1
|
Gondil V, Ashcraft M, Ghalei S, Kumar A, Wilson SN, Devine R, Handa H, Brisbois EJ. Anti-Infective Bacteriophage Immobilized Nitric Oxide-Releasing Surface for Prevention of Thrombosis and Device-Associated Infections. ACS APPLIED BIO MATERIALS 2025; 8:1362-1376. [PMID: 39895136 PMCID: PMC11836933 DOI: 10.1021/acsabm.4c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
The treatment of critically ill patients has made great strides in the past few decades due to the rapid development of indwelling medical devices. Despite immense advancements in the design of these devices, indwelling medical device-associated infections and thrombosis are two major clinical problems that may lead to device failure and compromise clinical outcomes. Antibiotics are the current treatment choice for these infections; however, the global emergence of antibiotic-resistance and their biofilm formation abilities complicate the management of such infections. Moreover, systemic administration of anticoagulants has been used to counter medical device-induced thrombosis, but a range of serious adverse effects associated with all types of available anticoagulants entails exploring alternative options to counter device-associated thrombosis. In this study, bacteriophages (phages) were covalently immobilized on polydimethylsiloxane (PDMS) surface containing the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) via SNAP impregnation method. This dual strategy combines the targeted antibacterial activity of phages against bacterial pathogens with the antibacterial-antithrombotic activity of NO released from the polymeric surface. The PDMS, SNAP-PDMS, phage-immobilized PDMS (PDMS-Phage), and phage-immobilized SNAP-PDMS (SNAP-PDMS-Phage) surfaces were characterized for their surface topology, elemental composition, contact angle, SNAP loading, NO release and phage distribution. SNAP-PDMS and SNAP-PDMS-Phage surfaces showed similar and consistent NO release profiles over 24 h of incubation. Immobilization of whole phages on PDMS and SNAP-PDMS was achieved with densities of 2.4 ± 0.54 and 2.1 ± 0.33 phages μm-2, respectively. Immobilized phages were found to retain their activity, and SNAP-PDMS-Phage surfaces showed a significant reduction in planktonic (99.99 ± 0.08%) as well as adhered (99.80 ± 0.05%) Escherichia coli as compared to controls in log killing assays. The SNAP-PDMS-Phage surfaces also exhibited significantly reduced platelet adhesion by 64.65 ± 2.95% as compared to control PDMS surfaces. All fabricated surfaces were found to be nonhemolytic and do not exhibit any significant cytotoxic effects toward mammalian fibroblast cells. This study is the first of its kind to demonstrate the combinatorial pertinence of phages and NO to prevent antibiotic-resistant/sensitive bacterial infections and thrombosis associated with indwelling medical devices.
Collapse
Affiliation(s)
- Vijay
Singh Gondil
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan Ashcraft
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Sama Ghalei
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Anil Kumar
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sarah N. Wilson
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Parra B, Sandoval M, Arriagada V, Amsteins L, Aguayo C, Opazo-Capurro A, Dechesne A, González-Rocha G. Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa: PaCCP1 and PaCCP2. Pharmaceuticals (Basel) 2024; 17:1616. [PMID: 39770458 PMCID: PMC11728774 DOI: 10.3390/ph17121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antimicrobial resistance (AMR) is a major public health threat, which is exacerbated by the lack of new antibiotics and the emergence of multidrug-resistant (MDR) superbugs. Comprehensive efforts and alternative strategies to combat AMR are urgently needed to prevent social, medical, and economic consequences. Pseudomonas aeruginosa is a pathogen responsible for a wide range of infections, from soft tissue infections to life-threatening conditions such as bacteremia and pneumonia. Bacteriophages have been considered as a potential therapeutic option to treat bacterial infections. Our aim was to isolate phages able to infect MDR P. aeruginosa strains. METHODS We isolated two lytic phages, using the conventional double layer agar technique (DLA), from samples obtained from the influent of a wastewater treatment plant in Concepción, Chile. The phages, designated as PaCCP1 and PaCCP2, were observed by electron microscopy and their host range was determined against multiple P. aeruginosa strains using DLA. Moreover, their genomes were sequenced and analyzed. RESULTS Phage PaCCP1 is a member of the Septimatrevirus genus and phage PaCCP2 is a member of the Pbunavirus genus. Both phages are tailed and contain dsDNA. The genome of PaCCP1 is 43,176 bp in length with a GC content of 54.4%, encoding 59 ORFs, one of them being a tRNA gene. The genome of PaCCP2 is 66,333 bp in length with a GC content of 55.6%, encoding 102 non-tRNA ORFs. PaCCP1 is capable of infecting five strains of P. aeruginosa, whereas phage PaCCP2 is capable of infecting three strains of P. aeruginosa. Both phages do not contain bacterial virulence or AMR genes and contain three and six putative Anti-CRISPR proteins. CONCLUSIONS Phages PaCCP1 and PaCCP2 show promise as effective treatments for MDR P. aeruginosa strains, offering a potential strategy for controlling this clinically important pathogen through phage therapy.
