1
|
Sinha AK, Laursen MF, Licht TR. Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends Microbiol 2025; 33:397-407. [PMID: 39095208 DOI: 10.1016/j.tim.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Luo X, Xing R, Xu M, Jiang HJ, Wang YR, Hu MY, Zhang H, Ge F, Zhang W, Wang HW. Environmentally relevant concentrations of DBDPE (decabromodiphenyl ethane) induce intestinal toxicity in silkworms (Bombyx mori L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125693. [PMID: 39818245 DOI: 10.1016/j.envpol.2025.125693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/28/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Decabromodiphenyl ethane (DBDPE) is one of the most extensively used novel brominated flame retardants, and it has been frequently detected in the global environment. Although organisms encounter various pollutants through the intestine, the toxicity effects of DBDPE exposure on the intestine and the potential mechanisms remain unclear. Here, by morphological observation, histopathology, high-throughput sequencing, and transcriptomics methods, we evaluated the effects of environmental (0.011 and 0.11 μg/g dw) and extreme DBDPE concentrations (1.1 and 11 μg/g dw) on the intestine of silkworms. Morphological observations revealed that 11 μg/g dw DBDPE significantly inhibited the development of silkworms. After DBDPE exposure, the intestinal tissue structure was significantly damaged. Furthermore, DBDPE exposure had a notably impact on the composition of the intestinal microbiota. Further RNA-seq analysis demonstrated that the transcription profiles of silkworms were markedly altered following DBDPE exposure, which was associated with enriched oxidative stress and protein export processes, downregulated transmembrane transport processes, and a series of disordered metabolic processes. Finally, the significant Spearman's correlation emphasizes the role of intestinal microbiota in the metabolic/immune dysregulation processes of silkworms. Overall, our results are the first to assess the toxic effects of environmentally relevant DBDPE concentrations on the insect intestine.
Collapse
Affiliation(s)
- Xue Luo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Rui Xing
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Man Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, 210023, China
| | - Yu-Rui Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Ming-Yue Hu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Hao Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Feng Ge
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, 210023, China.
| | - Hong-Wei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China.
| |
Collapse
|
3
|
Liversidge BD, Dodd SAS, Adolphe JL, Gomez DE, Blois SL, Verbrugghe A. The fecal metabolomic signature of a plant-based (vegan) diet compared to an animal-based diet in healthy adult client-owned dogs. J Anim Sci 2025; 103:skaf054. [PMID: 40036327 PMCID: PMC12056932 DOI: 10.1093/jas/skaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Despite the rising popularity of plant-based (vegan) diets for dogs, the metabolic effects of plant-based diets in dogs have not been thoroughly investigated. Evaluating the impact of a vegan diet on the fecal metabolome in dogs could offer valuable insight into the effects on gastrointestinal and overall health. This study evaluated the fecal metabolic signature of an experimental extruded vegan diet (PLANT) compared to a commercial extruded animal-based diet (MEAT) in healthy adult dogs. Sixty-one client-owned healthy adult dogs completed a randomized, double-blinded longitudinal study consisting of a 4-wk acclimation period, where all dogs received the MEAT diet, followed by a 12-wk experimental period where they either continued with the MEAT diet or switched to the PLANT diet. Fecal collections occurred at baseline (after 4-wk acclimation) and exit (after the experimental period). Fecal metabolites were quantified using 1H nuclear magnetic resonance spectroscopy. Multiple mixed model gamma linear regression was used to evaluate the association of metabolite concentration against age, sex, and body weight, along with an interaction between diet and time. Sixty-six metabolites were quantified. Only 2/66 metabolites differed between groups at baseline and within the MEAT diet group over time. In contrast, 46/66 metabolites differed in concentrations over time in response to feeding the PLANT diet. At the exit time-point, dogs fed the PLANT diet had increased metabolites related to carbohydrate fermentation, such as acetic (P < 0.01) and propanoic (P < 0.01) acid and increases in sugar metabolites when compared to the MEAT group. These findings indicate that the fecal metabolic signature of dogs fed a plant-based diet is distinct from dogs fed an animal-based diet, even if both diets have a similar nutrient profile and are processed similarly.
Collapse
Affiliation(s)
- Brooklynn D Liversidge
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Sarah A S Dodd
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Jennifer L Adolphe
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, CanadaS7N 5B4
- Petcurean Pet Nutrition, Chilliwack, BC, CanadaV2R 5M3
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Shauna L Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, CanadaN1G 2W1
| |
Collapse
|
4
|
Aparicio A, Sun Z, Gold DR, Lasky‐Su JA, Litonjua AA, Weiss ST, Lee‐Sarwar K, Liu Y. Genotype-microbiome-metabolome associations in early childhood and their link to BMI. MLIFE 2024; 3:573-577. [PMID: 39744095 PMCID: PMC11685832 DOI: 10.1002/mlf2.12153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/28/2024] [Indexed: 01/19/2025]
Abstract
Through the analysis of data from children aged 6 months to 8 years enrolled in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), significant simultaneous associations were identified between variants in the fragile histidine triad (FHIT) gene, children's body mass index, microbiome features related to obesity, and key lipids and amino acids. These patterns represent evidence of the genotype influence in shaping the host microbiome in developing stages and new potential biomarkers for childhood obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Andrea Aparicio
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
| | - Zheng Sun
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
| | - Diane R. Gold
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Jessica A. Lasky‐Su
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at StrongUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Scott T. Weiss
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
| | - Kathleen Lee‐Sarwar
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
- Division of Allergy and Clinical ImmunologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Vertex PharmaceuticalsBostonMassachusettsUSA
| | - Yang‐Yu Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| |
Collapse
|
5
|
Hickman B, Salonen A, Ponsero AJ, Jokela R, Kolho KL, de Vos WM, Korpela K. Gut microbiota wellbeing index predicts overall health in a cohort of 1000 infants. Nat Commun 2024; 15:8323. [PMID: 39333099 PMCID: PMC11436675 DOI: 10.1038/s41467-024-52561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The human gut microbiota is central in regulating all facets of host physiology, and in early life it is thought to influence the host's immune system and metabolism, affecting long-term health. However, longitudinally monitored cohorts with parallel analysis of faecal samples and health data are scarce. In our observational study we describe the gut microbiota development in the first 2 years of life and create a gut microbiota wellbeing index based on the microbiota development and health data in a cohort of nearly 1000 infants using clustering and trajectory modelling. We show that infants' gut microbiota development is highly predictable, following one of five trajectories, dependent on infant exposures, and predictive of later health outcomes. We characterise the natural healthy gut microbiota trajectory and several different dysbiotic trajectories associated with different health outcomes. Bifidobacterium and Bacteroides appear as early keystone organisms, directing microbiota development and consistently predicting positive health outcomes. A microbiota wellbeing index, based on the healthy development trajectory, is predictive of general health over the first 5 years. The results indicate that gut microbiota succession is part of infant physiological development, predictable, and malleable. This information can be utilised to improve the predictions of individual health risks.
