1
|
Verster AJ, Salerno P, Valls R, Barrack K, Price CE, McClure EA, Madan JC, O’Toole GA, Sanville JL, Ross BD. Persistent delay in maturation of the developing gut microbiota in infants with cystic fibrosis. mBio 2025; 16:e0342024. [PMID: 39945545 PMCID: PMC11898760 DOI: 10.1128/mbio.03420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/23/2025] [Indexed: 02/19/2025] Open
Abstract
The healthy human infant gut microbiome undergoes stereotypical changes in taxonomic composition between birth and maturation to an adult-like stable state. During this time, extensive communication between microbiota and the host immune system contributes to health status later in life. Although there are many reported associations between microbiota compositional alterations and disease in adults, less is known about how microbiome development is altered in pediatric diseases. One pediatric disease linked to altered gut microbiota composition is cystic fibrosis (CF), a multi-organ genetic disease involving impaired chloride secretion across epithelia and heightened inflammation both in the gut and at other body sites. Here, we use shotgun metagenomics to profile the strain-level composition and developmental dynamics of the infant fecal microbiota from several CF and non-CF longitudinal cohorts spanning from birth to greater than 36 months of life. We identify a set of keystone species that define microbiota development in early life in non-CF infants but are missing or decreased in relative abundance in infants with CF, resulting in a delayed pattern of microbiota maturation, persistent entrenchment in a transitional developmental phase, and subsequent failure to attain an adult-like stable microbiota. Delayed maturation is strongly associated with cumulative antibiotic treatments, and we also detect the increased relative abundance of oral-derived bacteria and higher levels of fungi in infants with CF, features that are associated with decreased gut bacterial density. These findings suggest the potential for future directed therapies targeted at overcoming developmental delays in microbiota maturation for infants with CF.IMPORTANCEThe human gastrointestinal tract harbors a diversity of microbes that colonize upon birth and collectively contribute to host health throughout life. Infants with the disease cystic fibrosis (CF) harbor altered gut microbiota compared to non-CF counterparts, with lower levels of beneficial bacteria. How this altered population is established in infants with CF and how it develops over the first years of life is not well understood. By leveraging multiple large non-CF infant fecal metagenomic data sets and samples from a CF cohort collected prior to highly effective modulator therapy, we define microbiome maturation in infants up to 3 years of age. Our findings identify conserved age-diagnostic species in the non-CF infant microbiome that are diminished in abundance in CF counterparts that instead exhibit an enrichment of oral-derived bacteria and fungi associated with antibiotic exposure. Together, our study builds toward microbiota-targeted therapy to restore healthy microbiota dynamics in infants with CF.
Collapse
Affiliation(s)
- Adrian J. Verster
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Paige Salerno
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Rebecca Valls
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Kaitlyn Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Courtney E. Price
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Emily A. McClure
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Juliette C. Madan
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Julie L. Sanville
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Benjamin D. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Asensio-Grau A, Garriga M, Vicente S, Andrés A, Ribes-Koninckx C, Calvo-Lerma J. The Impact of Complementary Feeding on Fecal Microbiota in Exclusively Breast-Fed Infants with Cystic Fibrosis (A Descriptive Study). Nutrients 2024; 16:4071. [PMID: 39683464 PMCID: PMC11643620 DOI: 10.3390/nu16234071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Early life gut microbiota plays a pivotal role in shaping immunity, metabolism, and overall health outcomes. This is relevant in healthy infants but may be even more crucial in infants with chronic devastating diseases, such as cystic fibrosis (CF). While the introduction of solid foods in healthy infants modifies the composition of colonic microbiota, less knowledge is available on those with CF. The aim of this descriptive observational study was to assess the composition of fecal microbiota in six exclusively breast-fed infants with CF, and then explore the changes induced upon the introduction of different foods. METHODS two types of fecal samples were collected from each subject: one during the exclusive-breastfeeding period, and the other after incorporating each new food in the ad libitum diet. The microbiota composition was analyzed by 16S rRNA amplicon sequencing. RESULTS Wide heterogenicity in the composition at the phylum level (variable proportions of Actinobacteriota, Proteobacteria, and Firmicutes, and the absence of Bacteroidota in all subjects) was found, and different enterotypes were characterized in each subject by the main presence of one genus: Bifidobacterium in Subject 1 (relative abundance of 54.4%), Klebsiella in Subject 3 (49.1%), Veillonella in Subjects 4 and 5 (32.7% and 36.9%, respectively), and Clostridium in Subject 6 (48.9%). The transition to complementary feeding induced variable changes in microbiota composition, suggesting a subject-specific response and highlighting the importance of inter-individual variation. CONCLUSIONS Further studies are required to identify which foods contribute to shaping colonic microbiota in the most favorable way for patients with CF using a personalized approach.