Collapse
Affiliation(s)
- Boris Parra
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Av. Jorge Alessandri 1160, Campus El Boldal, Concepción 4070409, Chile
| | - Maximiliano Sandoval
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Vicente Arriagada
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Luis Amsteins
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Cristobal Aguayo
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofs Plads, Building 221, 2800 Kongens Lyngby, Denmark
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| |
Collapse
|
3
|
Mary AS, Kalangadan N, Prakash J, Sundaresan S, Govindarajan S, Rajaram K. Relative fitness of wild-type and phage-resistant pyomelanogenic P. aeruginosa and effects of combinatorial therapy on resistant formation. Heliyon 2024; 10:e40076. [PMID: 39559211 PMCID: PMC11570307 DOI: 10.1016/j.heliyon.2024.e40076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Bacteriophages, the natural predators of bacteria, are incredibly potent candidates to counteract antimicrobial resistance (AMR). However, the rapid development of phage-resistant mutants challenges the potential of phage therapy. Understanding the mechanisms of bacterial adaptations to phage predation is crucial for phage-based prognostic applications. Phage cocktails and combinatorial therapy, using optimized dosage patterns of antibiotics, can negate the development of phage-resistant mutations and prolong therapeutic efficacy. In this study, we describe the characterization of a novel bacteriophage and the physiology of phage-resistant mutant developed during infection. M12PA is a P. aeruginosa-infecting bacteriophage with Myoviridae morphology. We observed that prolonged exposure of P. aeruginosa to M12PA resulted in the selection of phage-resistant mutants. Among the resistant mutants, pyomelanin-producing mutants, named PA-M, were developed at a frequency of 1 in 16. Compared to the wild-type, we show that PA-M mutant is severely defective in virulence properties, with altered motility, biofilm formation, growth rate, and antibiotic resistance profile. The PA-M mutant exhibited reduced pathogenesis in an allantoic-infected chick embryo model system compared to the wild-type. Finally, we provide evidence that combinatory therapy, combining M12PA with antibiotics or other phages, significantly delayed the emergence of resistant mutants. In conclusion, our study highlights the potential of combinatory phage therapy to delay the development of phage-resistant mutants and enhance the efficacy of phage-based treatments against P. aeruginosa.
Collapse
Affiliation(s)
- Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Nashath Kalangadan
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - John Prakash
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Srivignesh Sundaresan
- Department of Horticulture, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sutharsan Govindarajan
- Department of Biological Sciences, SRM University, AP, Amaravati, 522240, Andhra Pradesh, India
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| |
Collapse
|
4
|
Siopi M, Skliros D, Paranos P, Koumasi N, Flemetakis E, Pournaras S, Meletiadis J. Pharmacokinetics and pharmacodynamics of bacteriophage therapy: a review with a focus on multidrug-resistant Gram-negative bacterial infections. Clin Microbiol Rev 2024; 37:e0004424. [PMID: 39072666 PMCID: PMC11391690 DOI: 10.1128/cmr.00044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
SUMMARYDespite the early recognition of their therapeutic potential and the current escalation of multidrug-resistant (MDR) pathogens, the adoption of bacteriophages into mainstream clinical practice is hindered by unfamiliarity with their basic pharmacokinetic (PK) and pharmacodynamic (PD) properties, among others. Given the self-replicative nature of bacteriophages in the presence of host bacteria, the adsorption rate, and the clearance by the host's immunity, their PK/PD characteristics cannot be estimated by conventional approaches, and thus, the introduction of new considerations is required. Furthermore, the multitude of different bacteriophage types, preparations, and treatment schedules impedes drawing general conclusions on their in vivo PK/PD features. Additionally, the drawback of acquired bacteriophage resistance of MDR pathogens with clinical and environmental implications should be taken into consideration. Here, we provide an overview of the current state of the field of PK and PD of bacteriophage therapy with a focus on its application against MDR Gram-negative infections, highlighting the potential knowledge gaps and the challenges in translation from the bench to the bedside. After reviewing the in vitro PKs and PDs of bacteriophages against the four major MDR Gram-negative pathogens, Klebsiella pneumoniae, Acinetobacter baumannii complex, Pseudomonas aeruginosa, and Escherichia coli, specific data on in vivo PKs (tissue distribution, route of administration, and basic PK parameters in animals and humans) and PDs (survival and reduction of bacterial burden in relation to the route of administration, timing of therapy, dosing regimens, and resistance) are summarized. Currently available data merit close scrutiny, and optimization of bacteriophage therapy in the context of a better understanding of the underlying PK/PD principles is urgent to improve its therapeutic effect and to minimize the occurrence of bacteriophage resistance.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Koumasi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Chen Y, Yan B, Chen W, Zhang X, Liu Z, Zhang Q, Li L, Hu M, Zhao X, Xu X, Lv Q, Luo Y, Cai Y, Liu Y. Development of the CRISPR-Cas12a system for editing of Pseudomonas aeruginosa phages. iScience 2024; 27:110210. [PMID: 39055914 PMCID: PMC11269290 DOI: 10.1016/j.isci.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa is a common opportunistic pathogen. The potential efficacy of phage therapy has attracted the attention of researchers, but efficient gene-editing tools are lacking, limiting the study of their biological properties. Here, we designed a type V CRISPR-Cas12a system for the gene editing of P. aeruginosa phages. We first evaluated the active cutting function of the CRISPR-Cas12a system in vitro and discovered that it had a higher gene-cutting efficiency than the type II CRISPR-Cas9 system in three different P. aeruginosa phages. We also demonstrated the system's ability to precisely edit genes in Escherichia coli phages, Salmonella phages, and P. aeruginosa phages. Using the aforementioned strategies, non-essential P. aeruginosa phage genes can be efficiently deleted, resulting in a reduction of up to 5,215 bp (7.05%). Our study has provided a rapid, efficient, and time-saving tool that accelerates progress in phage engineering.
