1
|
Wu S, Kang M, Liu Y, Xiao Y, Deng J, Zhang W, Liao Q. Clinical and molecular characteristics of Staphylococcus aureus isolates from patients with COVID-19 in Southwest China. BMC Infect Dis 2025; 25:546. [PMID: 40247159 PMCID: PMC12004627 DOI: 10.1186/s12879-025-10868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND This study investigated the clinical and molecular characteristics of Staphylococcus aureus (S. aureus) isolates from patients with coronavirus disease 19 (COVID- 19) at West China Hospital between December 1, 2022 and January 31, 2023. METHODS In total, 102 strains isolated from sputum, bronchoalveolar lavage fluid, endotracheal aspirates, and blood were collected from 102 patients and subjected to multilocus sequence typing and antimicrobial susceptibility testing. Eighteen virulence genes were also analyzed by polymerase chain reaction. RESULTS Seventy-five patients were discharged and 27 died. The predominant comorbidities were hypertension, diabetes mellitus, and cardiac disease. Twenty-eight known sequence types (STs) and 10 novel ones (ST8773/CC398, ST9221/CC5, ST9222/CC59, ST9223/CC8, ST9224/CC22, ST9225/CC1, ST9226/CC5, ST9227/CC59, ST9228/CC59, ST9229/CC398) were identified. The dominant molecular types were ST15 (CC15), ST59 (CC59), and ST5 (CC5). Among the three most prevalent STs, ST5 was significantly more resistant to levofloxacin, moxifloxacin, ciprofloxacin, and sulfamethoxazole than were ST59 and ST15. ST59 and ST5 had higher rates of resistance to erythromycin and clindamycin than ST15. All isolates contained at least eight virulence genes. The hemolysin gene hlb was found to be more prevalent in ST59 (100%) and ST5 (84.6%) than in ST15 (0) (P < 0.001). The prevalence of the enterotoxin gene seb in ST59 (100%) was significantly higher than that in ST5 (23.1%) and ST15 (20%) (P < 0.001), while the carrying rate of the sec gene was significantly higher in ST5 (76.9%) than that in ST59 (0) and ST15 (0) (P < 0.001). CONCLUSIONS The S. aureus isolates from patients with COVID- 19 in Southwest China exhibited a high degree of genetic diversity. Different STs exhibited different antimicrobial resistance patterns and virulence gene carrying rates.
Collapse
Affiliation(s)
- Siying Wu
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Mei Kang
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| | - Ya Liu
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yuling Xiao
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Jin Deng
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Weili Zhang
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Quanfeng Liao
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| |
Collapse
|
2
|
Aung MS, Osada M, Urushibara N, Kawaguchiya M, Ohashi N, Hirose M, Ito M, Yamada K, Tada K, Kobayashi N. Molecular characterization of methicillin-susceptible/resistant Staphylococcus aureus from bloodstream infections in northern Japan: The dominance of CC1-MRSA-IV, the emergence of human-associated ST398 and livestock-associated CC20 and CC97 MSSA. J Glob Antimicrob Resist 2025; 41:77-87. [PMID: 39725318 DOI: 10.1016/j.jgar.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES Staphylococcus aureus (S. aureus) is a major cause of bloodstream infections. The recent epidemiological features and antimicrobial resistance trend were analysed for methicillin-resistant and susceptible S. aureus (MRSA/MSSA) isolates from blood samples in people from northern Japan. METHODS The S. aureus isolates from blood culture were screened by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and genotyped by the schemes of multilocus sequence typing (MLST), coa, agr, spa, and SCCmec types. Antimicrobial resistance genes and virulence factors were detected by multiplex/uniplex polymerase chain reaction (PCR). Antimicrobial susceptibility was examined using a broth microdilution test. RESULTS A total of 301 isolates (163 MRSA and 138 MSSA) were isolated from bloodstream infections in 2023 (from April to December). The MRSA isolates were classified into three groups, that is, clonal complexes (CC)1-SCCmec-IV (CC1-IV) (52%), CC5-II (36%), and CC8-IV (12%). The prevalence of CC1 was significantly higher than those in our previous studies (2017-2021). Four CC8-IVa isolates with PVL genes on ΦSa2usa were considered to be the USA300 clone (sequence type [ST]8/spa-t008/coa IIIa/agr I) or its variants that were genotyped as those closely related to ST8/t008 or lacking arginine catabolic mobile element (ACME). In contrast, MSSA was genetically highly divergent and classified into 22 STs, with CC1 (ST1 and ST188) being the most common (25%). It was notable that 29 MSSA isolates (21%) were classified into livestock-associated (LA) genotypes, ST20, ST97, and CC398 (ST398 and ST291). Genetic characterization of the CC398 isolates suggested that these belong to human-adapted MSSA clones. CONCLUSIONS The present study revealed the increasing trend of CC1 MRSA surpassing CC5, and the emergence of MSSA representing human-adapted CC398, and LA types ST97 and ST20 from bloodstream infections in people in Japan. © 2024 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo, Japan.
