1
|
Fan W, Lei N, Zheng Y, Liu J, Cao X, Su T, Su Z, Lu Y. Oral microbiota diversity in moderate to severe plaque psoriasis, nail psoriasis and psoriatic arthritis. Sci Rep 2024; 14:18402. [PMID: 39117753 PMCID: PMC11310443 DOI: 10.1038/s41598-024-69132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Gaining a comprehensive understanding of the role played by the oral microbiome in moderate to severe plaque psoriasis and its potential implications for disease management and development holds significant importance. With the objective of exploring correlations between the oral microbiota and severe psoriasis, this study involved 72 severe psoriasis patients and 16 healthy individuals, whose clinical manifestations and living habits were carefully recorded. Cutting-edge techniques such as 16S rRNA gene sequencing and bioinformatics analysis were employed to compare the microbial flora, investigating dynamic changes among severe plaque psoriasis patients, psoriatic arthritis patients and healthy individuals. The findings revealed noteworthy patterns including increased levels of Aggregatibacter in the psoriatic arthritis group, accompanied by a decrease in the level of Prevotella. Moreover, the enrichment o Capnocytandophaga (P = 0.009), Campylobacter (P = 0.0022), and Acetobacter (P = 0.0292) was notably more substantial in the psoriasis group compared to the control group, whereas certain bacterial species such as Bacteroides (P = 0.0049), Muribaculaceae (P = 0.0048) demonstrated decreased enrichment. Additionally, the psoriatic arthritis group exhibited significantly higher levels of Ralstonia, Bifidobacterium and Micromonospora. Based on these findings, it can be inferred that individuals with lower levels of Prevotella and higher levels of Corynebacterium may be more susceptible to psoriasis exacerbation.
Collapse
Affiliation(s)
- Wen Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China
- Department of Dermatology, Changzhou NO. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
| | - Na Lei
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China
| | - Yujie Zheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China
| | - Juan Liu
- Department of Bacteriological Laboratory, Changzhou NO. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
| | - Xuechen Cao
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China
| | - Ting Su
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China
| | - Zhonglan Su
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China.
| |
Collapse
|
2
|
Eveleens Maarse BC, Ronner MN, Jansen MAA, Niemeyer-van der Kolk T, In 't Veld AE, Klaassen ES, Ahmad S, Itano A, McHale D, Moerland M. Immunomodulating effects of the single bacterial strain therapy EDP1815 on innate and adaptive immune challenge responses - a randomized, placebo-controlled clinical trial. Immunol Res 2024; 72:776-787. [PMID: 38748319 PMCID: PMC11347467 DOI: 10.1007/s12026-024-09484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/22/2024] [Indexed: 08/28/2024]
Abstract
The gut microbiome can modulate systemic inflammation and is therefore target for immunomodulation. Immunomodulating effects of EDP1815, a bacterial commensal strain of Prevotella histicola, were studied in healthy participants. Effects on adaptive immunity were evaluated by a neo-antigen challenge with keyhole limpet haemocyanin (KLH), while effects on innate immunity were evaluated by topical toll-like receptor 7 (TLR7) agonist imiquimod. Capsules with two enteric coating levels (EC1, EC2) were compared. Thirty-six healthy participants were included and received a daily dose of 8 × 1010 cells EDP1815-EC1, EDP1815-EC2 or placebo (randomization 1:1:1) for 60 days. They received KLH vaccinations at days 8, 24 and 36, with intradermal skin challenge at day 57. KLH challenge outcomes were antibody levels, and skin blood flow and erythema after skin challenge, measured by imaging techniques. Imiquimod administration started at day 57, for 72 h. Outcomes consisted of imaging measurements similar to the KLH challenge, and the influx of inflammatory cells and cytokines in blister fluid. There was no effect of EDP1815 treatment on the KLH challenge, neither on the imaging outcomes of the imiquimod challenge. There was a consistently lower influx of inflammatory cells in the blister fluid of EDP1815-treated participants (neutrophils, p = 0.016; granulocytes, p = 0.024), more pronounced in EC1. There was a lower influx of interleukin [IL]-1β, IL-6, IL-8, IL-10, interferon [IFN]-γ and tumour necrosis factor in blister fluid of EDP1815-treated participants. EDP1815 had immunomodulatory effects on the innate immune response driven by imiquimod, but no effect on the KLH challenge was observed. Trial registration number: NCT05682222; date: 22 July 2022.