Collapse
Affiliation(s)
- Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| | - Bingjie Yan
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xue Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Zhengjie Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Lulu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| | - Xiaonan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Qianghua Lv
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Yumei Cai
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| |
Collapse
|
6
|
Sutnu N, Chancharoenthana W, Kamolratanakul S, Phuengmaung P, Singkham-In U, Chongrak C, Montathip S, Wannigama DL, Chatsuwan T, Ounjai P, Schultz MJ, Leelahavanichkul A. Bacteriophages isolated from mouse feces attenuates pneumonia mice caused by Pseudomonas aeruginosa. PLoS One 2024; 19:e0307079. [PMID: 39012882 PMCID: PMC11251617 DOI: 10.1371/journal.pone.0307079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Most of the current bacteriophages (phages) are mostly isolated from environments. However, phages isolated from feces might be more specific to the bacteria that are harmful to the host. Meanwhile, some phages from the environment might affect non-pathogenic bacteria for the host. METHODS Here, bacteriophages isolated from mouse feces were intratracheally (IT) or intravenously (IV) administered in pneumonia mice caused by Pseudomonas aeruginosa at 2 hours post-intratracheal bacterial administration. As such, the mice with phage treatment, using either IT or IV administration, demonstrated less severe pneumonia as indicated by mortality, serum cytokines, bacteremia, bacterial abundance in bronchoalveolar lavage fluid (BALF), and neutrophil extracellular traps (NETs) in lung tissue (immunofluorescence of neutrophil elastase and myeloperoxidase). RESULTS Interestingly, the abundance of phages in BALF from the IT and IV injections was similar, supporting a flexible route of phage administration. With the incubation of bacteria with neutrophils, the presence of bacteriophages significantly improved bactericidal activity, but not NETs formation, with the elevated supernatant IL-6 and TNF-α, but not IL-1β. In conclusion, our findings suggest that bacteriophages against Pseudomonas aeruginosa can be discovered from feces of the host. CONCLUSIONS The phages attenuate pneumonia partly through an enhanced neutrophil bactericidal activity, but not via inducing NETs formation. The isolation of phages from the infected hosts themselves might be practically useful for future treatment. More studies are warranted.
Collapse
Affiliation(s)
- Nuttawut Sutnu
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Tropical Immunology and Translational Research Unit (TITRU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Tropical Immunology and Translational Research Unit (TITRU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani, Thailand
| | - Chiratchaya Chongrak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirikan Montathip
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamakata Prefectural Central Hospital, Yamakata, Japan
- Department of Infectious Diseases and Infection Control, Pathogen Hunter’s Research Collaborative Team, Yamakata Prefectural Central Hospital, Yamakata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Marcus J. Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Kang Y, Wang J, Wang Y, Li Z. Profiles of phage in global hospital wastewater: Association with microbial hosts, antibiotic resistance genes, metal resistance genes, and mobile genetic elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171766. [PMID: 38513871 DOI: 10.1016/j.scitotenv.2024.171766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Hospital wastewater (HWW) is known to host taxonomically diverse microbial communities, yet limited information is available on the phages infecting these microorganisms. To fill this knowledge gap, we conducted an in-depth analysis using 377 publicly available HWW metagenomic datasets from 16 countries across 4 continents in the NCBI SRA database to elucidate phage-host dynamics and phage contributions to resistance gene transmission. We first assembled a metagenomic HWW phage catalog comprising 13,812 phage operational taxonomic units (pOTUs). The majority of these pOTUs belonged to the Caudoviricetes order, representing 75.29 % of this catalog. Based on the lifestyle of phages, we found that potentially virulent phages predominated in HWW. Specifically, 583 pOTUs have been predicted to have the capability to lyse 81 potentially pathogenic bacteria, suggesting the promising role of HWW phages as a viable alternative to antibiotics. Among all pOTUs, 1.56 % of pOTUs carry 108 subtypes of antibiotic resistance genes (ARGs), 0.96 % of pOTUs carry 76 subtypes of metal resistance genes (MRGs), and 0.96 % of pOTUs carry 22 subtypes of non-phage mobile genetic elements (MGEs). Predictions indicate that certain phages carrying ARGs, MRGs, and non-phage MGEs could infect bacteria hosts, even potential pathogens. This suggests that phages in HWW may contribute to the dissemination of resistance-associated genes in the environment. This meta-analysis provides the first global catalog of HWW phages, revealing their correlations with microbial hosts and pahge-associated ARGs, MRG, and non-phage MGEs. The insights gained from this research hold promise for advancing the applications of phages in medical and industrial contexts.
Collapse
Affiliation(s)
- Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102200, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Wang
- North China University of Science and Technology, Basic Medical College, Tangshan, Hebei 063210, P.R. China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102200, China.
| |
Collapse
|
8
|
Nawaz A, Zafar S, Alessa AH, Khalid NA, Shahzadi M, Majid A, Badshah M, Shah AA, Khan S. Characterization of ES10 lytic bacteriophage isolated from hospital waste against multidrug-resistant uropathogenic E. coli. Front Microbiol 2024; 15:1320974. [PMID: 38525078 PMCID: PMC10957765 DOI: 10.3389/fmicb.2024.1320974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Escherichia coli is the major causative agent of urinary tract infections worldwide and the emergence of multi-drug resistant determinants among clinical isolates necessitates the development of novel therapeutic agents. Lytic bacteriophages efficiently kill specific bacteria and seems promising approach in controlling infections caused by multi-drug resistant pathogens. This study aimed the isolation and detailed characterization of lytic bacteriophage designated as ES10 capable of lysing multidrug-resistant uropathogenic E. coli. ES10 had icosahedral head and non-contractile tail and genome size was 48,315 base pairs long encoding 74 proteins. Antibiotics resistance, virulence and lysogenic cycle associated genes were not found in ES10 phage genome. Morphological and whole genome analysis of ES10 phage showed that ES10 is the member of Drexlerviridae. Latent time of ES10 was 30 min, burst size was 90, and optimal multiplicity of infection was 1. ES10 was stable in human blood and subsequently caused 99.34% reduction of host bacteria. Calcium chloride shortened the adsorption time and latency period of ES10 and significantly inhibited biofilm formation of host bacteria. ES10 caused 99.84% reduction of host bacteria from contaminated fomites. ES10 phage possesses potential to be utilized in standard phage therapy.