| | - Masako Osada
- Master's Program in Midwifery, Tenshi College Graduate School, Sapporo, Japan
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo, Japan
| | - Nobuhide Ohashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo, Japan
| | - Mina Hirose
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Masahiko Ito
- Sapporo Clinical Laboratory, Inc., Sapporo, Japan
| | | | - Kousuke Tada
- Sapporo Clinical Laboratory, Inc., Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo, Japan
| |
Collapse
|
3
|
Liu K, Wang M, Zhang Y, Fang C, Zhang R, Fang L, Sun J, Liu Y, Liao X. Distribution of antibiotic resistance genes and their pathogen hosts in duck farm environments in south-east coastal China. Appl Microbiol Biotechnol 2024; 108:136. [PMID: 38229327 PMCID: PMC10789667 DOI: 10.1007/s00253-023-12842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 01/18/2024]
Abstract
Livestock farms are major reservoirs of antibiotic resistance genes (ARGs) that are discharged into the environment. However, the abundance, diversity, and transmission of ARGs in duck farms and its impact on surrounding environments remain to be further explored. Therefore, the characteristics of ARGs and their bacterial hosts from duck farms and surrounding environment were investigated by using metagenomic sequencing. Eighteen ARG types which consist of 823 subtypes were identified and the majority conferred resistance to multidrug, tetracyclines, aminoglycosides, chloramphenicols, MLS, and sulfonamides. The floR gene was the most abundant subtype, followed by sul1, tetM, sul2, and tetL. ARG abundance in fecal sample was significantly higher than soil and water sample. Our results also lead to a hypothesis that Shandong province have been the most contaminated by ARGs from duck farm compared with other four provinces. PcoA results showed that the composition of ARG subtypes in water and soil samples was similar, but there were significant differences between water and feces samples. However, the composition of ARG subtypes were similar between samples from five provinces. Bacterial hosts of ARG subtypes were taxonomically assigned to eight phyla that were dominated by the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. In addition, some human bacterial pathogens could be enriched in duck feces, including Enterococcus faecium, Acinetobacter baumannii, and Staphylococcus aureus, and even serve as the carrier of ARGs. The combined results indicate that a comprehensive overview of the diversity and abundance of ARGs, and strong association between ARGs and bacterial community shift proposed, and benefit effective measures to improve safety of antibiotics use in livestock and poultry farming. KEY POINTS: • ARG distribution was widespread in the duck farms and surroundings environment • ARG abundance on the duck farms was significantly higher than in soil and water • Human bacterial pathogens may serve as the vectors for ARGs.
Collapse
Affiliation(s)
- Kaidi Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- School of Agricultural Science and Engineering, Liaocheng University, No.1 Hunan Road, Liaocheng, 252000, Shandong, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Minge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- School of Agricultural Science and Engineering, Liaocheng University, No.1 Hunan Road, Liaocheng, 252000, Shandong, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yin Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Chang Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Rongmin Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Liangxing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiaoping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China.
