLST gene diversity among 602 isolates from sporadic clinical cases, small clusters, or large outbreaks. We defined sublineages based on the phylogenetic structure within C. diphtheriae and strains based on the highest number of cgMLST mismatches within documented outbreaks. We performed time-scaled phylogenetic analyses of major sublineages. The cgMLST scheme showed high allele call rate in C. diphtheriae and the closely related species C. belfantii and C. rouxii. We demonstrate its utility to delineate epidemiological case clusters and outbreaks using a 25 mismatches threshold and reveal a number of cryptic transmission chains, most of which are geographically restricted to one or a few adjacent countries. Subcultures of the vaccine strain PW8 differed by up to 20 cgMLST mismatches. Phylogenetic analyses revealed a short-timescale evolutionary gain or loss of the diphtheria toxin and biovar-associated genes. We devised a genomic taxonomy of strains and deeper sublineages (defined using a 500-cgMLST-mismatch threshold), currently comprising 151 sublineages, only a few of which are geographically widespread based on current sampling. The cgMLST genotyping tool and nomenclature was made publicly accessible (https://bigsdb.pasteur.fr/diphtheria). Standardized genome-scale strain genotyping will help tracing transmission and geographic spread of C. diphtheriae. The unified genomic taxonomy of C. diphtheriae strains provides a common language for studies of ecology, evolution, and virulence heterogeneity among C. diphtheriae sublineages.
Collapse
Affiliation(s)
- Julien Guglielmini
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Melanie Hennart
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
- Université de Paris, Service de Pédiatrie Générale et Maladies Infectieuses, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| |
Collapse
|
14
|
Molecular and Epidemiological Characterization of Toxigenic and Nontoxigenic Corynebacterium diphtheriae, Corynebacterium belfantii, Corynebacterium rouxii, and Corynebacterium ulcerans Isolates Identified in Spain from 2014 to 2019. J Clin Microbiol 2021; 59:JCM.02410-20. [PMID: 33298610 DOI: 10.1128/jcm.02410-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/21/2020] [Indexed: 11/20/2022] Open
Abstract
This study examines the microbiological and epidemiological characteristics of toxigenic and nontoxigenic Corynebacterium isolates submitted to the national reference laboratory in Spain, between 2014 and 2019, in order to describe the current situation and improve our knowledge regarding these emerging pathogens. Epidemiological information was extracted from the Spanish Surveillance System. Microbiological and molecular characterization was carried out using phenotypic methods, multilocus sequence typing (MLST), whole-genome sequencing (WGS), and core genome MLST (cgMLST). Thirty-nine isolates were analyzed. Twenty-one isolates were identified as Corynebacterium diphtheriae (6 toxigenic), 14 as C. belfantii, 4 as C. ulcerans (3 toxigenic), and 1 as C. rouxii One C. diphtheriae isolate was identified as nontoxigenic tox gene bearing (NTTB). Ages of patients ranged from 1 to 89 years, with 10% (3/30) of nontoxigenic and 22% (2/9) of toxigenic isolates collected from children less than 15 years. Twenty-five of the patients were males (17/30 in nontoxigenic; 8/9 in toxigenic). MLST identified 28 sequence types (STs), of which 7 were described for the first time in Spain. WGS analysis showed that 10 isolates, including 3 toxigenic isolates, harbored a variety of antibiotic resistance genes in addition to the high prevalence of penicillin resistance phenotypically demonstrated. Phylogenetic analysis revealed one cluster of isolates from family members. Risk information was available for toxigenic isolates (9/39); 3 patients reported recent travels to countries of endemicity and 3 had contact with cats/dogs. One unvaccinated child with respiratory diphtheria had a fatal outcome. Including nontoxigenic Corynebacterium infections in disease surveillance and using WGS could further improve current surveillance.