Collapse
Affiliation(s)
- Aneela Nawaz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sabeena Zafar
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Nauman Ahmed Khalid
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muqaddas Shahzadi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alina Majid
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
9
|
Hassannia M, Naderifar M, Salamy S, Akbarizadeh MR, Mohebi S, Moghadam MT. Engineered phage enzymes against drug-resistant pathogens: a review on advances and applications. Bioprocess Biosyst Eng 2024; 47:301-312. [PMID: 37962644 DOI: 10.1007/s00449-023-02938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
In recent decades, the expansion of multi and extensively drug-resistant (MDR and XDR) bacteria has reached an alarming rate, causing serious health concerns. Infections caused by drug-resistant bacteria have been associated with morbidity and mortality, making tackling bacterial resistance an urgent and unmet challenge that needs to be addressed properly. Endolysins are phage-encoded enzymes that can specifically degrade the bacterial cell wall and lead to bacterial death. There is remarkable evidence that corroborates the unique ability of endolysins to rapidly digest the peptidoglycan particular bonds externally without the assistance of phage. Thus, their modulation in therapeutic approaches has opened new options for therapeutic applications in the fight against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology areas. The use of genetically engineered phage enzymes (EPE) promises to generate endolysin variants with unique properties for prophylactic and therapeutic applications. These approaches have gained momentum to accelerate basic as well as translational phage research and the potential development of therapeutics in the near future. This review will focus on the novel knowledge into EPE and demonstrate that EPE has far better performance than natural endolysins and phages in dealing with antibiotic-resistant infections. Therefore, it provides essential information for clinical trials involving EPE.
Collapse
Affiliation(s)
- Mohadeseh Hassannia
- Department of Genetic, Faculty of Science, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Shakiba Salamy
- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | | | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
10
|
Marton HL, Bhatt A, Sagona AP, Kilbride P, Gibson MI. Screening of Hydrophilic Polymers Reveals Broad Activity in Protecting Phages during Cryopreservation. Biomacromolecules 2024; 25:413-424. [PMID: 38124388 PMCID: PMC10777348 DOI: 10.1021/acs.biomac.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Bacteriophages have many biotechnological and therapeutic applications, but as with other biologics, cryopreservation is essential for storage and distribution. Macromolecular cryoprotectants are emerging for a range of biologics, but the chemical space for polymer-mediated phage cryopreservation has not been explored. Here we screen the cryoprotective effect of a panel of polymers against five distinct phages, showing that nearly all the tested polymers provide a benefit. Exceptions were poly(methacrylic acid) and poly(acrylic acid), which can inhibit phage-infection with bacteria, making post-thaw recovery challenging to assess. A particular benefit of a polymeric cryopreservation formulation is that the polymers do not function as carbon sources for the phage hosts (bacteria) and hence do not interfere with post-thaw measurements. This work shows that phages are amenable to protection with hydrophilic polymers and opens up new opportunities for advanced formulations for future phage therapies and to take advantage of the additional functionality brought by the polymers.
Collapse
Affiliation(s)
- Huba L. Marton
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Apoorva Bhatt
- School
of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Institute
of Microbiology and Infection, University
of Birmingham, Birmingham, B15 2TT, United
Kingdom
| | - Antonia P. Sagona
- School
of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Peter Kilbride
- Asymptote,
Cytiva, Chivers Way, Cambridge CB24 9BZ, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess
Street, Manchester, M1
7DN, United Kingdom
| |
Collapse
|
11
|
Shuai X, Zhou Z, Ba X, Lin Y, Lin Z, Liu Z, Yu X, Zhou J, Zeng G, Ge Z, Chen H. Bacteriophages: Vectors of or weapons against the transmission of antibiotic resistance genes in hospital wastewater systems? WATER RESEARCH 2024; 248:120833. [PMID: 37952327 DOI: 10.1016/j.watres.2023.120833] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Antimicrobial resistance poses a serious threat to human health and is responsible for the death of millions of people annually. Hospital wastewater is an important hotspot for antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). However, little is known about the relationship between phages and ARGs in hospital wastewater systems (HWS). In the present study, the viral diversity of 12 HWSs using data from public metagenomic databases was investigated. Viruses were widely found in both the influent and effluent of each HWS. A total of 45 unique ARGs were carried by 85 viral contigs, which accounted for only 0.14% of the total viral populations, implying that ARGs were not commonly present in phages. Three efflux pump genes were identified as shared between phages and bacterial genomes. However, the predominant types of ARGs in HWS such as aminoglycoside- and beta-lactam-resistance genes were rarely found in phages. Based on CRISPR spacer and tRNA matches, interactions between 171 viral contigs and 60 antibiotic-resistant genomes were predicted, including interactions involving phages and vancomycin-resistant Enterococcus_B faecium or beta-lactam-resistant Klebsiella pneumoniae. More than half (56.1%) of these viral contigs indicated lytic and none of them carried ARGs. As the vOTUs in this study had few ARGs and were primarily lytic, HWS may be a valuable source for phage discovery. Future studies will be able to experimentally validate these sequence-based results to confirm the suitability of HWS phages for pathogen control measures in wastewater.
Collapse
Affiliation(s)
- Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yanhan Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinyu Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangshu Zeng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ziye Ge
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Rahimzadeh M, Shahbazi S, Sabzi S, Habibi M, Asadi Karam MR. Antibiotic resistance and genetic diversity among Pseudomonas aeruginosa isolated from urinary tract infections in Iran. Future Microbiol 2023; 18:1171-1183. [PMID: 37882782 DOI: 10.2217/fmb-2023-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/14/2023] [Indexed: 10/27/2023] Open
Abstract
Aims: To determine the antibiotic resistance and genetic diversity of Pseudomonas aeruginosa isolates. Methods: The antibiotic resistance, genetic diversity and the conjugate transformation among Pseudomonas aeruginosa collected from patients with urinary tract infection in Tehran, Iran, was investigated. Results: Antibiotic resistance against cefepime was seen in 51.74% of the isolates, followed by amikacin (47.76%). blaOXA-10 and blaVIM were the most prevalent extended-spectrum β-lactamase and metallo-β-lactamases genes, respectively. Five clusters (C1-C5) were obtained by pulse field gel electrophoresis and multilocus sequence typing revealed two strain types, ST235 and ST664. Conjugation detected blaOXA-48 and blaNDM genes were transferred to Escherichia coli K12. Conclusion: The resistance of P. aeruginosa to antibiotics is increasing, which highlights the need to determine the resistance patterns to design better treatment strategies.