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Luo H, Ni L, Chen T, Huang L, Zhang X, Li X, Liao X, Shen R, Luo Z, Xie X. Intraspecific cooperation allows the survival of Staphylococcus aureus staff: a novel strategy for disease relapse. BMC Infect Dis 2024; 24:1092. [PMID: 39354412 PMCID: PMC11445958 DOI: 10.1186/s12879-024-10001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The contribution of interspecies interactions between coinfecting pathogens to chronic refractory infection by affecting pathogenicity is well established. However, little is known about the impact of intraspecific interactions on infection relapse, despite the cross-talk of different strains within one species is more common in clinical infection. We reported a case of chronic refractory pulmonary infection relapse, caused by two methicillin-sensitive S. aureus (MSSA) strains (SA01 and SA02) and revealed a novel strategy for relapse via intraspecific cooperation. METHODS The hemolytic ability, growth curve, biofilm formation, virulence genes and response of G. mellonella larvae to S. aureus infection were analysed to confirm this hypothesis. RESULTS SA02 hemolytic activity was inhibited by SA01, along with the expression of hemolysin genes and the virulence factor Hla. Additionally, SA01 significantly enhanced the biofilm formation of SA02. AIP-RNAIII may be a possible pathway for this interaction. Compared with mono-infection, a worse outcome (decreased larval survival and increased microbial burden) of the two MSSA strains coinfected with G. mellonella confirmed that intraspecific interactions indeed enhanced bacterial survival in vivo. CONCLUSION The intraspecific interaction of S. aureus could lead to chronic refractory infection via pathogenicity changes.
Collapse
Affiliation(s)
- Hua Luo
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lijia Ni
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tongling Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lisi Huang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaofan Zhang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xuexue Li
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoyan Liao
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Shen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiaoying Xie
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Lai CH, Wong MY, Huang TY, Kao CC, Lin YH, Lu CH, Huang YK. Exploration of agr types, virulence-associated genes, and biofilm formation ability in Staphylococcus aureus isolates from hemodialysis patients with vascular access infections. Front Cell Infect Microbiol 2024; 14:1367016. [PMID: 38681224 PMCID: PMC11045986 DOI: 10.3389/fcimb.2024.1367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Staphylococcus aureus, is a pathogen commonly encountered in both community and hospital settings. Patients receiving hemodialysis treatment face an elevated risk of vascular access infections (VAIs) particularly Staphylococcus aureus, infection. This heightened risk is attributed to the characteristics of Staphylococcus aureus, , enabling it to adhere to suitable surfaces and form biofilms, thereby rendering it resistant to external interventions and complicating treatment efforts. Methods Therefore this study utilized PCR and microtiter dish biofilm formation assay to determine the difference in the virulence genes and biofilm formation among in our study collected of 103 Staphylococcus aureus, isolates from hemodialysis patients utilizing arteriovenous grafts (AVGs), tunneled cuffed catheters (TCCs), and arteriovenous fistulas (AVFs) during November 2013 to December 2021. Results Our findings revealed that both MRSA and MSSA isolates exhibited strong biofilm production capabilities. Additionally, we confirmed the presence of agr types and virulence genes through PCR analysis. The majority of the collected isolates were identified as agr type I. However, agr type II isolates displayed a higher average number of virulence genes, with MRSA isolates exhibiting a variety of virulence genes. Notably, combinations of biofilm-associated genes, such as eno-clfA-clfB-fib-icaA-icaD and eno-clfA-clfB-fib-fnbB-icaA-icaD, were prevalent among Staphylococcus aureus, isolates obtained from vascular access infections. Discussion These insights contribute to a better understanding of the molecular characteristics associated with Staphylococcus aureus, infections in hemodialysis patients and provided more targeted and effective treatment approaches.