Collapse
|
15
|
Assessing the Genetic Diversity of Austrian Corynebacterium diphtheriae Clinical Isolates, 2011 to 2019. J Clin Microbiol 2021; 59:JCM.02529-20. [PMID: 33268541 PMCID: PMC8106727 DOI: 10.1128/jcm.02529-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 02/01/2023] Open
Abstract
Diphtheria is a vaccine-preventable disease with a high potential for reemergence. One of its causative agents is Corynebacterium diphtheriae, with some strains producing diphtheria toxin. From 2011 to 2019, 57 clinical C. diphtheriae strains were isolated in Austria, either from the respiratory tract or from skin infections. The aim of this study was to investigate the genetic diversity of these C. diphtheriae isolates using whole-genome sequencing. Isolates were characterized by genome-wide comparisons using single nucleotide polymorphism analysis or core genome multilocus sequence typing and by searching sequence data for antimicrobial resistance genes and genes involved in diphtheria toxin production. The genetic diversity among the isolates was high, with no clear distribution over time or place. Corynebacterium belfantii isolates were separated from other strains and were strongly associated with respiratory infections (odds ratio [OR] = 57). Two clusters, limited in time and space, were identified. Almost 40% of strains carried resistance genes against tetracycline or sulfonamides, mostly from skin infections. Microbiological tests showed that 55% of isolates were resistant to penicillin but did not carry genes conferring β-lactam resistance. A diphtheria toxin gene with no nonsynonymous mutation was found in three isolates only. This study showed that sequencing can provide valuable information complementing routine microbiological and epidemiological investigations. It allowed us to identify unknown clusters, evaluate antimicrobial resistance more broadly, and support toxigenicity results obtained by PCR. For these reasons, C. diphtheriae surveillance could strongly benefit from the routine implementation of whole-genome sequencing.
Collapse
|
16
|
Viana MVC, Profeta R, da Silva AL, Hurtado R, Cerqueira JC, Ribeiro BFS, Almeida MO, Morais-Rodrigues F, Soares SDC, Oliveira M, Tavares L, Figueiredo H, Wattam AR, Barh D, Ghosh P, Silva A, Azevedo V. Taxonomic classification of strain PO100/5 shows a broader geographic distribution and genetic markers of the recently described Corynebacterium silvaticum. PLoS One 2020; 15:e0244210. [PMID: 33347470 PMCID: PMC7751848 DOI: 10.1371/journal.pone.0244210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
The bacterial strain PO100/5 was isolated from a skin abscess taken from a pig (Sus scrofa domesticus) in the Alentejo region of southern Portugal. It was identified as Corynebacterium pseudotuberculosis using biochemical tests, multiplex PCR and Pulsed Field Gel Electrophoresis. After genome sequencing and rpoB phylogeny, the strain was classified as C. ulcerans. To better understand the taxonomy of this strain and improve identification methods, we compared strain PO100/5 to other publicly available genomes from C. diphtheriae group. Taxonomic analysis reclassified it and three others strains as the recently described C. silvaticum, which have been isolated from wild boar and roe deer in Germany and Austria. The results showed that PO100/5 is the first sequenced genome of a C. silvaticum strain from livestock and a different geographical region, has the unique sequence type ST709, and could be could produce the diphtheriae toxin, along with strain 05–13. Genomic analysis of PO100/5 showed four prophages, and eight conserved genomic islands in comparison to C. ulcerans. Pangenome analysis of 38 C. silvaticum and 76 C. ulcerans genomes suggested that C. silvaticum is a genetically homogeneous species, with 73.6% of its genes conserved and a pangenome near to be closed (α > 0.952). There are 172 genes that are unique to C. silvaticum in comparison to C. ulcerans. Most of these conserved genes are related to nutrient uptake and metabolism, prophages or immunity against them, and could be genetic markers for species identification. Strains PO100/5 (livestock) and KL0182T (wild boar) were predicted to be potential human pathogens. This information may be useful for identification and surveillance of this pathogen.
Collapse
Affiliation(s)
- Marcus Vinicius Canário Viana
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Lima da Silva
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel Hurtado
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Janaína Canário Cerqueira
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Ferreira Sampaio Ribeiro
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelle Oliveira Almeida
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francielly Morais-Rodrigues
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siomar de Castro Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Luís Tavares
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Henrique Figueiredo
- National Reference Laboratory of Aquatic Animal Disease, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute, University of Virginia, Charlottesville, Virginia, United States of America
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Artur Silva
- Department of Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
17
|
Dangel A, Berger A, Rau J, Eisenberg T, Kämpfer P, Margos G, Contzen M, Busse HJ, Konrad R, Peters M, Sting R, Sing A. Corynebacterium silvaticum sp. nov., a unique group of NTTB corynebacteria in wild boar and roe deer. Int J Syst Evol Microbiol 2020; 70:3614-3624. [PMID: 32368999 DOI: 10.1099/ijsem.0.004195] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A total of 34 Corynebacterium sp. strains were isolated from caseous lymph node abscesses of wild boar and roe deer in different regions of Germany. They showed slow growth on Columbia sheep blood agar and sparse growth on Hoyle's tellurite agar. Cellular fatty acid analysis allocated them in the C. diphtheriae group of genus Corynebacterium. MALDI-TOF MS using specific database extensions and rpoB sequencing resulted in classification as C. ulcerans. Their quinone system is similar to C. ulcerans, with major menaquinone MK-8(H2). Their complex polar lipid profile includes major lipids phosphatidylinositol, phosphatidylinositol-mannoside, diphosphatidylglycerol, but also unidentified glycolipids, distinguishing them clearly from C. ulcerans. They ferment glucose, ribose and maltose (like C. ulcerans), but do not utilise d-xylose, mannitol, lactose, sucrose and glycogen (like C. pseudotuberculosis). They showed activity of catalase, urease and phospholipase D, but variable results for alkaline phosphatase and alpha-glucosidase. All were non-toxigenic, tox gene bearing and susceptible to clindamycin, penicillin and erythromycin. In 16SrRNA gene and RpoB protein phylogenies the strains formed distinct brancheswith C. ulcerans as nearest relative.Whole genome sequencing revealed the unique sequence type 578, a distinctbranch in pangenomic core genome MLST, average nucleotide identities <91%, enhancedgenome sizes (2.55 Mbp) and G/C content (54.4 mol%) compared to related species.These results suggest that the strains represent a novel species, for which wepropose the name Corynebactriumsilvaticum sp. nov., based on their first isolation from forest-dwellinggame animals. The type strain isKL0182T (= CVUAS 4292T = DSM 109166T = LMG 31313T= CIP 111 672T).