Collapse
Affiliation(s)
- Mohammad Rahimzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, 13164, Iran
| | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, 13164, Iran
| | - Samira Sabzi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, 13164, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, 13164, Iran
| | | |
Collapse
|
13
|
Nale JY, Chan B, Nnadi NE, Cheng JKJ, Matts S, Nezam-Abadi N, Turkington CJR, Charreton LM, Bola H, Nazir R, Hoza AS, Wamala SP, Ibanda I, Maina AN, Apopo AA, Msoffe VT, Moremi N, Moore GW, Asiimwe I, Namatovu A, Mutumba P, Kamya D, Nabunje R, Nakabugo I, Kazwala RR, Kangethe E, Negash AA, Watelo AK, Bukamba N, Muhindo G, Lubowa NM, Jillani N, Nyachieo A, Nasinyama G, Nakavuma J, Millard A, Nagel TE, Clokie MRJ. Novel Escherichia coli-Infecting Bacteriophages Isolated from Uganda That Target Human Clinical Isolates. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:141-149. [PMID: 37841386 PMCID: PMC10574529 DOI: 10.1089/phage.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Background The antimicrobial resistance catastrophe is a growing global health threat and predicted to be worse in developing countries. Phages for Global Health (PGH) is training scientists in these regions to isolate relevant therapeutic phages for pathogenic bacteria within their locality, and thus contributing to making phage technology universally available. Materials and Methods During the inaugural PGH workshop in East Africa, samples from Ugandan municipal sewage facilities were collected and two novel Escherichia coli lytic phages were isolated and characterized. Results The phages, UP19 (capsid diameter ∼100 nm, contractile tail ∼120/20 nm) and UP30 (capsid diameter ∼70 nm, noncontractile tail of ∼170/20 nm), lysed ∼82% and ∼36% of the 11 clinical isolates examined, respectively. The genomes of UP19 (171.402 kb, 282 CDS) and UP30 (49.834 kb, 75 CDS) closely match the genera Dhakavirus and Tunavirus, respectively. Conclusion The phages isolated have therapeutic potential for further development against E. coli infections.
Collapse
Affiliation(s)
- Janet Yakubu Nale
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland's Rural College, Inverness, Scotland, United Kingdom
| | - Benjamin Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Nnaemeka Emmanuel Nnadi
- Department of Microbiology, Faculty of Natural and Applied Sciences, Plateau State University, Bokkos, Nigeria
| | - Jeffrey Kwok Jone Cheng
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Susan Matts
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Neda Nezam-Abadi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Christopher Jason Richard Turkington
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Lucie Manon Charreton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Sciences et Humanités, École Supérieur de Biologie, Biochimie, Lyon, France
| | - Harroop Bola
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Imperial College School of Medicine, London, United Kingdom
| | - Ramez Nazir
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Yale-Waterbury Internal Medicine, Waterbury, Connecticut, USA
| | - Abubakar Shaaban Hoza
- Department of Veterinary Microbiology, Parasitology & Biotechnology, College of Veterinary Medicine & Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Samuel Posian Wamala
- Department of Biotechnical and Diagnostic Science, College of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Ivan Ibanda
- Department of Pharmacology and Therapeutics, School of Medicine and Surgery, King Ceasor University, Kampala, Uganda
| | - Alice Nyambura Maina
- Department of Biology, University of Nairobi, Nairobi, Kenya
- Department of Food Science and Technology, Technical University of Kenya, Nairobi, Kenya
| | | | - Venance Theophil Msoffe
- Department of Biological Sciences, Mkwawa University College of Education, The Constituent College of University of Dar es Salaam, Iringa, Tanzania
| | - Nyambura Moremi
- Department of Research, National Public Health Laboratory, Dar es Salaam, Tanzania
| | - Grace Wanjiru Moore
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Ismail Asiimwe
- Department of Biomolecular Resources and Biolab Sciences, School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Alice Namatovu
- Department of Biomolecular Resources and Biolab Sciences, School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Paul Mutumba
- Department of Biomolecular Resources and Biolab Sciences, School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Deus Kamya
- Department of Biomolecular Resources and Biolab Sciences, School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Ritah Nabunje
- Department of Biomolecular Resources and Biolab Sciences, School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Immaculate Nakabugo
- Department of Biomolecular Resources and Biolab Sciences, School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Rudovick Ruben Kazwala
- Department of Veterinary Medicine & Public Health, College of Veterinary Medicine & Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Erastus Kangethe
- Department of Public Health, Pharmacology and Toxicology, University of Nairobi, Nairobi, Kenya
| | - Abel Abera Negash
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Nelson Bukamba
- Mountain Gorilla Veterinary Project Inc, Department of Wildlife and Aquatic Resources Management, College of Veterinary Medicine, Makerere University Kampala, Uganda
| | | | - Nathan Musisi Lubowa
- Department of Biotechnical and Diagnostic Science, College of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Ngalla Jillani
- Phage Biology Laboratory, Institute of Primate Research, Karen Nairobi, Kenya
| | - Atunga Nyachieo
- Phage Biology Laboratory, Institute of Primate Research, Karen Nairobi, Kenya
| | - George Nasinyama
- Department of Public Health Kampala International University, Kampala, Uganda
- School of Sciences, Health Sciences, Technology, and Engineering, Unicaf University, Kampala, Uganda
| | - Jesca Nakavuma
- Department of Biomolecular Resources and Biolab Sciences, School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | | |
Collapse
|
14
|