Collapse
Affiliation(s)
- Chi-Hsiang Lai
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Min Yi Wong
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Tsung-Yu Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chen Kao
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hui Lin
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chu-Hsueh Lu
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Kuang Huang
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiovascular Surgery, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Chiayi Hospital, Ministry of Health and Welfare, Chiayi, Taiwan
| |
Collapse
|
6
|
Kim YK, Eom Y, Kim E, Chang E, Bae S, Jung J, Kim MJ, Chong YP, Kim SH, Choi SH, Lee SO, Kim YS. Molecular Characteristics and Prevalence of Rifampin Resistance in Staphylococcus aureus Isolates from Patients with Bacteremia in South Korea. Antibiotics (Basel) 2023; 12:1511. [PMID: 37887212 PMCID: PMC10604019 DOI: 10.3390/antibiotics12101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Rifampin resistance (RIF-R) in Staphylococcus aureus (S. aureus) with rpoB mutations as one of its resistance mechanisms has raised concern about clinical treatment and infection prevention strategies. Data on the prevalence and molecular epidemiology of RIF-R S. aureus blood isolates in South Korea are scarce. We used broth microdilution to investigate RIF-R prevalence and analyzed the rpoB gene mutation in 1615 S. aureus blood isolates (772 methicillin-susceptible and 843 methicillin-resistant S. aureus (MRSA)) from patients with bacteremia, between 2008 and 2017. RIF-R prevalence and antimicrobial susceptibility were determined. Multilocus sequence typing was used to characterize the isolate's molecular epidemiology; Staphylococcus protein A (spa), staphylococcal cassette chromosome mec (SCCmec), and rpoB gene mutations were detected by PCR. Among 52 RIF-R MRSA isolates out of 57 RIF-R S. aureus blood isolates (57/1615, 0.4%; 5 methicillin-susceptible and 52 MRSA), ST5 (44/52, 84.6%), SCCmec IIb (40/52, 76.9%), and spa t2460 (27/52, 51.9%) were predominant. rpoB gene mutations with amino acid substitutions showed that A477D (17/48, 35.4%) frequently conferred high-level RIF resistance (MIC > 128 mg/L), followed by H481Y (4/48, 8.3%). RIF-R S. aureus blood isolates in South Korea have unique molecular characteristics and are closely associated with rpoB gene mutations. RIF-R surveillance through S. aureus-blood isolate epidemiology could enable effective therapeutic management.
Collapse
Affiliation(s)
- Yong Kyun Kim
- Department of Internal Medicine, Division of Infectious Diseases, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Yewon Eom
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.E.); (E.K.); (S.B.)
- Asan Medical Center, Asan Institute for Life Science, Seoul 05505, Republic of Korea
| | - Eunsil Kim
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.E.); (E.K.); (S.B.)
- Asan Medical Center, Asan Institute for Life Science, Seoul 05505, Republic of Korea
| | - Euijin Chang
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Seongman Bae
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.E.); (E.K.); (S.B.)
| | - Jiwon Jung
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Min Jae Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Yong Pil Chong
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Sung-Han Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Sang-Ho Choi
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Sang-Oh Lee
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Yang Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.E.); (E.K.); (S.B.)
| |
Collapse
|
7
|
Hou Z, Xu B, Liu L, Yan R, Zhang J, Yin J, Li P, Wei J. Prevalence, drug resistance, molecular typing and comparative genomics analysis of MRSA strains from a tertiary A hospital in Shanxi Province, China. Front Microbiol 2023; 14:1273397. [PMID: 37808303 PMCID: PMC10556501 DOI: 10.3389/fmicb.2023.1273397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic pathogen that causes a high incidence rate and mortality worldwide. This study investigated the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) strains in a tertiary A hospital in Shanxi Province, China, in order to determine the major epidemic clones as well as their antibiotic resistance and virulence characteristics. A total of 212 S. aureus strains were collected in this hospital, and were subjected to antimicrobial susceptibility testing, detection of virulence genes, resistance genes, and efflux pump genes. Among them, 38 MRSA strains were further subjected to detection of biofilm genes, assessment of biofilm formation ability, MLST, spa typing, SCCmec typing, and phylogenetic analysis. The majority of S. aureus strains came from the neonatology department, with secretions and purulent fluid being the main source of samples. The strains showed high resistance to penicillin (98.11%), erythromycin (64.62%) and clindamycin (59.91%), while being sensitive to vancomycin and linezolid. The detection rates of efflux pump genes and resistance genes were high, and there was a significant correlation between resistance gene types and phenotypes, with mecA showing a close correlation with oxacillin. The detection rates of virulence genes and the toxin gene profiles of MSSA and MRSA strains showed significant differences. And the detection rate of biofilm genes in MRSA strains was relatively high, with 13.16% of MRSA strains showing strong biofilm formation ability. The most common epidemic clone of MRSA was ST59-SCCmecIV-t437, followed by ST59-SCCmecV-t437. The former had a higher detection rate of resistance genes and a stronger biofilm formation ability, while the latter had a higher positive rate for pvl gene and stronger pathogenicity, making it more likely to cause systemic infections. Phylogenetic analysis showed that all MRSA strains in this study clustered into three major branches, with distinct differences in antibiotic resistance and virulence characteristics among the branches. ST59-MRSA strains from different species showed consistency and inter-species transmission, but there were differences among ST59-MRSA strains from different geographical locations. In general, most MSSA and MRSA strains exhibited multidrug resistance and carried multiple resistance genes, virulence genes, and biofilm formation genes, warranting further research to elucidate the mechanisms of drug resistance and pathogenesis.