Collapse
Affiliation(s)
- Andrea Asensio-Grau
- ALISOST Research Group, Department of Preventive Medicine, Public Health, Food Sciences, Toxicology and Legal Medicine, Faculty of Pharmacy and Food Sciences, University of Valencia, 46010 Valencia, Spain;
- NutriCura PDig Joint Research Unit UPV, La Fe Health Research Institute, 46026 Valencia, Spain;
| | - María Garriga
- Cystic Fibrosis Unit, University Hospital Ramón y Cajal, 28034 Madrid, Spain; (M.G.); (S.V.)
| | - Saioa Vicente
- Cystic Fibrosis Unit, University Hospital Ramón y Cajal, 28034 Madrid, Spain; (M.G.); (S.V.)
| | - Ana Andrés
- NutriCura PDig Joint Research Unit UPV, La Fe Health Research Institute, 46026 Valencia, Spain;
- Food UPV, Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Carmen Ribes-Koninckx
- NutriCura PDig Joint Research Unit UPV, La Fe Health Research Institute, 46026 Valencia, Spain;
- Celiac Disease and Digestive Immunopathology Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Joaquim Calvo-Lerma
- ALISOST Research Group, Department of Preventive Medicine, Public Health, Food Sciences, Toxicology and Legal Medicine, Faculty of Pharmacy and Food Sciences, University of Valencia, 46010 Valencia, Spain;
- NutriCura PDig Joint Research Unit UPV, La Fe Health Research Institute, 46026 Valencia, Spain;
| |
Collapse
|
3
|
Green N, Miller C, Suskind D, Brown M, Pope C, Hayden H, McNamara S, Kanter A, Nay L, Hoffman L, Rosenfeld M. The impact of a whole foods dietary intervention on gastrointestinal symptoms, inflammation, and fecal microbiota in pediatric patients with cystic fibrosis: A pilot study. Clin Nutr 2024; 43:156-163. [PMID: 39383549 DOI: 10.1016/j.clnu.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Gastrointestinal (GI) complications are a significant source of morbidity for people with cystic fibrosis (PwCF). Historically, dietary recommendations in CF have focused on calories, typically emphasizing a high fat diet. The changing landscape of CF highlights the need to update this nutritional strategy. There is little research into how the quality of calories consumed by PwCF influences nutritional outcomes, GI symptoms, or likely contributors: intestinal inflammation and GI microbiology. We assessed the feasibility of a whole foods-based diet (WFD) and avoidance of ultra-processed foods, measuring safety/tolerability, adherence, and GI symptoms, as well as fecal measures of inflammation and microbiota among children with CF (CwCF) with GI symptoms. METHODS Single center, 4-week dietary intervention involving CwCF aged 5-14 years who screened positive on GI symptom questionnaire. Assessments included weight, symptom questionnaires and adverse events (AEs). Stool was analyzed for microbiota (16S rRNA) and calprotectin. RESULTS 108 children were pre-screened, 9 enrolled and 8 initiated and completed the study. There were no significant changes in weight and no AEs. PEDS-QL GI identified overall improvement in symptoms. Certain symptom domains (constipation, diarrhea, gas/bloating, stomach pain and hurt) demonstrated significant improvement on the WFD. Of two participants with abnormal fecal calprotectin at enrollment, both exhibited decreased values on WFD. There was no significant change in microbiota diversity. CONCLUSION A WFD diet was feasible and safe in CwCF. There was improvement in GI symptom scores based on both parent and child assessments. Larger studies are needed to further investigate effects on intestinal inflammation and microbiota.