Collapse
Affiliation(s)
- Boukje C Eveleens Maarse
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Micha N Ronner
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Manon A A Jansen
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Tessa Niemeyer-van der Kolk
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Aliede E In 't Veld
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Erica S Klaassen
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Saira Ahmad
- Evelo Biosciences Inc., One Kendall Square, Building 600/700, Suite 7-201, Cambridge, MA, USA
- Veramed, 5th Floor Regal House, 70 London Road, Twickenham, TW1 3QS, UK
| | - Andrea Itano
- Evelo Biosciences Inc., One Kendall Square, Building 600/700, Suite 7-201, Cambridge, MA, USA
| | - Duncan McHale
- Evelo Biosciences Inc., One Kendall Square, Building 600/700, Suite 7-201, Cambridge, MA, USA
| | - Matthijs Moerland
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands.
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
3
|
George SD, Van Gerwen OT, Dong C, Sousa LGV, Cerca N, Elnaggar JH, Taylor CM, Muzny CA. The Role of Prevotella Species in Female Genital Tract Infections. Pathogens 2024; 13:364. [PMID: 38787215 PMCID: PMC11123741 DOI: 10.3390/pathogens13050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Female genital tract infections (FGTIs) include vaginal infections (e.g., bacterial vaginosis [BV]), endometritis, pelvic inflammatory disease [PID], and chorioamnionitis [amniotic fluid infection]. They commonly occur in women of reproductive age and are strongly associated with multiple adverse health outcomes including increased risk of HIV/sexually transmitted infection acquisition and transmission, infertility, and adverse birth outcomes such as preterm birth. These FGTIs are characterized by a disruption of the cervicovaginal microbiota which largely affects host immunity through the loss of protective, lactic acid-producing Lactobacillus spp. and the overgrowth of facultative and strict anaerobic bacteria. Prevotella species (spp.), anaerobic Gram-negative rods, are implicated in the pathogenesis of multiple bacterial FGTIs. Specifically, P. bivia, P. amnii, and P. timonensis have unique virulence factors in this setting, including resistance to antibiotics commonly used in treatment. Additionally, evidence suggests that the presence of Prevotella spp. in untreated BV cases can lead to infections of the upper female genital tract by ascension into the uterus. This narrative review aims to explore the most common Prevotella spp. in FGTIs, highlight their important role in the pathogenesis of FGTIs, and propose future research in this area.
Collapse
Affiliation(s)
- Sheridan D. George
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| | - Olivia T. Van Gerwen
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| | - Chaoling Dong
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| | - Lúcia G. V. Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.G.V.S.); (N.C.)
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.G.V.S.); (N.C.)
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (J.H.E.); (C.M.T.)
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (J.H.E.); (C.M.T.)
| | - Christina A. Muzny
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| |
Collapse
|
4
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
5
|
Itano A, Maslin D, Ramani K, Mehraei G, Carpenter N, Cormack T, Saghari M, Moerland M, Troy E, Caffry W, Wardwell-Scott L, Abel S, McHale D, Bodmer M. Clinical translation of anti-inflammatory effects of Prevotella histicola in Th1, Th2, and Th17 inflammation. Front Med (Lausanne) 2023; 10:1070433. [PMID: 37215725 PMCID: PMC10197930 DOI: 10.3389/fmed.2023.1070433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction EDP1815 is a non-colonizing pharmaceutical preparation of a single stain of Prevotella histicola isolated from the duodenum of a human donor. We report here preclinical and clinical studies showing that the action of EDP1815, an orally delivered and gut restricted single strain of commensal bacteria can regulate inflammatory responses throughout the body. Methods Supported by evidence for anti-inflammatory activity in three preclinical mouse models of Th1-, TH2-, and Th17-mediated inflammation, EDP1815 was tested clinically in three Phase 1b studies in patients with psoriasis, patients with atopic dermatitis, and healthy volunteers in a KLH skin challenge model. Results Preclinically, EDP1815 was efficacious in all three mouse models of inflammation, showing reduction in skin inflammation as well as related tissue cytokines. In the Phase 1b studies, EDP1815 was found to be well tolerated by participants, with a safety profile comparable to placebo, including no severe or consistent side-effects reported, and no evidence of immunosuppression with no opportunistic infection occurring in these studies. In psoriasis patients, signs of clinical efficacy were seen after 4 weeks of treatment, which continued beyond the treatment period in the higher-dose cohort. In atopic dermatitis patients, improvements were seen throughout the key physician-and patient-reported outcomes. In a healthy-volunteer study of a KLH-induced skin inflammatory