Collapse
Affiliation(s)
- Brandon Hickman
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alise J Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Roosa Jokela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaija-Leena Kolho
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki, Stenbäckinkatu 11, FI-00029, HUS, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Deek RA, Ma S, Lewis J, Li H. Statistical and computational methods for integrating microbiome, host genomics, and metabolomics data. eLife 2024; 13:e88956. [PMID: 38832759 PMCID: PMC11149933 DOI: 10.7554/elife.88956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Large-scale microbiome studies are progressively utilizing multiomics designs, which include the collection of microbiome samples together with host genomics and metabolomics data. Despite the increasing number of data sources, there remains a bottleneck in understanding the relationships between different data modalities due to the limited number of statistical and computational methods for analyzing such data. Furthermore, little is known about the portability of general methods to the metagenomic setting and few specialized techniques have been developed. In this review, we summarize and implement some of the commonly used methods. We apply these methods to real data sets where shotgun metagenomic sequencing and metabolomics data are available for microbiome multiomics data integration analysis. We compare results across methods, highlight strengths and limitations of each, and discuss areas where statistical and computational innovation is needed.
Collapse
Affiliation(s)
- Rebecca A Deek
- Department of Biostatistics, University of PittsburghPittsburghUnited States
| | - Siyuan Ma
- Department of Biostatistics, Vanderbilt School of MedicineNashvilleUnited States
| | - James Lewis
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Mazzella V, Dell'Anno A, Etxebarría N, González-Gaya B, Nuzzo G, Fontana A, Núñez-Pons L. High microbiome and metabolome diversification in coexisting sponges with different bio-ecological traits. Commun Biol 2024; 7:422. [PMID: 38589605 PMCID: PMC11001883 DOI: 10.1038/s42003-024-06109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Marine Porifera host diverse microbial communities, which influence host metabolism and fitness. However, functional relationships between sponge microbiomes and metabolic signatures are poorly understood. We integrate microbiome characterization, metabolomics and microbial predicted functions of four coexisting Mediterranean sponges -Petrosia ficiformis, Chondrosia reniformis, Crambe crambe and Chondrilla nucula. Microscopy observations reveal anatomical differences in microbial densities. Microbiomes exhibit strong species-specific trends. C. crambe shares many rare amplicon sequence variants (ASV) with the surrounding seawater. This suggests important inputs of microbial diversity acquired by selective horizontal acquisition. Phylum Cyanobacteria is mainly represented in C. nucula and C. crambe. According to putative functions, the microbiome of P. ficiformis and C. reniformis are functionally heterotrophic, while C. crambe and C. nucula are autotrophic. The four species display distinct metabolic profiles at single compound level. However, at molecular class level they share a "core metabolome". Concurrently, we find global microbiome-metabolome association when considering all four sponge species. Within each species still, sets of microbe/metabolites are identified driving multi-omics congruence. Our findings suggest that diverse microbial players and metabolic profiles may promote niche diversification, but also, analogous phenotypic patterns of "symbiont evolutionary convergence" in sponge assemblages where holobionts co-exist in the same area.
Collapse
Affiliation(s)
- Valerio Mazzella
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Ischia Marine Centre, 80077, Ischia, Naples, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy
| | - Antonio Dell'Anno
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy.
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Néstor Etxebarría
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Belén González-Gaya
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Department of Biology, University of Naples Federico II, Via Cinthia-Bld. 7, 80126, Napoli, Italy
| | - Laura Núñez-Pons
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy.
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
8
|
Muller E, Shiryan I, Borenstein E. Multi-omic integration of microbiome data for identifying disease-associated modules. Nat Commun 2024; 15:2621. [PMID: 38521774 PMCID: PMC10960825 DOI: 10.1038/s41467-024-46888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Multi-omic studies of the human gut microbiome are crucial for understanding its role in disease across multiple functional layers. Nevertheless, integrating and analyzing such complex datasets poses significant challenges. Most notably, current analysis methods often yield extensive lists of disease-associated features (e.g., species, pathways, or metabolites), without capturing the multi-layered structure of the data. Here, we address this challenge by introducing "MintTea", an intermediate integration-based approach combining canonical correlation analysis extensions, consensus analysis, and an evaluation protocol. MintTea identifies "disease-associated multi-omic modules", comprising features from multiple omics that shift in concord and that collectively associate with the disease. Applied to diverse cohorts, MintTea captures modules with high predictive power, significant cross-omic correlations, and alignment with known microbiome-disease associations. For example, analyzing samples from a metabolic syndrome study, MintTea identifies a module with serum glutamate- and TCA cycle-related metabolites, along with bacterial species linked to insulin resistance. In another dataset, MintTea identifies a module associated with late-stage colorectal cancer, including Peptostreptococcus and Gemella species and fecal amino acids, in line with these species' metabolic activity and their coordinated gradual increase with cancer development. This work demonstrates the potential of advanced integration methods in generating systems-level, multifaceted hypotheses underlying microbiome-disease interactions.