Collapse
Affiliation(s)
- Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Benjin Xu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Ling Liu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Rongrong Yan
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jinjing Zhang
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jiaxin Yin
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Peipei Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| |
Collapse
|
8
|
Khodabux RMJ, Mariappan S, Sekar U. Spectrum of Virulence Factors in Clinical Isolates of Staphylococcus aureus and Prevalence of SCCmec Types in Methicillin-Resistant Staphylococcus aureus in a Tertiary Care Center. J Lab Physicians 2023; 15:450-461. [PMID: 37564222 PMCID: PMC10411210 DOI: 10.1055/s-0043-1764483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 03/29/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is a widely recognized multidrug-resistant bacteria presenting a major therapeutic challenge to clinicians. Staphylococcus aureus possesses a number of pathogenicity factors that attribute to the severity of infections. This study was undertaken to investigate the common virulence genes in clinical isolates of Staphylococcus aureus , determine their antimicrobial susceptibility profile, and to characterize the staphylococcal cassette chromosome mec (SCCmec) types among MRSA in a tertiary care center. Materials and Methods A total of 133 clinical isolates were included in this study. Susceptibility to various antibiotics was determined by disc diffusion method. Methicillin resistance was screened using cefoxitin disc; m ecA and mecC genes were detected using polymerase chain reaction (PCR). PCR was done to detect 12 virulence factors such as hla , hlb , fnbA , fnbB , sea , seb , sec , icaA , clfA , tst , pvl, and eta . SCCmec typing was done by multiplex PCR. Results Of the 133 clinical isolates, 54 (40.6%) were MRSA. The most common virulence gene detected was hlb (61.6%), hla (39%), and fnbA (37%). SCCmec type I was the most predominant. Mortality rate of 6.7% was observed among patients with staphylococcal infections. Univariate analysis of mortality associated virulence genes did not reveal any significant association between virulence genes and mortality. Conclusion The distribution of virulence genes is similar in both MRSA and methicillin-sensitive Staphylococcus aureus . MRSA belongs to the SCCmec types I to IV. Possession of multiple virulence factors and multidrug resistance profile makes Staphylococcus aureus a formidable pathogen in clinical settings.
Collapse
Affiliation(s)
- Rhea Michelle J. Khodabux
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| | - Shanthi Mariappan
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| | - Uma Sekar
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Zhang H, Qin L, Jin C, Ju H, Jiang R, Li L, Zhang H, Gao W, Wei X, Dong H, Lu F, Lv G. Molecular Characteristics and Antibiotic Resistance of Staphylococcus aureus Isolated from Patient and Food Samples in Shijiazhuang, China. Pathogens 2022; 11:1333. [PMID: 36422585 PMCID: PMC9695393 DOI: 10.3390/pathogens11111333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a common opportunistic and zoonotic pathogen in the world and could easily cause human infections and food contaminations. This study investigated the sequence typing and resistance profiles of S. aureus isolates from patient and food samples in Shijiazhuang, China. A total of 101 S. aureus isolates were distributed into six clonal complexes (CCs) and 16 singletons. A total of 86 patient isolates were distributed into six clonal CCs and 12 singletons, including a new ST. CC59, CC5, CC22, and CC398 were the predominant CCs of patient isolates. A total of 15 foodborne S. aureus isolates were distributed into 3 CCs and 4 STs, and CC1 was the most prevalent CC. Moreover, 101 S. aureus isolates had high resistance to penicillin and low resistance to chloramphenicol and rifampicin. A total of 39 strains of methicillin-resistant Staphylococcus aureus (MRSA) were detected in this study, including thirty-eight strains of patient isolates (44.2%, 38/86) and one strain of food isolates (6.7%, 1/15). MRSA-ST5, MRSA-ST59, and MRSA-ST239 were the predominant MRSA isolates in hospitals. The present study explained the relationship between S. aureus isolated from patient and food samples and indicated the risks of S. aureus in infectious diseases.