Collapse
Affiliation(s)
- Alexandra Dangel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Anja Berger
- Germany National Consiliary Laboratory for Diphtheria, Oberschleißheim, Germany
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Jörg Rau
- Chemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS), Fellbach, Germany
| | | | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Matthias Contzen
- Chemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS), Fellbach, Germany
| | - Hans-Jürgen Busse
- Institute of Microbiology, University of Veterinary Medicine Vienna, Austria
| | - Regina Konrad
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Martin Peters
- Chemisches und Veterinäruntersuchungsamt Westfalen, Arnsberg, Germany
| | - Reinhard Sting
- German Consiliary Laboratory for Corynebacterium pseudotuberculosis, Fellbach, Germany
- Chemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS), Fellbach, Germany
| | - Andreas Sing
- Germany National Consiliary Laboratory for Diphtheria, Oberschleißheim, Germany
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| |
Collapse
|
18
|
Coimbra NDR, Goes-Neto A, Azevedo V, Ouangraoua A. Reconstructing the Phylogeny of Corynebacteriales while Accounting for Horizontal Gene Transfer. Genome Biol Evol 2020; 12:381-395. [PMID: 32186700 PMCID: PMC7186787 DOI: 10.1093/gbe/evaa058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Horizontal gene transfer is a common mechanism in Bacteria that has contributed to the genomic content of existing organisms. Traditional methods for estimating bacterial phylogeny, however, assume only vertical inheritance in the evolution of homologous genes, which may result in errors in the estimated phylogenies. We present a new method for estimating bacterial phylogeny that accounts for the presence of genes acquired by horizontal gene transfer between genomes. The method identifies and corrects putative transferred genes in gene families, before applying a gene tree-based summary method to estimate bacterial species trees. The method was applied to estimate the phylogeny of the order Corynebacteriales, which is the largest clade in the phylum Actinobacteria. We report a collection of 14 phylogenetic trees on 360 Corynebacteriales genomes. All estimated trees display each genus as a monophyletic clade. The trees also display several relationships proposed by past studies, as well as new relevant relationships between and within the main genera of Corynebacteriales: Corynebacterium, Mycobacterium, Nocardia, Rhodococcus, and Gordonia. An implementation of the method in Python is available on GitHub at https://github.com/UdeS-CoBIUS/EXECT (last accessed April 2, 2020).
Collapse
Affiliation(s)
- Nilson Da Rocha Coimbra
- Department of Computer Science, University of Sherbrooke, Quebec, Canada
- Programa Interunidades de Pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristoteles Goes-Neto
- Programa Interunidades de Pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Programa Interunidades de Pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aïda Ouangraoua
- Department of Computer Science, University of Sherbrooke, Quebec, Canada
| |
Collapse
|
19
|
Sharma NC, Efstratiou A, Mokrousov I, Mutreja A, Das B, Ramamurthy T. Diphtheria. Nat Rev Dis Primers 2019; 5:81. [PMID: 31804499 DOI: 10.1038/s41572-019-0131-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 01/09/2023]
Abstract
Diphtheria is a potentially fatal infection mostly caused by toxigenic Corynebacterium diphtheriae strains and occasionally by toxigenic C. ulcerans and C. pseudotuberculosis strains. Diphtheria is generally an acute respiratory infection, characterized by the formation of a pseudomembrane in the throat, but cutaneous infections are possible. Systemic effects, such as myocarditis and neuropathy, which are associated with increased fatality risk, are due to diphtheria toxin, an exotoxin produced by the pathogen that inhibits protein synthesis and causes cell death. Clinical diagnosis is confirmed by the isolation and identification of the causative Corynebacterium spp., usually by bacterial culture followed by enzymatic and toxin detection tests. Diphtheria can be treated with the timely administration of diphtheria antitoxin and antimicrobial therapy. Although effective vaccines are available, this disease has the potential to re-emerge in countries where the recommended vaccination programmes are not sustained, and increasing proportions of adults are becoming susceptible to diphtheria. Thousands of diphtheria cases are still reported annually from several countries in Asia and Africa, along with many outbreaks. Changes in the epidemiology of diphtheria have been reported worldwide. The prevalence of toxigenic Corynebacterium spp. highlights the need for proper clinical and epidemiological investigations to quickly identify and treat affected individuals, along with public health measures to prevent and contain the spread of this disease.