Collapse
Affiliation(s)
- Efrat Muller
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Shiryan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
9
|
Chalifour B, Holzhausen EA, Lim JJ, Yeo EN, Shen N, Jones DP, Peterson BS, Goran MI, Liang D, Alderete TL. The potential role of early life feeding patterns in shaping the infant fecal metabolome: implications for neurodevelopmental outcomes. NPJ METABOLIC HEALTH AND DISEASE 2023; 1:2. [PMID: 38299034 PMCID: PMC10828959 DOI: 10.1038/s44324-023-00001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 02/02/2024]
Abstract
Infant fecal metabolomics can provide valuable insights into the associations of nutrition, dietary patterns, and health outcomes in early life. Breastmilk is typically classified as the best source of nutrition for nearly all infants. However, exclusive breastfeeding may not always be possible for all infants. This study aimed to characterize associations between levels of mixed breastfeeding and formula feeding, along with solid food consumption and the infant fecal metabolome at 1- and 6-months of age. As a secondary aim, we examined how feeding-associated metabolites may be associated with early life neurodevelopmental outcomes. Fecal samples were collected at 1- and 6-months, and metabolic features were assessed via untargeted liquid chromatography/high-resolution mass spectrometry. Feeding groups were defined at 1-month as 1) exclusively breastfed, 2) breastfed >50% of feedings, or 3) formula fed ≥50% of feedings. Six-month groups were defined as majority breastmilk (>50%) or majority formula fed (≥50%) complemented by solid foods. Neurodevelopmental outcomes were assessed using the Bayley Scales of Infant Development at 2 years. Changes in the infant fecal metabolome were associated with feeding patterns at 1- and 6-months. Feeding patterns were associated with the intensities of a total of 57 fecal metabolites at 1-month and 25 metabolites at 6-months, which were either associated with increased breastmilk or increased formula feeding. Most breastmilk-associated metabolites, which are involved in lipid metabolism and cellular processes like cell signaling, were associated with higher neurodevelopmental scores, while formula-associated metabolites were associated with lower neurodevelopmental scores. These findings offer preliminary evidence that feeding patterns are associated with altered infant fecal metabolomes, which may be associated with cognitive development later in life.
Collapse
Affiliation(s)
- Bridget Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | | | - Joseph J. Lim
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Emily N. Yeo
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Natalie Shen
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, GA USA
| | | | | | - Donghai Liang
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
10
|
Zhou A, Tang B, Xie Y, Li S, Xiao X, Wu L, Tu D, Wang S, Feng Y, Feng X, Lai Y, Ning S, Yang S. Changes of gut microbiota and short chain fatty acids in patients with Peutz-Jeghers syndrome. BMC Microbiol 2023; 23:373. [PMID: 38036954 PMCID: PMC10688050 DOI: 10.1186/s12866-023-03132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Peutz-Jeghers Syndromeis a rare autosomal dominant genetic disease characterized by gastrointestinal hamartomatous polyps and skin and mucous membrane pigmentation. The pathogenesis of PJS remains unclear; however, it may be associated with mutations in the STK11 gene, and there is currently no effective treatment available. The gut microbiota plays an important role in maintaining intestinal homeostasis in the human body, and an increasing number of studies have reported a relationship between gut microbiota and human health and disease. However, relatively few studies have been conducted on the gut microbiota characteristics of patients with PJS. In this study, we analyzed the characteristics of the gut microbiota of 79 patients with PJS using 16 S sequencing and measured the levels of short-chain fatty acids in the intestines. The results showed dysbiosis in the gut microbiota of patients with PJS, and decreased synthesis of short-chain fatty acids. Bacteroides was positively correlated with maximum polyp length, while Agathobacter was negatively correlated with age of onset. In addition, acetic acid, propionic acid, and butyric acid were positively correlated with the age of onset but negatively correlated with the number of polyps. Furthermore, the butyric acid level was negatively correlated with the frequency of endoscopic surgeries. In contrast, we compared the gut microbiota of STK11-positive and STK11-negative patients with PJS for the first time, but 16 S sequencing analysis revealed no significant differences. Finally, we established a random forest prediction model based on the gut microbiota characteristics of patients to provide a basis for the targeted diagnosis and treatment of PJS in the future.
Collapse
Affiliation(s)
- An Zhou
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Bo Tang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuhong Xie
- Department of Gastroenterology, Air Force Medical Center, Beijing, 100142, China
| | - Shengpeng Li
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xu Xiao
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Lingyi Wu
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Dianji Tu
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Sumin Wang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yunxuan Feng
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaojie Feng
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yi Lai
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Shoubin Ning
- Department of Gastroenterology, Air Force Medical Center, Beijing, 100142, China.
| | - Shiming Yang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
11
|
Xiao X, Cui Y, Lu H, Wang J, Yang J, Liu L, Liu Z, Peng X, Cao H, Liu X, Wei X. Strontium ranelate enriched Ruminococcus albus in the gut microbiome of Sprague-Dawley rats with postmenopausal osteoporosis. BMC Microbiol 2023; 23:365. [PMID: 38008735 PMCID: PMC10680188 DOI: 10.1186/s12866-023-03109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Gut microbiome is critical to our human health and is related to postmenopausal osteoporosis (PMO). Strontium ranelate (SrR) is an anti-osteoporosis oral drug that can promote osteoblast formation and inhibit osteoclast formation. However, the effect of SrR on gut microbiome has been rarely studied. Therefore, we investigated the effect of oral SrR on gut microbiome and metabolic profiles. RESULTS In this study, we used ovariectomized (OVX) Sprague-Dawley rats to construct a PMO model and applied oral SrR for 6 weeks. The relative abundance of intestinal microbiome was investigated by 16S rRNA metagenomic sequencing. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to analyze changes in metabolites of intestinal contents. Results demonstrated that 6-week oral SrR alleviated osteoporosis and significantly changed the composition of the gut microbiome and metabolic profiles of OVX rats. Ruminococcus, Akkermansia and Oscillospira were significantly enriched in the gut of OVX rats after 6-week oral SrR. Especially, the species R. albus showed the greatest importance by a random forest classifier between OVX and OVX_Sr group. The enrichment of R. albus in the gut was positively correlated with bone mineral density and the accumulation of lycopene and glutaric acid, which also significantly elevated after oral SrR. CONCLUSIONS We discovered that oral SrR can improve bone health while stimulate the accumulation of gut microbe R. albus and metabolites (lycopene and glutaric acid). The results suggested possible connections between oral SrR and the gut-bone axis, which may provide new insight into the treatment/prevention of osteoporosis.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Yuanyuan Cui
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Huigai Lu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Jiaqi Wang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Jing Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Long Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Zhixin Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Xiaohong Peng
- Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, PR China
| | - Hong Cao
- Department of Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Xinghui Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China.
| | - Xiuli Wei
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China.