Collapse
Affiliation(s)
- Han Zhang
- Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Liyun Qin
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
- Hebei Key Laboratory of Unidentifiable Bacteria, Shijiazhuang 050011, China
| | - Caiping Jin
- Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Huidong Ju
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Ruiping Jiang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
- Hebei Key Laboratory of Unidentifiable Bacteria, Shijiazhuang 050011, China
| | - Lijie Li
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
- Hebei Key Laboratory of Unidentifiable Bacteria, Shijiazhuang 050011, China
| | - Hong Zhang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
- Hebei Key Laboratory of Unidentifiable Bacteria, Shijiazhuang 050011, China
| | - Weili Gao
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
- Hebei Key Laboratory of Unidentifiable Bacteria, Shijiazhuang 050011, China
| | - Xiuping Wei
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
| | - Hongyan Dong
- Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fei Lu
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
- Hebei Key Laboratory of Unidentifiable Bacteria, Shijiazhuang 050011, China
| | - Guoping Lv
- Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
10
|
Li Y, Tang Y, Jiang Z, Wang Z, Li Q, Jiao X. Molecular Characterization of Methicillin-Sensitive Staphylococcus aureus from the Intestinal Tracts of Adult Patients in China. Pathogens 2022; 11:pathogens11090978. [PMID: 36145410 PMCID: PMC9504698 DOI: 10.3390/pathogens11090978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Intestinal infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) have posed a great challenge for clinical treatments. In recent years, the intestinal carriage rates of MSSA have risen steadily in hospital settings in China. However, the epidemiology and molecular characteristics of MSSA from the intestinal tracts of Chinese adult patients remain unknown. In the present study, a total of 80 S. aureus isolates, including 64 MSSA and 16 methicillin-resistant Staphylococcus aureus (MRSA), were recovered from 466 fecal swabs in adult patients between 2019 and 2021 in China. The MSSA isolates exhibited high resistance to penicillin (92.2%) and erythromycin (45.3%). In addition, a higher proportion of MSSA isolates (14.1%) were multidrug-resistant (MDR) strains than that of MRSA isolates (1.3%). Among the 64 MSSA isolates, we identified 17 MLST types, of which ST398 and ST15 were the most predominant types. The most frequently detected resistance genes were blaZ (87.5%) and erm(C) (21.9%). The hemolysin genes (hla, hld, hlgA, hlgB, hlgC) were detected in all the MSSA isolates, but the Panton–Valentine leucocidin (pvl) gene was identified in 1.7% of the MSSA isolates. Our findings indicated that the prevalence and antimicrobial resistance of intestinal MSSA was a serious concern among adult patients in China.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
| | - Yuanyue Tang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Zhongyi Jiang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
| | - Zhenyu Wang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
| | - Qiuchun Li
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Q.L.); (X.J.); Tel.: +86-514-8797-1136 (Q.L. & X.J.)
| | - Xinan Jiao
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Q.L.); (X.J.); Tel.: +86-514-8797-1136 (Q.L. & X.J.)