Kelmer GAR, Ramos ER, Dias EHO. Coliphages as viral indicators in municipal wastewater: A comparison between the ISO and the USEPA methods based on a systematic literature review. WATER RESEARCH 2023; 230:119579. [PMID: 36640612 DOI: 10.1016/j.watres.2023.119579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The use of traditional faecal indicator bacteria as surrogate organisms for pathogenic viruses in domestic wastewater has been noted as a problematic as concentrations and removal rates of bacteria and viruses do not seem to correlate. In this sense, bacteriophages (phages) emerge as potential viral indicators, as they are commonly found in wastewater in high levels, and can be quantified using simple, fast, low-cost methods. Somatic and F-specific coliphages comprise groups of phages commonly used as indicators of water quality. There are two internationally recognised methods to detect and enumerate coliphages in water samples, the International Standardization Organization (ISO) and the US Environmental Protection Agency (USEPA) methods. Both methods are based on the lysis of specific bacterial host strains infected by phages. Within this context, this systematic literature review aimed at gathering concentrations in raw and treated domestic wastewater (secondary, biological treatment systems and post-treatment systems), and removal efficiencies of somatic and F-specific coliphages obtained by ISO and USEPA methods, and then compare both methods. A total of 33 research papers were considered in this study. Results showed that the ISO method is more commonly applied than the USEPA method. Some discrepancies in terms of concentrations and removal efficiencies were observed between both methods. Higher removal rates were observed for both somatic and F-specific coliphages in activated sludge systems when using the USEPA method compared to the ISO method; in other secondary (biological) treatment systems, this was observed only for F-specific coliphages. The use of different standardised methods available might lead to difficulties in obtaining and comparing phage data in different conditions and locations. Future research comparing both ISO and USEPA methods as well as viral and bacterial pathogens and indicators in WWTP is recommended.
Collapse
Affiliation(s)
- Gisele A R Kelmer
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Elloís R Ramos
- Environmental and Sanitary Engineering Course, Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Edgard H O Dias
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil; Department of Sanitary and Environmental Engineering (ESA), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil.
| |
Collapse
|
15
|
Abdelaziz AA, Abo Kamer AM, Nosair AM, Al-Madboly LA. Exploring the potential efficacy of phage therapy for biocontrol of foodborne pathogenic extensively drug-resistant Escherichia coli in gastrointestinal tract of rat model. Life Sci 2023; 315:121362. [PMID: 36610637 DOI: 10.1016/j.lfs.2022.121362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
AIM The emergence of extensively drug-resistant (XDR) Escherichia coli leaves little or no therapeutic options for the control of these foodborne pathogens. The goal is to isolate, characterize, and assess the potential efficacy of a bacteriophage in the treatment of an induced gastrointestinal tract infection. MAIN METHODS Sewage water was used to isolate phage phPE42. Transmission electron microscope was used for the visualization of phage morphology. Lysis profile, growth kinetics, and stability studies were determined. The ability of phage to eradicate biofilms was assessed by crystal violet staining, resazurin assay, compound bright field microscope, and confocal laser scanning microscope (CLSM). Moreover, the efficacy of phage phPE42 as a potential therapy was evaluated in a rat model. KEY FINDINGS A newly lytic Myoviridae phage phPE42 was isolated and exhibited broad coverage activity (48.6 %) against E. coli clinical isolates. It demonstrated favorable growth kinetics and relative stability under a variety of challenging conditions. The resazurin colorimetric assay and CLSM provided evidence of phage potential's ability to significantly (P < 0.05) decrease the viability of biofilm-embedded cells. The bacterial burden in animal faeces was effectively eradicated (P < 0.05) by oral administration of phage phPE42. Phage-treated rats exhibited a significant decrease in tissue damage with no signs of inflammation, necrosis, or erosion. Furthermore, phage therapy significantly (P < 0.05) reduced the expression level of the apoptotic marker caspase-3 and the inflammatory cytokine TNF-α. SIGNIFICANCE Treatment with phage phPE42 is considered a promising alternative therapy for the control of severe foodborne infections spurred by pathogenic XDR E. coli.
Collapse
Affiliation(s)
- Ahmed A Abdelaziz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Amal M Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Ahmed M Nosair
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
16
|
Mabrouk SS, Abdellatif GR, Abu Zaid AS, Aziz RK, Aboshanab KM. In Vitro and Pre-Clinical Evaluation of Locally Isolated Phages, vB_Pae_SMP1 and vB_Pae_SMP5, Formulated as Hydrogels against Carbapenem-Resistant Pseudomonas aeruginosa. Viruses 2022; 14:v14122760. [PMID: 36560763 PMCID: PMC9780878 DOI: 10.3390/v14122760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The inadequate therapeutic opportunities associated with carbapenem-resistant Pseudomonas aeruginosa (CRPA) clinical isolates impose a search for innovative strategies. Therefore, our study aimed to characterize and evaluate two locally isolated phages formulated in a hydrogel, both in vitro and in vivo, against CRPA clinical isolates. The two phages were characterized by genomic, microscopic, phenotypic characterization, genomic analysis, in vitro and in vivo analysis in a Pseudomonas aeruginosa-infected skin thermal injury rat model. The two siphoviruses belong to class Caudovirectes and were named vB_Pae_SMP1 and vB_Pae_SMP5. Each phage had an icosahedral head of 60 ± 5 nm and a flexible, non-contractile tail of 170 ± 5 nm long, while vB_Pae_SMP5 had an additional base plate containing a 35 nm fiber observed at the end of the tail. The hydrogel was prepared by mixing 5% w/v carboxymethylcellulose (CMC) into the CRPA propagated phage lysate containing phage titer 108 PFU/mL, pH of 7.7, and a spreadability coefficient of 25. The groups were treated with either Phage vB_Pae_SMP1, vB_Pae_SMP5, or a two-phage cocktail hydrogel cellular subepidermal granulation tissues with abundant records of fibroblastic activity and mixed inflammatory cell infiltrates and showed 17.2%, 25.8%, and 22.2% records of dermal mature collagen fibers, respectively. In conclusion, phage vB_Pae_SMP1 or vB_Pae_SMP5, or the two-phage cocktails formulated as hydrogels, were able to manage the infection of CRPA in burn wounds, and promoted healing at the injury site, as evidenced by the histopathological examination, as well as a decrease in animal mortality rate. Therefore, these phage formulae can be considered promising for clinical investigation in humans for the management of CRPA-associated skin infections.