| |
Collapse
|
12
|
Aparicio A, Sun Z, Gold DR, Litonjua AA, Weiss ST, Lee-Sarwar K, Liu YY. Genotype-microbiome-metabolome associations in early childhood, and their link to BMI and childhood obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298467. [PMID: 38014043 PMCID: PMC10680902 DOI: 10.1101/2023.11.13.23298467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The influence of genotype on defining the human gut microbiome has been extensively studied, but definite conclusions have not yet been found. To fill this knowledge gap, we leverage data from children enrolled in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) from 6 months to 8 years old. We focus on a pool of 12 genes previously found to be associated with the gut microbiome in independent studies, establishing a Bonferroni corrected significance level of p-value < 2.29 × 10 -6 . We identified significant associations between SNPs in the FHIT gene (known to be associated with obesity and type 2 diabetes) and obesity-related microbiome features, and the children's BMI through their childhood. Based on these associations, we defined a set of SNPs of interest and a set of taxa of interest. Taking a multi-omics approach, we integrated plasma metabolome data into our analysis and found simultaneous associations among children's BMI, the SNPs of interest, and the taxa of interest, involving amino acids, lipids, nucleotides, and xenobiotics. Using our association results, we constructed a quadripartite graph where each disjoint node set represents SNPs in the FHIT gene, microbial taxa, plasma metabolites, or BMI measurements. Network analysis led to the discovery of patterns that identify several genetic variants, microbial taxa and metabolites as new potential markers for obesity, type 2 diabetes, or insulin resistance risk.
Collapse
|
13
|
Cecchini L, Barmaz C, Cea MJC, Baeschlin H, Etter J, Netzer S, Bregy L, Marchukov D, Trigo NF, Meier R, Hirschi J, Wyss J, Wick A, Zingg J, Christensen S, Radan AP, Etter A, Müller M, Kaess M, Surbek D, Yilmaz B, Macpherson AJ, Sokollik C, Misselwitz B, Ganal-Vonarburg SC. The Bern Birth Cohort (BeBiCo) to study the development of the infant intestinal microbiota in a high-resource setting in Switzerland: rationale, design, and methods. BMC Pediatr 2023; 23:560. [PMID: 37946167 PMCID: PMC10637001 DOI: 10.1186/s12887-023-04198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/17/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Microbiota composition is fundamental to human health with the intestinal microbiota undergoing critical changes within the first two years of life. The developing intestinal microbiota is shaped by maternal seeding, breast milk and its complex constituents, other nutrients, and the environment. Understanding microbiota-dependent pathologies requires a profound understanding of the early development of the healthy infant microbiota. METHODS Two hundred and fifty healthy pregnant women (≥20 weeks of gestation) from the greater Bern area will be enrolled at Bern University hospital's maternity department. Participants will be followed as mother-baby pairs at delivery, week(s) 1, 2, 6, 10, 14, 24, 36, 48, 96, and at years 5 and 10 after birth. Clinical parameters describing infant growth and development, morbidity, and allergic conditions as well as socio-economic, nutritional, and epidemiological data will be documented. Neuro-developmental outcomes and behavior will be assessed by child behavior checklists at and beyond 2 years of age. Maternal stool, milk, skin and vaginal swabs, infant stool, and skin swabs will be collected at enrolment and at follow-up visits. For the primary outcome, the trajectory of the infant intestinal microbiota will be characterized by 16S and metagenomic sequencing regarding composition, metabolic potential, and stability during the first 2 years of life. Secondary outcomes will assess the cellular and chemical composition of maternal milk, the impact of nutrition and environment on microbiota development, the maternal microbiome transfer at vaginal or caesarean birth and thereafter on the infant, and correlate parameters of microbiota and maternal milk on infant growth, development, health, and mental well-being. DISCUSSION The Bern birth cohort study will provide a detailed description and normal ranges of the trajectory of microbiota maturation in a high-resource setting. These data will be compared to data from low-resource settings such as from the Zimbabwe-College of Health-Sciences-Birth-Cohort study. Prospective bio-sampling and data collection will allow studying the association of the microbiota with common childhood conditions concerning allergies, obesity, neuro-developmental outcomes , and behaviour. Trial registration The trial has been registered at www. CLINICALTRIALS gov , Identifier: NCT04447742.
Collapse
Affiliation(s)
- Luca Cecchini
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Colette Barmaz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Maria José Coloma Cea
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hannah Baeschlin
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Julian Etter
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Stefanie Netzer
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Leonie Bregy
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Dmitrij Marchukov
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Rachel Meier
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Jasmin Hirschi
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Jacqueline Wyss
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Andrina Wick
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Joelle Zingg
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Sandro Christensen
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Anda-Petronela Radan
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Annina Etter
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Martin Müller
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Andrew J Macpherson
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Christiane Sokollik
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Benjamin Misselwitz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Stephanie C Ganal-Vonarburg
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|
14
|
Wang N, Zhang J, Yu Z, Yan X, Zhang L, Peng H, Chen C, Li R. Oropharyngeal administration of colostrum targeting gut microbiota and metabolites in very preterm infants: protocol for a multicenter randomized controlled trial. BMC Pediatr 2023; 23:508. [PMID: 37845612 PMCID: PMC10577906 DOI: 10.1186/s12887-023-04346-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Oropharyngeal administration of colostrum (OAC) has an immune-stimulating effect on oropharyngeal-associated lymphoid tissue, and can promote the maturation of the gastrointestinal tract. However, how OAC promotes intestinal maturation in preterm infants by altering gut microbiota remains unclear. We aim to assess changes in gut microbiota and metabolites after OAC in very preterm infants. METHODS A multicenter, double-blind, randomized controlled trial will be conducted in three large neonatal intensive care units in Shenzhen, China, with preterm infants with gestational age less than 32 weeks at birth and birth weight less than 1500 g. It is estimated that 320 preterm infants will be enrolled in this study within one year. The intervention group will receive oropharyngeal administration of 0.2 ml colostrum every 3 h, starting between the first 48 to 72 h and continued for 5 consecutive days. Following a similar administration scheme, the control group will receive oropharyngeal administration of sterile water. Stool samples will be collected at the first defecation, as well as on the 7th, 14th, 21st and 28th days after birth for analysis of effect of OAC on gut microbiota and metabolites through 16sRNA gene sequencing and liquid chromatography-mass spectrometry. DISCUSSION This proposal advocates for the promotion of OAC as a safe and relatively beneficial protocol in neonatal intensive care units, which may contribute to the establishment of a dominant intestinal flora. Findings of this study may help improve the health outcomes of preterm infants by establishment of targeted gut microbiota in future studies. TRIAL REGISTRATION NCT05481866 (registered July 30, 2022 on ClinicalTrials.gov).