Collapse
Affiliation(s)
- Nicole Green
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Washington School of Medicine, Seattle, WA, USA.
| | - Carson Miller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - David Suskind
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Christopher Pope
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hillary Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Anna Kanter
- Seattle Children's Hospital, Seattle, WA, USA
| | - Laura Nay
- Seattle Children's Hospital, Seattle, WA, USA
| | - Lucas Hoffman
- Department of Microbiology and Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Margaret Rosenfeld
- Department of Epidemiology and Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
4
|
Gabel ME, Gaudio RE, Shaikhkhalil AK. Improving growth in infants with CF. Pediatr Pulmonol 2024; 59 Suppl 1:S17-S26. [PMID: 39105334 DOI: 10.1002/ppul.26871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 08/07/2024]
Abstract
Cystic fibrosis (CF) results in chronic pulmonary infections, inflammation, pancreatic insufficiency, and multiple gastrointestinal manifestations. Malnutrition and poor growth are hallmarks of CF, and strongly associated with poor outcomes. Through newborn screening, many infants can be diagnosed within a few days of life, which allows for early initiation of nutritional counseling and close clinical follow-up. Obstacles to growth for infants with CF start in utero, as newborns with CF can have a lower birth weight than the general population. Improving infant growth has been linked to improved clinical outcomes and survival. It remains a top priority and challenge for caregivers and healthcare teams. An interdisciplinary approach, including registered dietitian and social work support, is essential to optimize health for infants with CF. Remaining barriers to normalcy include deficits in linear growth, lack of accurate nutrition biomarkers, persistence of inequities related to social determinant of health, particularly in the global CF community.
Collapse
Affiliation(s)
- Megan E Gabel
- University of Rochester Medical Center, University of Rochester, Rochester, New York, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Golisano Children's Hospital, Rochester, New York, USA
| | - Rachel E Gaudio
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ala K Shaikhkhalil
- Department of Clinical Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
5
|
Green N, Chan C, Ooi CY. The gastrointestinal microbiome, small bowel bacterial overgrowth, and microbiome modulators in cystic fibrosis. Pediatr Pulmonol 2024; 59 Suppl 1:S70-S80. [PMID: 39105345 DOI: 10.1002/ppul.26913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 08/07/2024]
Abstract
People with cystic fibrosis (pwCF) have an altered gastrointestinal microbiome. These individuals also demonstrate propensity toward developing small intestinal bacterial overgrowth (SIBO). The dysbiosis present has intestinal and extraintestinal implications, including potential links with the higher rates of gastrointestinal malignancies described in CF. Given these implications, there is growing interest in therapeutic options for microbiome modulation. Alternative therapies, including probiotics and prebiotics, and current CF transmembrane conductance regulator gene modulators are promising interventions for ameliorating gut microbiome dysfunction in pwCF. This article will characterize and discuss the current state of knowledge and expert opinions on gut dysbiosis and SIBO in the context of CF, before reviewing the current evidence supporting gut microbial modulating therapies in CF.