Collapse
Affiliation(s)
- Samar S. Mabrouk
- Department of Microbiology, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza 12566, Egypt
| | - Ghada R. Abdellatif
- Department of Microbiology, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza 12566, Egypt
| | - Ahmed S. Abu Zaid
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Microbiology and Immunology, Children’s Cancer Hospital Egypt 57357, Cairo 11617, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Correspondence:
| |
Collapse
|
17
|
Lerdsittikul V, Thongdee M, Chaiwattanarungruengpaisan S, Atithep T, Apiratwarrasakul S, Withatanung P, Clokie MRJ, Korbsrisate S. A novel virulent Litunavirus phage possesses therapeutic value against multidrug resistant Pseudomonas aeruginosa. Sci Rep 2022; 12:21193. [PMID: 36476652 PMCID: PMC9729221 DOI: 10.1038/s41598-022-25576-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a notable nosocomial pathogen that can cause severe infections in humans and animals. The emergence of multidrug resistant (MDR) P. aeruginosa has motivated the development of phages to treat the infections. In this study, a novel Pseudomonas phage, vB_PaeS_VL1 (VL1), was isolated from urban sewage. Phylogenetic analyses revealed that VL1 is a novel species in the genus Litunavirus of subfamily Migulavirinae. The VL1 is a virulent phage as no genes encoding lysogeny, toxins or antibiotic resistance were identified. The therapeutic potential of phage VL1 was investigated and revealed that approximately 56% (34/60 strains) of MDR P. aeruginosa strains, isolated from companion animal diseases, could be lysed by VL1. In contrast, VL1 did not lyse other Gram-negative and Gram-positive bacteria suggesting its specificity of infection. Phage VL1 demonstrated high efficiency to reduce bacterial load (~ 6 log cell number reduction) and ~ 75% reduction of biofilm in pre-formed biofilms of MDR P. aeruginosa. The result of two of the three MDR P. aeruginosa infected Galleria mellonella larvae showed that VL1 could significantly increase the survival rate of infected larvae. Taken together, phage VL1 has genetic and biological properties that make it a potential candidate for phage therapy against P. aeruginosa infections.
Collapse
Affiliation(s)
- Varintip Lerdsittikul
- grid.10223.320000 0004 1937 0490Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- grid.10223.320000 0004 1937 0490The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- grid.10223.320000 0004 1937 0490The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Thassanant Atithep
- grid.494627.a0000 0004 4684 9800Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - Sukanya Apiratwarrasakul
- grid.10223.320000 0004 1937 0490Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Patoo Withatanung
- grid.10223.320000 0004 1937 0490Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Martha R. J. Clokie
- grid.9918.90000 0004 1936 8411Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sunee Korbsrisate
- grid.10223.320000 0004 1937 0490Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Characterization of newly isolated bacteriophage to control multi-drug resistant Pseudomonas aeruginosa colonizing incision wounds in a rat model: in vitro and in vivo approach. Life Sci 2022; 310:121085. [DOI: 10.1016/j.lfs.2022.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
|
19
|
Martins WMBS, Cino J, Lenzi MH, Sands K, Portal E, Hassan B, Dantas PP, Migliavacca R, Medeiros EA, Gales AC, Toleman MA. Diversity of lytic bacteriophages against XDR Klebsiella pneumoniae sequence type 16 recovered from sewage samples in different parts of the world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156074. [PMID: 35623509 DOI: 10.1016/j.scitotenv.2022.156074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages (phages) are viruses considered to be natural bacterial predators and widely detected in aquatic environments. Sewage samples are an important source of phage isolation since high density and diversity of bacterial cells are present, due to human, animal and household fluids. This study aims to investigate and characterise phages against an extremely drug-resistant (XDR) lineage, Klebsiella pneumoniae ST16, using sewage samples from different parts of the World. Sewage samples from Brazil, Bangladesh, Saudi Arabia, Thailand and the United Kingdom were collected and used to investigate phages against ten K. pneumoniae ST16 (hosts) recovered from infection sites. The phages were microbiological and genetically characterised by double-agar overlay (DLA), transmission electron microscopy and Illumina WGS. The host range against K. pneumoniae belonging to different sequence types was evaluated at different temperatures by spot test. Further phage characterisation, such as efficiency of plating, optimal phage temperature, and pH/temperature susceptibility, were conducted. Fourteen lytic phages were isolated, belonging to Autographiviridae, Ackermannviridae, Demerecviridae, Drexlerviridae, and Myoviridae families, from Brazil, Bangladesh, Saudi Arabia and Thailand and demonstrated a great genetic diversity. The viruses had good activity against our collection of clinical K. pneumoniae ST16 at room temperature and 37 °C, but also against other important Klebsiella clones such as ST11, ST15, and ST258. Temperature assays showed lytic activity in different temperatures, except for PWKp18 which only had activity at room temperature. Phages were stable between pH 5 and 10 with minor changes in phage activity, and 70 °C was the temperature able to kill all phages in this study. Using sewage from different parts of the World allowed us to have a set of highly efficient phages against an K. pneumoniae ST16 that can be used in the future to develop new tools to combat infections in humans or animals caused by this pathogen.