Collapse
Affiliation(s)
- Na Wang
- Department of Neonatology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Jia Zhang
- Department of Neonatology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Zhangbin Yu
- Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Xudong Yan
- Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lian Zhang
- Department of Neonatology, Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Haibo Peng
- Department of Neonatology, Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Cheng Chen
- Department of Neonatology, Longgang Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Rui Li
- Department of Neonatology, Longgang Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Jariyasopit N, Khoomrung S. Mass spectrometry-based analysis of gut microbial metabolites of aromatic amino acids. Comput Struct Biotechnol J 2023; 21:4777-4789. [PMID: 37841334 PMCID: PMC10570628 DOI: 10.1016/j.csbj.2023.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Small molecules derived from gut microbiota have been increasingly investigated to better understand the functional roles of the human gut microbiome. Microbial metabolites of aromatic amino acids (AAA) have been linked to many diseases, such as metabolic disorders, chronic kidney diseases, inflammatory bowel disease, diabetes, and cancer. Important microbial AAA metabolites are often discovered via global metabolite profiling of biological specimens collected from humans or animal models. Subsequent metabolite identity confirmation and absolute quantification using targeted analysis enable comparisons across different studies, which can lead to the establishment of threshold concentrations of potential metabolite biomarkers. Owing to their excellent selectivity and sensitivity, hyphenated mass spectrometry (MS) techniques are often employed to identify and quantify AAA metabolites in various biological matrices. Here, we summarize the developments over the past five years in MS-based methodology for analyzing gut microbiota-derived AAA. Sample preparation, method validation, analytical performance, and statistical methods for correlation analysis are discussed, along with future perspectives.
Collapse
Affiliation(s)
- Narumol Jariyasopit
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
16
|
Bastos-Moreira Y, Ouédraogo L, De Boevre M, Argaw A, de Kok B, Hanley-Cook GT, Deng L, Ouédraogo M, Compaoré A, Tesfamariam K, Ganaba R, Huybregts L, Toe LC, Lachat C, Kolsteren P, De Saeger S, Dailey-Chwalibóg T. A Multi-Omics and Human Biomonitoring Approach to Assessing the Effectiveness of Fortified Balanced Energy-Protein Supplementation on Maternal and Newborn Health in Burkina Faso: A Study Protocol. Nutrients 2023; 15:4056. [PMID: 37764838 PMCID: PMC10535470 DOI: 10.3390/nu15184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Fortified balanced energy-protein (BEP) supplementation is a promising intervention for improving maternal health, birth outcomes and infant growth in low- and middle-income countries. This nested biospecimen sub-study aimed to evaluate the physiological effect of multi-micronutrient-fortified BEP supplementation on pregnant and lactating women and their infants. Pregnant women (15-40 years) received either fortified BEP and iron-folic acid (IFA) (intervention) or IFA only (control) throughout pregnancy. The same women were concurrently randomized to receive either a fortified BEP supplement during the first 6 months postpartum in combination with IFA for the first 6 weeks (i.e., intervention) or the postnatal standard of care, which comprised IFA alone for 6 weeks postpartum (i.e., control). Biological specimens were collected at different timepoints. Multi-omics profiles will be characterized to assess the mediating effect of BEP supplementation on the different trial arms and its effect on maternal health, as well as birth and infant growth outcomes. The mediating effect of the exposome in the relationship between BEP supplementation and maternal health, birth outcomes and infant growth were characterized via biomonitoring markers of air pollution, mycotoxins and environmental contaminants. The results will provide holistic insight into the granular physiological effects of prenatal and postnatal BEP supplementation.
Collapse
Affiliation(s)
- Yuri Bastos-Moreira
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Lionel Ouédraogo
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
- Centre Muraz, Bobo-Dioulasso 01 BP 390, Burkina Faso
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Alemayehu Argaw
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Brenda de Kok
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Giles T. Hanley-Cook
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Lishi Deng
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Moctar Ouédraogo
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (M.O.); (A.C.); (R.G.)
| | - Anderson Compaoré
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (M.O.); (A.C.); (R.G.)
| | - Kokeb Tesfamariam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Rasmané Ganaba
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (M.O.); (A.C.); (R.G.)
| | - Lieven Huybregts
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
- Nutrition, Diets, and Health Unit, Department of Food and Nutrition Policy, International Food Policy Research Institute (IFPRI), Washington, DC 20005, USA
| | - Laeticia Celine Toe
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
- Unité Nutrition et Maladies Métaboliques, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Patrick Kolsteren
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng 2028, South Africa
| | - Trenton Dailey-Chwalibóg
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| |
Collapse
|
17
|
Chen C, Chen W, Ding H, Wu P, Zhang G, Xie K, Zhang T. High-fat diet-induced gut microbiota alteration promotes lipogenesis by butyric acid/miR-204/ACSS2 axis in chickens. Poult Sci 2023; 102:102856. [PMID: 37390560 PMCID: PMC10331483 DOI: 10.1016/j.psj.2023.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023] Open
Abstract
The gut microbiota is known to have significant involvement in the regulation of lipogenesis and adipogenesis, yet the mechanisms responsible for this relationship remain poorly understood. The current study aims to provide insight into the potential mechanisms by which the gut microbiota modulates lipogenesis in chickens. Using chickens fed with a normal-fat diet (NFD, n = 5) and high-fat diet (HFD, n = 5), we analyzed the correlation between gut microbiota, cecal metabolomics, and lipogenesis by 16s rRNA sequencing, miRNA and mRNA sequencing as well as targeted metabolomics analysis. The potential metabolite/miRNA/mRNA axis regulated by gut microbiota was identified using chickens treated with antibiotics (ABX, n = 5). The possible mechanism of gut microbiota regulating chicken lipogenesis was confirmed by fecal microbiota transplantation (FMT) from chickens fed with NFD to chickens fed with HFD (n = 5). The results showed that HFD significantly altered gut microbiota composition and enhanced chicken lipogenesis, with a significant correlation between 3. Furthermore, HFD significantly altered the hepatic miRNA expression profiles and reduced the abundance of hepatic butyric acid. Procrustes analysis indicated that the HFD-induced dysbiosis of the gut microbiota might affect the expression profiles of hepatic miRNA. Specifically, HFD-induced gut microbiota dysbiosis may reduce the abundance of butyric acid and downregulate the expression of miR-204 in the liver. Multiomics analysis identified ACSS2 as a target gene of miR-204. Gut microbiota depletion by an antibiotic cocktail (ABX) showed a gut microbiota-dependent manner in the abundance of butyric acid and the expression of miR-204/ACSS2, which have been observed to be significantly correlated. Fecal microbiota transplantation from NFD chickens into HFD chickens effectively attenuated the HFD-induced excessive lipogenesis, elevated the abundance of butyric acid and the relative expression of miR-204, and reduced the expression of ACSS2 in the liver. Mechanistically, our results showed that the gut microbiota plays an antiobesity role by regulating the butyric acid/miR-204/ACSS2 axis in chickens. This work contributed to a better understanding of the functions of gut microbiota in regulating chicken lipogenesis.