Collapse
Affiliation(s)
- Nicole Green
- Department of Pediatrics, Division of Gastroenterology and Hepatology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Christopher Chan
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Chee Y Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
6
|
Bass R, Tanes C, Bittinger K, Li Y, Lee H, Friedman ES, Koo I, Patterson AD, Liu Q, Wu GD, Stallings VA. Changes in fecal lipidome after treatment with ivacaftor without changes in microbiome or bile acids. J Cyst Fibros 2024; 23:481-489. [PMID: 37813785 PMCID: PMC10998923 DOI: 10.1016/j.jcf.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Alterations in gastrointestinal health are prominent manifestations of cystic fibrosis (CF) and can independently impact pulmonary function. Ivacaftor has been associated with robust improvements in pulmonary function and weight gain, but less is known about the impact of ivacaftor on the fecal microbiome, lipidome, and bile acids. METHODS Stool samples from 18 patients with CF and gating mutations (ages 6-61 years, 13 pancreatic insufficient) were analyzed for fecal microbiome and lipidome composition as well as bile acid concentrations at baseline and after 3 months of treatment with ivacaftor. Microbiome composition was also assessed in a healthy reference cohort. RESULTS Alpha and beta diversity of the microbiome were different between CF and reference cohort at baseline, but no treatment effect was seen in the CF cohort between baseline and 3 months. Seven lipids increased with treatment. No differences were seen in bile acid concentrations after treatment in CF. At baseline, 403 lipids and unconjugated bile acids were different between pancreatic insufficient (PI-CF) and sufficient (PS-CF) groups and 107 lipids were different between PI-CF and PS-CF after 3 months of treatment. CONCLUSIONS The composition and diversity of the fecal microbiome were different in CF as compared to a healthy reference, and did not change after 3 months of ivacaftor. We detected modest differences in the fecal lipidome with treatment. Differences in lipid and bile acid profiles between PS-CF and PI-CF were attenuated after 3 months of treatment.
Collapse
Affiliation(s)
- Rosara Bass
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Ceylan Tanes
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Kyle Bittinger
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Yun Li
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr., Philadelphia, PA 19104, USA
| | - Hongzhe Lee
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr., Philadelphia, PA 19104, USA
| | - Elliot S Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 322 Life Sciences Building, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 322 Life Sciences Building, University Park, PA 16802, USA
| | - Qing Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Virginia A Stallings
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Minot SS, Mayer-Blackwell K, Fiore-Gartland A, Johnson A, Self S, Bhatti P, Yao L, Liu L, Sun X, Jinfa Y, Kublin J. Species- and subspecies-level characterization of health-associated bacterial consortia that colonize the human gut during infancy. Gut Microbes 2024; 16:2414975. [PMID: 39428758 PMCID: PMC11497992 DOI: 10.1080/19490976.2024.2414975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The human gut microbiome develops rapidly during infancy, a key window of development coinciding with the maturation of the adaptive immune system. However, little is known about the microbiome growth dynamics over the first few months of life and whether there are any generalizable patterns across human populations. We performed metagenomic sequencing on stool samples (n = 94) from a cohort of infants (n = 15) at monthly intervals in the first 6 months of life, augmenting our dataset with seven published studies for a total of 4,441 metagenomes from 1,162 infants. RESULTS Strain-level de novo analysis was used to identify 592 of the most abundant organisms in the infant gut microbiome. Previously unrecognized consortia were identified which exhibited highly correlated abundances across samples and were composed of diverse species spanning multiple genera. Analysis of a published cohort of infants with cystic fibrosis identified one such novel consortium of diverse Enterobacterales which was positively correlated with weight gain. While all studies showed an increased community stability during the first year of life, microbial dynamics varied widely in the first few months of life, both by study and by individual. CONCLUSION By augmenting published metagenomic datasets with data from a newly established cohort, we were able to identify novel groups of organisms that are correlated with measures of robust human development. We hypothesize that the presence of these groups may impact human health in aggregate in ways that individual species may not in isolation.