| |
Collapse
|
11
|
Ma M, Tao L, Li X, Liang Y, Li J, Wang H, Jiang H, Dong J, Han D, Du T. Changes in molecular characteristics and antimicrobial resistance of invasive Staphylococcus aureus infection strains isolated from children in Kunming, China during the COVID-19 epidemic. Front Microbiol 2022; 13:944078. [PMID: 36033878 PMCID: PMC9403864 DOI: 10.3389/fmicb.2022.944078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Invasive Staphylococcus aureus (S. aureus) infection is associated with high rates of mortality in children. No studies have been reported on invasive S. aureus infection among children in Kunming, China, and it remains unknown whether the COVID-19 epidemic has affected S. aureus prevalence in this region. Thus, this study investigated the changes in molecular characteristics and antimicrobial resistance of invasive S. aureus strains isolated from children in Kunming during 2019–2021. In total, 66 invasive S. aureus strains isolated from children were typed by multilocus sequence typing (MLST), spa, and Staphylococcal cassette chromosome mec (SCCmec), and antimicrobial resistance and virulence genes were analyzed. A total of 19 ST types, 31 spa types and 3 SCCmec types were identified. Thirty nine (59.09%) strains were methicillin-sensitive S. aureus (MSSA) and 27 (40.91%) strains were methicillin-resistant S. aureus (MRSA). The most common molecular type was ST22-t309 (22.73%, 15/66), followed by ST59-t437 (13.64%, 9/66). In 2019 and 2021, the dominant molecular type was ST22-t309, while in 2020, it was ST59-t437. After 2019, the dominant molecular type of MRSA changed from ST338-t437 to ST59-t437. All strains were susceptible to tigecycline, ciprofloxacin, moxifloxacin, vancomycin, quinopudine-dafoputin, linezolid, levofloxacin, and rifampicin. From 2019 to 2021, the resistance to penicillin and sulfamethoxazole initially decreased and then increased, a trend that contrasted with the observed resistance to oxacillin, cefoxitin, erythromycin, clindamycin, and tetracycline. Sixteen antimicrobial resistance profiles were identified, with penicillin-tetracycline-erythromycin-clindamycin-oxacillin-cefoxitin being the most common, and the antimicrobial resistance profiles varied by year. The carrier rates of virulence genes, icaA, icaD, hla, fnbA, fnbB, clfA, clfB, and cna were 100.00%. Furthermore, sak, pvl, icaC, icaR, fib, lip, hlb, hysA, sea, seb, and tsst-1 had carrier rates of 96.97, 92.42, 87.88, 69.70, 84.85, 62.12, 56.06, 50, 37.87, 30.30, and 7.58%, respectively. Since COVID-19 epidemic, the annual number of invasive S. aureus strains isolated from children in Kunming remained stable, but the molecular characteristics and antimicrobial resistance profiles of prevalent S. aureus strains have changed significantly. Thus, COVID-19 prevention and control should be supplemented by surveillance of common clinical pathogens, particularly vigilance against the prevalence of multidrug-resistant and high-virulence strains.
Collapse
Affiliation(s)
- Mingbiao Ma
- Department of Clinical Laboratory, Kunming Children’s Hospital, Kunming, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Kunming Children’s Hospital, Kunming, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Hospital, Kunming, China
| | - Lvyan Tao
- Yunnan Key Laboratory of Children’s Major Disease Research, Kunming Children’s Hospital, Kunming, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Hospital, Kunming, China
- Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming, China
| | - Xinyue Li
- Department of Clinical Laboratory, Kunming Children’s Hospital, Kunming, China
| | - Yanqi Liang
- Department of Laboratory, Chuxiong Higher College of Medicine, Chuxiong, China
| | - Jue Li
- Department of Clinical Laboratory, Kunming Children’s Hospital, Kunming, China
| | - Haiping Wang
- Department of Clinical Laboratory, Kunming Children’s Hospital, Kunming, China
| | - Hongchao Jiang
- Yunnan Key Laboratory of Children’s Major Disease Research, Kunming Children’s Hospital, Kunming, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Hospital, Kunming, China
- Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming, China
| | - Jing Dong
- Department of Clinical Laboratory, Kunming Children’s Hospital, Kunming, China
| | - Dingrui Han
- Department of Clinical Laboratory, Kunming Children’s Hospital, Kunming, China
| | - Tingyi Du
- Department of Clinical Laboratory, Kunming Children’s Hospital, Kunming, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Kunming Children’s Hospital, Kunming, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Hospital, Kunming, China
- *Correspondence: Tingyi Du,
| |
Collapse
|