Collapse
Affiliation(s)
- Can Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Weilin Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hao Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
18
|
Awan I, Schultz E, Sterrett JD, Dawud LM, Kessler LR, Schoch D, Lowry CA, Feldman-Winter L, Phadtare S. A Pilot Study Exploring Temporal Development of Gut Microbiome/Metabolome in Breastfed Neonates during the First Week of Life. Pediatr Gastroenterol Hepatol Nutr 2023; 26:99-115. [PMID: 36950061 PMCID: PMC10025571 DOI: 10.5223/pghn.2023.26.2.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/08/2022] [Accepted: 01/07/2023] [Indexed: 03/24/2023] Open
Abstract
PURPOSE Exclusive breastfeeding promotes gut microbial compositions associated with lower rates of metabolic and autoimmune diseases. Its cessation is implicated in increased microbiome-metabolome discordance, suggesting a vulnerability to dietary changes. Formula supplementation is common within our low-income, ethnic-minority community. We studied exclusively breastfed (EBF) neonates' early microbiome-metabolome coupling in efforts to build foundational knowledge needed to target this inequality. METHODS Maternal surveys and stool samples from seven EBF neonates at first transitional stool (0-24 hours), discharge (30-48 hours), and at first appointment (days 3-5) were collected. Survey included demographics, feeding method, medications, medical history and tobacco and alcohol use. Stool samples were processed for 16S rRNA gene sequencing and lipid analysis by gas chromatography-mass spectrometry. Alpha and beta diversity analyses and Procrustes randomization for associations were carried out. RESULTS Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the most abundant taxa. Variation in microbiome composition was greater between individuals than within (p=0.001). Palmitic, oleic, stearic, and linoleic acids were the most abundant lipids. Variation in lipid composition was greater between individuals than within (p=0.040). Multivariate composition of the metabolome, but not microbiome, correlated with time (p=0.030). Total lipids, saturated lipids, and unsaturated lipids concentrations increased over time (p=0.012, p=0.008, p=0.023). Alpha diversity did not correlate with time (p=0.403). Microbiome composition was not associated with each samples' metabolome (p=0.450). CONCLUSION Neonate gut microbiomes were unique to each neonate; respective metabolome profiles demonstrated generalizable temporal developments. The overall variability suggests potential interplay between influences including maternal breastmilk composition, amount consumed and living environment.
Collapse
Affiliation(s)
- Imad Awan
- Department of Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Emily Schultz
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - John D. Sterrett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Lamya’a M. Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Lyanna R. Kessler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Deborah Schoch
- Cooper Medical School of Rowan University and Cooper University Hospital, Camden, NJ, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Lori Feldman-Winter
- Cooper Medical School of Rowan University and Cooper University Hospital, Camden, NJ, USA
| | - Sangita Phadtare
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
19
|
Zhang G, Ma F, Zhang Z, Qi Z, Luo M, Yu Y. Associated long-term effects of decabromodiphenyl ethane on the gut microbial profiles and metabolic homeostasis in Sprague-Dawley rat offspring. ENVIRONMENT INTERNATIONAL 2023; 172:107802. [PMID: 36764182 DOI: 10.1016/j.envint.2023.107802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) as a widely used brominated flame retardant is harmful to human health due to its toxicity, including cardiovascular toxicity, reproductive toxicity, and hepatotoxicity. However, the knowledge of the long-term effects and structural and metabolic function influence on gut microbiota from DBDPE exposure remains limited. This study was mainly aimed at the gut microbiome and fecal metabolome of female rats and their offspring exposed to DBDPE in early life. 16S rRNA gene sequencing demonstrated that maternal DBDPE exposure could increase the α-diversity of gut microbiota in immature offspring while decreasing the abundance of Bifidobacterium, Clostridium, Muribaculum, Escherichia, and Lactobacillus in adult offspring. The nonmetric multidimensional scaling showed a consistency in the alternation of β-diversity between pregnant rats and their adult offspring. Furthermore, the short-chain fatty acids produced by gut microbiota dramatically increased in adult offspring after maternal DBDPE exposure, revealing that DBDPE treatment disrupted the gut microbial compositions and altered the gut community's metabolic functions. Untargeted metabolomics identified 41 differential metabolites and seven metabolic pathways between adult offspring from various groups. Targeted metabolomic showed that maternal high dose DBDPE exposure obviously decreased the level of glutathione, taurine, and l-carnitine in their adult offspring, which verified the correlation between weight loss and amino acid metabolites. An interesting link between some gut bacteria (especially the Firmicutes) and fecal metabolites demonstrated the shifts in gut microbiota may drive the metabolic process of fecal metabolites. The current findings provide new insight into long-term effects on human health.