Collapse
Affiliation(s)
| | | | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Andrew Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Steven Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Lena Yao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xin Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jinfa
- Department of Pediatrics, Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, USA
| |
Collapse
|
8
|
Minot SS, Mayer-Blackwell K, Fiore-Gartland A, Johnson A, Self S, Bhatti P, Yao L, Liu L, Sun X, Jinfa Y, Kublin J. Strain-level characterization of health-associated bacterial consortia that colonize the human gut during infancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.16.23300077. [PMID: 38168439 PMCID: PMC10760300 DOI: 10.1101/2023.12.16.23300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The human gut microbiome develops rapidly during infancy, a key window of development coinciding with maturation of the adaptive immune system. However, little is known of the microbiome growth dynamics over the first few months of life and whether there are any generalizable patterns across human populations. We performed metagenomic sequencing on stool samples (n=94) from a cohort of infants (n=15) at monthly intervals in the first six months of life, augmenting our dataset with seven published studies for a total of 4,441 metagenomes from 1,162 infants. Results Strain-level de novo analysis was used to identify 592 of the most abundant organisms in the infant gut microbiome. Previously unrecognized consortia were identified which exhibited highly correlated abundances across samples and were composed of diverse species spanning multiple genera. Analysis of a cohort of infants with cystic fibrosis identified one such novel consortium of diverse Enterobacterales which was positively correlated with weight gain. While all studies showed an increased community stability during the first year of life, microbial dynamics varied widely in the first few months of life, both by study and by individual. Conclusion By augmenting published metagenomic datasets with data from a newly established cohort we were able to identify novel groups of organisms that are correlated with measures of robust human development. We hypothesize that the presence of these groups may impact human health in aggregate in ways that individual species may not in isolation.
Collapse
Affiliation(s)
| | | | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Andrew Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Steven Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Lena Yao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xin Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jinfa
- Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, USA
| |
Collapse
|
9
|
Chadwick C, Lehman H, Luebbert S, Abdul-Aziz R, Borowitz D. Autoimmunity in people with cystic fibrosis. J Cyst Fibros 2023; 22:969-979. [PMID: 36966037 DOI: 10.1016/j.jcf.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Cystic fibrosis (CF) clinicians may see patients who have difficult-to-manage symptoms that do not have a clear CF-related etiology, such as unusual gastrointestinal (GI) complaints, vasculitis, or arthritis. Alterations in immunity, inflammation and intraluminal dysbiosis create a milieu that may lead to autoimmunity, and the CF transmembrane regulator protein may have a direct role as well. While autoantibodies and other autoimmune markers may develop, these may or may not lead to organ involvement, therefore they are helpful but not sufficient to establish an autoimmune diagnosis. Autoimmune involvement of the GI tract is the best-established association. Next steps to understand autoimmunity in CF should include a more in-depth assessment of the community perspective on its impact. In addition, bringing together specialists in various fields including, but not limited to, pulmonology, gastroenterology, immunology, and rheumatology, would lead to cross-dissemination and help define the path forward in basic science and clinical practice.
Collapse
Affiliation(s)
| | - Heather Lehman
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | - Rabheh Abdul-Aziz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Drucy Borowitz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
10
|
Salerno P, Verster A, Valls R, Barrack K, Price C, Madan J, O'Toole GA, Ross BD. Persistent delay in maturation of the developing gut microbiota in infants with cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539134. [PMID: 37205374 PMCID: PMC10187160 DOI: 10.1101/2023.05.02.539134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The healthy human infant gut microbiome undergoes stereotypical changes in taxonomic composition between birth and maturation to an adult-like stable state. During this time, extensive communication between microbiota and the host immune system contributes to health status later in life. Although there are many reported associations between microbiota compositional alterations and disease in adults, less is known about how microbiome development is altered in pediatric diseases. One pediatric disease linked to altered gut microbiota composition is cystic fibrosis (CF), a multi-organ genetic disease involving impaired chloride secretion across epithelia and heightened inflammation both in the gut and at other body sites. Here, we use shotgun metagenomics to profile the strain-level composition and developmental dynamics of the infant fecal microbiota from several CF and non-CF longitudinal cohorts spanning from birth to greater than 36 months of life. We identify a set of keystone species whose prevalence and abundance reproducibly define microbiota development in early life in non-CF infants, but are missing or decreased in relative abundance in infants with CF. The consequences of these CF-specific differences in gut microbiota composition and dynamics are a delayed pattern of microbiota maturation, persistent entrenchment in a transitional developmental phase, and subsequent failure to attain an adult-like stable microbiota. We also detect the increased relative abundance of oral-derived bacteria and higher levels of fungi in CF, features that are associated with decreased gut bacterial density in inflammatory bowel diseases. Our results define key differences in the gut microbiota during ontogeny in CF and suggest the potential for directed therapies to overcome developmental delays in microbiota maturation.