response, consistent anti-inflammatory effects were seen in two cohorts through imaging-based measures of skin inflammation. Discussion This is the first report demonstrating clinical effects from targeting peripheral inflammation with a non-colonizing gut-restricted single strain of commensal bacteria, providing proof of concept for a new class of medicines. These clinical effects occur without systemic exposure of EDP1815 or modification of the resident gut microbiota, and with placebo-like safety and tolerability. The breadth of these clinical effects of EDP1815, combined with its excellent safety and tolerability profile and oral administration, suggests the potential for a new type of effective, safe, oral, and accessible anti-inflammatory medicine to treat the wide range of diseases driven by inflammation.Clinical Trial Registration: EudraCT # 2018-002807-32; EudraCT # 2018-002807-32; NL8676; https://clinicaltrials.gov/ct2/show/NCT03733353; http://www.trialregister.nl.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mahdi Saghari
- Centre for Human Drug Research (CHDR), Leiden, Netherlands
| | | | - Erin Troy
- Evelo Biosciences, Cambridge, MA, United States
| | - Will Caffry
- Evelo Biosciences, Cambridge, MA, United States
| | | | - Stuart Abel
- Evelo Biosciences, Cambridge, MA, United States
| | | | - Mark Bodmer
- Evelo Biosciences, Cambridge, MA, United States
| |
Collapse
|
6
|
Yoon DW, Baik I. Oral Administration of Human-Gut-Derived Prevotella histicola Improves Sleep Architecture in Rats. Microorganisms 2023; 11:1151. [PMID: 37317125 DOI: 10.3390/microorganisms11051151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
(1) Background: The human gut microbiome may regulate sleep through the gut-brain axis. However, the sleep-promoting effects of gut microbiota remain unclear. (2) Methods: We obtained sleep-wake profiles from 25 rats receiving P. histicola (P. histicola group), 5 rats receiving P. stercorea (P. stercorea group), 4 rats not receiving bacteria (No administration group), and 8 rats receiving P. histicola extracellular vesicles (EV) (EV group) during the baseline, administration, and withdrawal periods. (3) Results: The P. histicola group showed increased total sleep, rapid eye movement (REM) sleep, and non-rapid eye movement (NREM) sleep time during the administration and withdrawal periods; on the last day of administration, we found significant increases of 52 min for total sleep (p < 0.01), 13 min for REM sleep (p < 0.05), and 39 min for NREM sleep (p < 0.01) over the baseline. EV administration also increased NREM sleep time on Day 3 of administration (p = 0.05). We observed a linear trend in the dose-response relationship for total sleep and NREM sleep in the P. histicola group. However, neither the no-administration group nor the P. stercorea group showed significant findings. (4) Conclusions: Oral administration of probiotic P. histicola may improve sleep and could be a potential sleep aid. Further rigorous evaluations for the safety and efficacy of P. histicola supplementation are warranted.
Collapse
Affiliation(s)
- Dae Wui Yoon
- Department of Biomedical Laboratory Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Inkyung Baik
- Department of Foods and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
7
|
Guo K, Li J, Li X, Huang J, Zhou Z. Emerging trends and focus on the link between gut microbiota and type 1 diabetes: A bibliometric and visualization analysis. Front Microbiol 2023; 14:1137595. [PMID: 36970681 PMCID: PMC10033956 DOI: 10.3389/fmicb.2023.1137595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE To conduct the first thorough bibliometric analysis to evaluate and quantify global research regarding to the gut microbiota and type 1 diabetes (T1D). METHODS A literature search for research studies on gut microbiota and T1D was conducted using the Web of Science Core Collection (WoSCC) database on 24 September 2022. VOSviewer software and the packages Bibliometrix R and ggplot used in RStudio were applied to perform the bibliometric and visualization analysis. RESULTS A total of 639 publications was extracted using the terms "gut microbiota" and "type 1 diabetes" (and their synonyms in MeSH). Ultimately, 324 articles were included in the bibliometric analysis. The United States and European countries are the main contributors to this field, and the top 10 most influential institutions are all based in the United States, Finland and Denmark. The three most influential researchers in this field are Li Wen, Jorma Ilonen and Mikael Knip. Historical direct citation analysis showed the evolution of the most cited papers in the field of T1D and gut microbiota. Clustering analysis defined seven clusters, covering the current main topics in both basic and clinical research on T1D and gut microbiota. The most commonly found high-frequency keywords in the period from 2018 to 2021 were "metagenomics," "neutrophils" and "machine learning." CONCLUSION The application of multi-omics and machine learning approaches will be a necessary future step for better understanding gut microbiota in T1D. Finally, the future outlook for customized therapy toward reshaping gut microbiota of T1D patients remains promising.