Collapse
Affiliation(s)
- Willames M B S Martins
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil.
| | - Juliana Cino
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Michael H Lenzi
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Kirsty Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Department of Zoology, University of Oxford, United Kingdom
| | - Edward Portal
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Brekhna Hassan
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Priscila P Dantas
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Eduardo A Medeiros
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Mark A Toleman
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
20
|
Pelyuntha W, Sanguankiat A, Kovitvadhi A, Vongkamjan K. Broad lytic spectrum of novel Salmonella phages on ciprofloxacin-resistant Salmonella contaminated in the broiler production chain. Vet World 2022; 15:2039-2045. [PMID: 36313854 PMCID: PMC9615508 DOI: 10.14202/vetworld.2022.2039-2045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Ciprofloxacin (CIP) is recommended for salmonellosis treatment as the drug of choice; however, overuse of this drug can cause drug resistance issues and failure to treat diseases. Phage therapy is an alternative approach for combatting CIP-resistant infection. This study aimed to estimate the prevalence of CIP-resistant Salmonella isolated from the broiler production chain and evaluated the lytic ability of novel Salmonella phages isolated from water samples. Materials and Methods: Samples were obtained from the broiler production chain and used for Salmonella isolation. serovar and CIP resistance of each isolate were characterized through latex agglutination and agar disk diffusion test, respectively. Water samples from different sources were acquired for phage isolation. The lytic activity of novel-isolated phages was also examined. Results: In this study, 51 Salmonella isolates were recovered from the broiler production chain (two commercial farms, one free-range farm, two slaughterhouses, and three stalls from the wet market). Kentucky was the major serovar characterized (16), followed by Typhimurium (9), Agona (5), Corvalis (5), Schwarzengrund (5), Singapore (3), Weltevreden (3), Mbandaka (2), Give (2), and Albany (1). The serovars that exhibited CIP resistance were 14/16 isolates of serovar Kentucky (87.5%) and one isolate of serovar Give (50%), whereas eight other serovars were susceptible to this drug. Overall, the prevalence of CIP-resistant Salmonella recovered from the sources included in this study was 29.4%. This study identified 11 Salmonella phages isolated from wastewater samples derived from broiler farms, wastewater treatment stations, and natural reservoirs. Our phages showed the total percentage of lysis ability ranging from 33.3% to 93.3% against CIP-resistant isolates. However, only one bacterial isolate, namely 210SL, recovered from the food contact surface of a wet market stall and was resistant to all phages. Conclusion: Diverse serovars of Salmonella were recovered in the broiler production chain in this study, while the isolates presenting CIP-resistant Salmonella were as high as 29.4%. Overall, Salmonella phages showed high lysis ability against these CIP-resistant Salmonella isolates, suggesting the potential application of phage-based treatments or biocontrol in the broiler production chain.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Arsooth Sanguankiat
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
21
|
Abstract
Antibiotics have transformed modern medicine. They are essential for treating infectious diseases and enable vital therapies and procedures. However, despite this success, their continued use in the 21st century is imperiled by two orthogonal challenges. The first is that the microbes targeted by these drugs evolve resistance to them over time. The second is that antibiotic discovery and development are no longer cost-effective using traditional reimbursement models. Consequently, there are a dwindling number of companies and laboratories dedicated to delivering new antibiotics, resulting in an anemic pipeline that threatens our control of infections. The future of antibiotics requires innovation in a field that has relied on highly traditional methods of discovery and development. This will require substantial changes in policy, quantitative understanding of the societal value of these drugs, and investment in alternatives to traditional antibiotics. These include narrow-spectrum drugs, bacteriophage, monoclonal antibodies, and vaccines, coupled with highly effective diagnostics. Addressing the antibiotic crisis to meet our future needs requires considerable investment in both research and development, along with ensuring a viable marketplace that encourages innovation. This review explores the past, present, and future of antimicrobial therapy.
Collapse
Affiliation(s)
- Michael A Cook
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
22
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
23
|
Boyer M, Wisniewski-Dyé F, Combrisson J, Bally R, Duponnois R, Costechareyre D. Nettle manure: an unsuspected source of bacteriophages active against various phytopathogenic bacteria. Arch Virol 2022; 167:1099-1110. [DOI: 10.1007/s00705-022-05391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
|
24
|
APTC-EC-2A: A Lytic Phage Targeting Multidrug Resistant E. coli Planktonic Cells and Biofilms. Microorganisms 2022; 10:microorganisms10010102. [PMID: 35056551 PMCID: PMC8779906 DOI: 10.3390/microorganisms10010102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli (E. coli) are common bacteria that colonize the human and animal gastrointestinal tract, where they help maintain a balanced microbiome. However, some E. coli strains are pathogenic and can cause serious infectious diseases and life-threatening complications. Due to the overuse of antibiotics and limited development of novel antibiotics, the emergence of antibiotic-resistant strains has threatened modern medicine, whereby common infections can become lethal. Phage therapy has once again attracted interest in recent years as an alternative treatment option to antibiotics for severe infections with antibiotic-resistant strains. The aim of this study was to isolate and characterize phage against multi-drug resistant E. coli isolated from clinical samples and hospital wastewater. For phage isolation, wastewater samples were collected from The Queen Elizabeth Hospital (Adelaide, SA, Australia) followed by phage enrichment as required. Microbiological assays, electron microscopy and genomic sequencing were carried out to characterize the phage. From the 10 isolated E. coli phages, E. coli phage APTC-EC-2A was the most promising and could lyse 6/7 E. coli clinical isolates. APTC-EC-2A was stable at a broad pH range (3–11) and could lyse the host E. coli at temperatures ranging between 30–50 °C. Furthermore, APTC-EC-2A could kill E. coli in planktonic and biofilm form. Electron microscopy and genomic sequencing indicated the phage to be from the Myoviridae family and of lytic nature. In conclusion, the newly isolated phage APTC-EC-2A has the desired properties that support its potential for development as a therapeutic agent against therapy refractory E. coli infections.
Collapse
|