Collapse
|
11
|
Trandafir LM, Frăsinariu OE, Țarcă E, Butnariu LI, Leon Constantin MM, Moscalu M, Temneanu OR, Melinte Popescu AS, Popescu MGM, Stârcea IM, Cojocaru E, Moisa SM. Can Bioactive Food Substances Contribute to Cystic Fibrosis-Related Cardiovascular Disease Prevention? Nutrients 2023; 15:314. [PMID: 36678185 PMCID: PMC9860597 DOI: 10.3390/nu15020314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Advances in cystic fibrosis (CF) care have significantly improved the quality of life and life expectancy of patients. Nutritional therapy based on a high-calorie, high-fat diet, antibiotics, as well as new therapies focused on CFTR modulators change the natural course of the disease. They do so by improving pulmonary function and growing BMI. However, the increased weight of such patients can lead to unwanted long-term cardiovascular effects. People with CF (pwCF) experience several cardiovascular risk factors. Such factors include a high-fat diet and increased dietary intake, altered lipid metabolism, a decrease in the level of fat-soluble antioxidants, heightened systemic inflammation, therapeutic interventions, and diabetes mellitus. PwCF must pay special attention to food and eating habits in order to maintain a nutritional status that is as close as possible to the proper physiological one. They also have to benefit from appropriate nutritional counseling, which is essential in the evolution and prognosis of the disease. Growing evidence collected in the last years shows that many bioactive food components, such as phytochemicals, polyunsaturated fatty acids, and antioxidants have favorable effects in the management of CF. An important positive effect is cardiovascular prevention. The possibility of preventing/reducing cardiovascular risk in CF patients enhances both quality of life and life expectancy in the long run.
Collapse
Affiliation(s)
- Laura Mihaela Trandafir
- Department of Mother and Child Medicine–Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Otilia Elena Frăsinariu
- Department of Mother and Child Medicine–Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Elena Țarcă
- Department of Surgery II-Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | | | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Oana Raluca Temneanu
- Department of Mother and Child Medicine–Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Alina Sinziana Melinte Popescu
- Department of General Nursing, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania
| | - Marian George Melinte Popescu
- Department of General Nursing, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania
| | - Iuliana Magdalena Stârcea
- Department of Mother and Child Medicine–Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I–Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Stefana Maria Moisa
- Department of Mother and Child Medicine–Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| |
Collapse
|
12
|
van Dorst JM, Tam RY, Ooi CY. What Do We Know about the Microbiome in Cystic Fibrosis? Is There a Role for Probiotics and Prebiotics? Nutrients 2022; 14:480. [PMID: 35276841 PMCID: PMC8840103 DOI: 10.3390/nu14030480] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening genetic disorder that affects the cystic fibrosis transmembrane conductance regulator (CFTR) protein. In the gastrointestinal (GI) tract, CFTR dysfunction results in low intestinal pH, thick and inspissated mucus, a lack of endogenous pancreatic enzymes, and reduced motility. These mechanisms, combined with antibiotic therapies, drive GI inflammation and significant alteration of the GI microbiota (dysbiosis). Dysbiosis and inflammation are key factors in systemic inflammation and GI complications including malignancy. The following review examines the potential for probiotic and prebiotic therapies to provide clinical benefits through modulation of the microbiome. Evidence from randomised control trials suggest probiotics are likely to improve GI inflammation and reduce the incidence of CF pulmonary exacerbations. However, the highly variable, low-quality data is a barrier to the implementation of probiotics into routine CF care. Epidemiological studies and clinical trials support the potential of dietary fibre and prebiotic supplements to beneficially modulate the microbiome in gastrointestinal conditions. To date, limited evidence is available on their safety and efficacy in CF. Variable responses to probiotics and prebiotics highlight the need for personalised approaches that consider an individual's underlying microbiota, diet, and existing medications against the backdrop of the complex nutritional needs in CF.
Collapse
Affiliation(s)
- Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
| | - Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
- Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, Sydney 2031, Australia
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney 2031, Australia
| |
Collapse
|