Collapse
Affiliation(s)
- Guoxia Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Fengmin Ma
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ziwei Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqiong Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
20
|
Loganathan T, Priya Doss C G. The influence of machine learning technologies in gut microbiome research and cancer studies - A review. Life Sci 2022; 311:121118. [DOI: 10.1016/j.lfs.2022.121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
21
|
Moschino L, Verlato G, Duci M, Cavicchiolo ME, Guiducci S, Stocchero M, Giordano G, Fascetti Leon F, Baraldi E. The Metabolome and the Gut Microbiota for the Prediction of Necrotizing Enterocolitis and Spontaneous Intestinal Perforation: A Systematic Review. Nutrients 2022; 14:nu14183859. [PMID: 36145235 PMCID: PMC9506026 DOI: 10.3390/nu14183859] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the most devastating gastrointestinal emergency in preterm neonates. Research on early predictive biomarkers is fundamental. This is a systematic review of studies applying untargeted metabolomics and gut microbiota analysis to evaluate the differences between neonates affected by NEC (Bell’s stage II or III), and/or by spontaneous intestinal perforation (SIP) versus healthy controls. Five studies applying metabolomics (43 cases, 95 preterm controls) and 20 applying gut microbiota analysis (254 cases, 651 preterm controls, 22 term controls) were selected. Metabolomic studies utilized NMR spectroscopy or mass spectrometry. An early urinary alanine/histidine ratio >4 showed good sensitivity and predictive value for NEC in one study. Samples collected in proximity to NEC diagnosis demonstrated variable pathways potentially related to NEC. In studies applying untargeted gut microbiota analysis, the sequencing of the V3−V4 or V3 to V5 regions of the 16S rRNA was the most used technique. At phylum level, NEC specimens were characterized by increased relative abundance of Proteobacteria compared to controls. At genus level, pre-NEC samples were characterized by a lack or decreased abundance of Bifidobacterium. Finally, at the species level Bacteroides dorei, Clostridium perfringens and perfringens-like strains dominated early NEC specimens, whereas Clostridium butyricum, neonatale and Propionibacterium acnei those at disease diagnosis. Six studies found a lower Shannon diversity index in cases than controls. A clear separation of cases from controls emerged based on UniFrac metrics in five out of seven studies. Importantly, no studies compared NEC versus SIP. Untargeted metabolomics and gut microbiota analysis are interrelated strategies to investigate NEC pathophysiology and identify potential biomarkers. Expression of quantitative measurements, data sharing via biorepositories and validation studies are fundamental to guarantee consistent comparison of results.
Collapse
Affiliation(s)
- Laura Moschino
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
- Correspondence: ; Tel.: +39-049-821-3548
| | - Giovanna Verlato
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Miriam Duci
- Paediatric Surgery, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Maria Elena Cavicchiolo
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Silvia Guiducci
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Matteo Stocchero
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
- Laboratory of Mass Spectrometry and Metabolomics, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Giuseppe Giordano
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
- Laboratory of Mass Spectrometry and Metabolomics, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Francesco Fascetti Leon
- Paediatric Surgery, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
| |
Collapse
|
22
|
Amevor FK, Cui Z, Du X, Feng J, Shu G, Ning Z, Xu D, Deng X, Song W, Wu Y, Cao X, Wei S, He J, Kong F, Du X, Tian Y, Karikari B, Li D, Wang Y, Zhang Y, Zhu Q, Zhao X. Synergy of Dietary Quercetin and Vitamin E Improves Cecal Microbiota and Its Metabolite Profile in Aged Breeder Hens. Front Microbiol 2022; 13:851459. [PMID: 35656004 PMCID: PMC9152675 DOI: 10.3389/fmicb.2022.851459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
In the present study, the synergistic effects of quercetin (Q) and vitamin E (E) on cecal microbiota composition and function, as well as the microbial metabolic profile in aged breeder hens were investigated. A total of 400 (65 weeks old) Tianfu breeder hens were randomly allotted to four experimental groups (four replicates per group). The birds were fed diets containing quercetin at 0.4 g/kg, vitamin E (0.2 g/kg), quercetin and vitamin E (QE; 0.4 g/kg and 0.2 g/kg), and a basal diet for a period of 10 wks. After the 10 week experimental period, the cecal contents of 8 aged breeder hens per group were sampled aseptically and subjected to high-throughput 16S rRNA gene sequencing and untargeted metabolomic analysis. The results showed that the relative abundances of phyla Bacteroidota, Firmicutes, and Actinobacteriota were the most prominent among all the dietary groups. Compared to the control group, the relative abundance of the families Bifidobacteriaceae, Lachnospiraceae, Tannerellaceae, Mathonobacteriaceae, Barnesiellaceae, and Prevotellaceae were enriched in the QE group; and Bacteroidaceae, Desulfovibrionaceae, Peptotostretococcaceae, and Fusobacteriaceae were enriched in the Q group, whereas those of Lactobacillaceae, Veillonellaceae, Ruminococcaceae, Akkermansiaceae, and Rikenellaceae were enriched in the E group compared to the control group. Untargeted metabolomics analyses revealed that Q, E, and QE modified the abundance of several metabolites in prominent pathways including ubiquinone and other terpenoid-quinone biosynthesis, regulation of actin cytoskeleton, insulin secretion, pancreatic secretion, nicotine addiction, and metabolism of xenobiotics by cytochrome P450. Furthermore, key cecal microbiota, significantly correlated with important metabolites, for example, (S)-equol positively correlated with Alistipes and Chlamydia in E_vs_C, and negatively correlated with Olsenella, Paraprevotella, and Mucispirillum but, a contrary trend was observed with Parabacteroides in QE_vs_C. This study establishes that the synergy of quercetin and vitamin E alters the cecal microbial composition and metabolite profile in aged breeder hens, which lays a foundation for chicken improvement programs.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, College of Agriculture and Animal Husbandry, Tibet Autonomous Region, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Weizhen Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Benjamin Karikari
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Nanjing Agricultural University, Nanjing, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Linehan K, Dempsey EM, Ryan CA, Ross RP, Stanton C. First encounters of the microbial kind: perinatal factors direct infant gut microbiome establishment. MICROBIOME RESEARCH REPORTS 2022; 1:10. [PMID: 38045649 PMCID: PMC10688792 DOI: 10.20517/mrr.2021.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2023]
Abstract
The human gut microbiome harbors a diverse range of microbes that play a fundamental role in the health and well-being of their host. The early-life microbiome has a major influence on human development and long-term health. Perinatal factors such as maternal nutrition, antibiotic use, gestational age and mode of delivery influence the initial colonization, development, and function of the neonatal gut microbiome. The perturbed early-life gut microbiome predisposes infants to diseases in early and later life. Understanding how perinatal factors guide and shape the composition of the early-life microbiome is essential to improving infant health. The following review provides a synopsis of perinatal factors with the most decisive influences on initial microbial colonization of the infant gut.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
| |
Collapse
|
24
|
Lu HL, Kang CQ, Meng QY, Hu JR, Melvin SD. Functional and hepatic metabolite changes in aquatic turtle hatchlings exposed to the anti-androgenic fungicide vinclozolin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113220. [PMID: 35066435 DOI: 10.1016/j.ecoenv.2022.113220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Many man-made chemicals that are released into water bodies in agricultural landscapes have been identified as endocrine disruptors and can cause serious impacts on the growth and survival of aquatic species living in these environments. However, very little attention has been paid to their toxicological effects in cultured non-fish species, such as aquatic turtles. We exposed hatchlings of the Chinese soft-shelled turtle (Pelodiscus sinensis) to different concentrations of vinclozolin (0, 5, 50 and 500 μg/L) for 60 days to assess physiological and metabolic impacts of this fungicide. Despite no death occurrence, hatchling turtles exposed to the highest concentration of vinclozolin consumed less food, grew more slowly (resulting in smaller body size after exposure) and performed more poorly in behavioral swimming tests than controls and turtles exposed to lower concentrations. Hepatic metabolite profiles acquired via liquid chromatography-mass spectrometry (LC-MS) revealed multiple metabolic perturbations related to amino acid, lipid, and fatty acid metabolism in animals exposed to environmentally relevant concentrations. Specifically, many critical metabolites involved in energy-related metabolic pathways (such as some intermediates in the tricarboxylic acid cycle, lactate, and some amino acids) were present in livers of hatchling turtles exposed vinclozolin, though at lower concentrations, reflecting energy metabolism dysregulation induced by exposure to this fungicide. Overall, our results suggest that the changes in growth and behavioral performances caused by chronic vinclozolin exposure may be associated with internal physiological and metabolic disorders mediated at the biochemical level.