Collapse
Affiliation(s)
- Naresh Chand Sharma
- Laboratory Department, Maharishi Valmiki Infectious Diseases Hospital, Delhi, India
| | - Androulla Efstratiou
- WHO Collaborating Centre for Diphtheria and Streptococcal Infections, Reference Microbiology Division, Public Health England, London, UK
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Ankur Mutreja
- Global Health-Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bhabatosh Das
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Thandavarayan Ramamurthy
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
20
|
Rau J, Eisenberg T, Peters M, Berger A, Kutzer P, Lassnig H, Hotzel H, Sing A, Sting R, Contzen M. Reliable differentiation of a non-toxigenic tox gene-bearing Corynebacterium ulcerans variant frequently isolated from game animals using MALDI-TOF MS. Vet Microbiol 2019; 237:108399. [PMID: 31585651 DOI: 10.1016/j.vetmic.2019.108399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/25/2019] [Accepted: 08/22/2019] [Indexed: 01/18/2023]
Abstract
Corynebacterium (C.) ulcerans is a zoonotic member of the C. diphtheriae group and is known to cause abscesses in humans and several animal species. Toxigenic strains, expressing the tox gene encoding diphtheria toxin, are also able to cause diphtheria in humans. In recent years, a non-toxigenic but tox gene-bearing (NTTB) variant of C. ulcerans has been identified that was frequently isolated from clinically healthy as well as from diseased wildlife animals, especially wild boars (Sus scrofa scrofa) in Germany and Austria. The described clinical cases showed similar signs of disease and the isolated corynebacteria displayed common genetic features as well as similar spectroscopic characteristics, therefore being assigned to a so called wild boar cluster (WBC). This study describes the establishment and validation of a method using MALDI-TOF mass spectrometry for a reliable differentiation between various members of the C. diphtheriae group at species level as well as a reliable sub-level identification of C. ulcerans isolates of the WBC variant. For this study 93 C. ulcerans isolates from wildlife animals, 41 C. ulcerans isolates from other animals and humans, and 53 isolates from further representatives of the C. diphtheriae group, as well as 26 non-diphtheriae group Corynebacteria collected via the MALDI user platform from seven MALDI users were used. By assigning 86 C. ulcerans isolates to the WBC the extensive geographical distribution of this previously less noticed variant in two Central European countries could be shown.
Collapse
Affiliation(s)
- Jörg Rau
- Chemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS), Schaflandstr. 3/2, 70367 Fellbach, Germany.
| | - Tobias Eisenberg
- Landesbetrieb Hessisches Landeslabor (LHL), Schubertstr. 60 - Haus 13, 35392 Gießen, Germany.
| | - Martin Peters
- Chemisches und Veterinäruntersuchungsamt Westfalen, Zur Taubeneiche 10-12, 59821 Arnsberg, Germany.
| | - Anja Berger
- National Consiliar Laboratory on Diphtheria, Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstr. 2, 85764 Oberschleißheim, Germany.
| | - Peter Kutzer
- Landeslabor Berlin-Brandenburg (LLBB), Gerhard-Neumann-Str. 2, 15236 Frankfurt (Oder), Germany.
| | - Heimo Lassnig
- Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH (AGES), Beethovenstr. 6, 8010 Graz, Austria.
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (FLI), Naumburger Str. 96a, 07743 Jena, Germany.
| | - Andreas Sing
- National Consiliar Laboratory on Diphtheria, Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstr. 2, 85764 Oberschleißheim, Germany.
| | - Reinhard Sting
- Chemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS), Schaflandstr. 3/2, 70367 Fellbach, Germany; Consiliar Laboratory for Corynebacterium pseudotuberculosis (DVG).
| | - Matthias Contzen
- Chemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS), Schaflandstr. 3/2, 70367 Fellbach, Germany.
| |
Collapse
|