Collapse
Affiliation(s)
- Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Bodmer M, Itano A, McInnes I. Harnessing the small intestinal axis to resolve systemic inflammation. Front Immunol 2022; 13:1060607. [PMID: 36458009 PMCID: PMC9706197 DOI: 10.3389/fimmu.2022.1060607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/01/2022] [Indexed: 08/10/2023] Open
Abstract
This Perspective presents the potential of the Small Intestinal Axis, a sub-division of the Gut-immune Axis, to modulate systemic inflammation based on sensing contents of the gut lumen. Gut mucosal immunity regulates tolerance to food and gut contents and is a significant factor in maintaining systemic homeostasis without compromising immunity to pathogens. This is achieved through anatomical structures and signaling pathways that link the tolerogenic potential of the proximal small intestine to systemic immunity. Non-live preparations of microbes isolated from human small intestinal mucosa, and the extracellular vesicles (EVs) which they shed, can resolve systemic inflammation without systemic exposure after oral delivery. The mechanism involves primary interactions with pattern recognition receptors followed by trafficking of immune cells through mesenteric lymph nodes. This generates in the periphery a population of circulating CD4+ T cells which have regulatory function but an atypical FoxP3- phenotype. There is no modification of the resident gut microbiome. Discoveries using this novel approach of targeting mucosal microbial elements to the tolerogenic proximal regions of the small intestine are revealing some of the mysteries of the relationship between the gut and immune system.
Collapse
Affiliation(s)
- Mark Bodmer
- Research and Development, Evelo Biosciences, Cambridge, MA, United States
| | - Andrea Itano
- Research and Development, Evelo Biosciences, Cambridge, MA, United States
| | - Iain McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Jiang X, Sun B, Zhou Z. Preclinical Studies of Natural Products Targeting the Gut Microbiota: Beneficial Effects on Diabetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8569-8581. [PMID: 35816090 DOI: 10.1021/acs.jafc.2c02960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a serious metabolic disease characterized by persistent hyperglycemia, with a continuously increasing morbidity and mortality. Although traditional treatments including insulin and oral hypoglycemic drugs maintain blood glucose levels within the normal range to a certain extent, there is an urgent need to develop new drugs that can effectively improve glucose metabolism and diabetes-related complications. Notably, accumulated evidence implicates that the gut microbiota is unbalanced in DM individuals and is involved in the physiological and pathological processes of this metabolic disease. In this review, we introduce the molecular mechanisms by which the gut microbiota contributes to the development of DM. Furthermore, we summarize the preclinical studies of bioactive natural products that exert antidiabetic effects by modulating the gut microbiota, aiming to expand the novel therapeutic strategies for DM prevention and management.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao 266000, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
10
|
Shahi SK, Yadav M, Ghimire S, Mangalam AK. Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:185-215. [PMID: 36427955 DOI: 10.1016/bs.irn.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS that affects around one million people in the United States. Predisposition or protection from this disease is linked with both genetic and environmental factors. In recent years, gut microbiome has emerged as an important environmental factor in the pathobiology of MS. The gut microbiome supports various physiologic functions, including the development and maintenance of the host immune system, the perturbation of which is known as dysbiosis and has been linked with multiple diseases including MS. We and others have shown that people with MS (PwMS) have gut dysbiosis that is characterized by specific gut bacteria being enriched or depleted. Consequently, there is an emphasis on determining the mechanism(s) through which gut bacteria and/or their metabolites alter the course of MS through their ability to provide protection, predispose individuals, or promote disease progression. Improving our understanding of these mechanisms will allow us to harness the enormous potential of the gut microbiome as a diagnostic and/or therapeutic agent. In this chapter, we will discuss current advances in microbiome research in the context of MS, including a review of specific bacteria that are currently linked with this disease, potential mechanisms of disease pathogenesis, and the utility of microbiome-based therapy for PwMS.
Collapse
Affiliation(s)
- Shailesh K Shahi
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Meeta Yadav
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States.
| |
Collapse
|
11
|
Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T, Kovač J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes (Basel) 2022; 13:genes13040706. [PMID: 35456512 PMCID: PMC9032728 DOI: 10.3390/genes13040706] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the T-cell-mediated destruction of insulin-producing β-cells in pancreatic islets. It generally occurs in genetically susceptible individuals, and genetics plays a major role in the development of islet autoimmunity. Furthermore, these processes are heterogeneous among individuals; hence, different endotypes have been proposed. In this review, we highlight the interplay between genetic predisposition and other non-genetic factors, such as viral infections, diet, and gut biome, which all potentially contribute to the aetiology of T1D. We also discuss a possible active role for β-cells in initiating the pathological processes. Another component in T1D predisposition is epigenetic influences, which represent a link between genetic susceptibility and environmental factors and may account for some of the disease heterogeneity. Accordingly, a shift towards personalized therapies may improve the treatment results and, therefore, result in better outcomes for individuals in the long-run. There is also a clear need for a better understanding of the preclinical phases of T1D and finding new predictive biomarkers for earlier diagnosis and therapy, with the final goal of reverting or even preventing the development of the disease.
Collapse
Affiliation(s)
- Ana Zajec
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Robert Šket
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Barbara Čugalj Kern
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Šmigoc Schweiger
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|