Collapse
Affiliation(s)
- Hong-Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Chun-Quan Kang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qin-Yuan Meng
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jian-Rao Hu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
25
|
Renwick VL, Stewart CJ. Exploring functional metabolites in preterm infants. Acta Paediatr 2022; 111:45-53. [PMID: 34626496 DOI: 10.1111/apa.16146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022]
Abstract
AIM Metabolomics is the study of small molecules that represent the functional end points of cellular reactions that can impact health. Necrotising enterocolitis (NEC) and late onset sepsis (LOS) are the main cause of death in preterm infants surviving the initial days of life. METHODS This review will explore and summarise the current literature exploring metabolomics in preterm infants. RESULTS There are a relatively limited number of studies investigating metabolomics in preterm infants with NEC and/or LOS and matched controls. Nonetheless, it is evident across longitudinally age-related metabolomic studies that there are significant changes in metabolite profiles post-partum and over the first year of life. Existing studies have reported associations between the metabolite profiles of serum, urine and stool in health and disease in preterm infants. Although some studies have found selected metabolites are associated with disease, the specific metabolites vary from study to study, and larger studies are required. Excitingly, recent work has also begun to untangle how microbially produced metabolites can impact immunoregulation of the infant. CONCLUSION Metabolic exploration is an emerging research area with huge potential for developing novel biomarkers and better understanding disease processes in preterm infants.
Collapse
Affiliation(s)
- Victoria L. Renwick
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
| | - Christopher J. Stewart
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
26
|
A Meta-Omics Analysis Unveils the Shift in Microbial Community Structures and Metabolomics Profiles in Mangrove Sediments Treated with a Selective Actinobacterial Isolation Procedure. Molecules 2021; 26:molecules26237332. [PMID: 34885912 PMCID: PMC8658942 DOI: 10.3390/molecules26237332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Mangrove sediment ecosystems in the coastal areas of the Yucatan peninsula are unique environments, influenced by their karstic origin and connection with the world’s largest underground river. The microbial communities residing in these sediments are influenced by the presence of mangrove roots and the trading chemistry for communication between sediment bacteria and plant roots can be targeted for secondary metabolite research. To explore the secondary metabolite production potential of microbial community members in mangrove sediments at the “El Palmar” natural reserve in Sisal, Yucatan, a combined meta-omics approach was applied. The effects of a cultivation medium reported to select for actinomycetes within mangrove sediments’ microbial communities was also analyzed. The metabolome of the microbial communities was analyzed by high-resolution liquid chromatography-tandem mass spectrometry, and molecular networking analysis was used to investigate if known natural products and their variants were present. Metagenomic results suggest that the sediments from “El Palmar” harbor a stable bacterial community independently of their distance from mangrove tree roots. An unexpected decrease in the observed abundance of actinomycetes present in the communities occurred when an antibiotic-amended medium considered to be actinomycete-selective was applied for a 30-day period. However, the use of this antibiotic-amended medium also enhanced production of secondary metabolites within the microbial community present relative to the water control, suggesting the treatment selected for antibiotic-resistant bacteria capable of producing a higher number of secondary metabolites. Secondary metabolite mining of “El Palmar” microbial community metagenomes identified polyketide synthase and non-ribosomal peptide synthetases’ biosynthetic genes in all analyzed metagenomes. The presence of these genes correlated with the annotation of several secondary metabolites from the Global Natural Product Social Molecular Networking database. These results highlight the biotechnological potential of the microbial communities from “El Palmar”, and show the impact selective media had on the composition of communities of actinobacteria.
Collapse
|
27
|
Association of Cesarean Delivery and Formula Supplementation with the Stool Metabolome of 6-Week-Old Infants. Metabolites 2021; 11:metabo11100702. [PMID: 34677417 PMCID: PMC8540440 DOI: 10.3390/metabo11100702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cesarean delivery and formula feeding have both been implicated as important factors associated with perturbations to the infant gut microbiome. To investigate the functional metabolic response of the infant gut microbial milieu to these factors, we profiled the stool metabolomes of 121 infants from a US pregnancy cohort study at approximately 6 weeks of life and evaluated associations with delivery mode and feeding method. Multivariate analysis of six-week stool metabolomic profiles indicated discrimination by both delivery mode and diet. For diet, exclusively breast-fed infants exhibited metabolomic profiles that were distinct from both exclusively formula-fed and combination-fed infants, which were relatively more similar to each other in metabolomic profile. We also identified individual metabolites that were important for differentiating delivery mode groups and feeding groups and metabolic pathways related to delivery mode and feeding type. We conclude based on previous work and this current study that the microbial communities colonizing the gastrointestinal tracts of infants are not only taxonomically, but also functionally distinct when compared according to delivery mode and feeding groups. Further, different sets of metabolites and metabolic pathways define delivery mode and diet metabotypes.
Collapse
|