1
|
Cheng J, Kolba N, Tako E. The effect of dietary zinc and zinc physiological status on the composition of the gut microbiome in vivo. Crit Rev Food Sci Nutr 2024; 64:6432-6451. [PMID: 36688291 DOI: 10.1080/10408398.2023.2169857] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Zinc serves critical catalytic, regulatory, and structural roles. Hosts and their resident gut microbiota both require zinc, leading to competition, where a balance must be maintained. This systematic review examined evidence on dietary zinc and physiological status (zinc deficiency or high zinc/zinc overload) effects on gut microbiota. This review was conducted according to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines and registered in PROSPERO (CRD42021250566). PubMed, Web of Science, and Scopus databases were searched for in vivo (animal) studies, resulting in eight selected studies. Study quality limitations were evaluated using the SYRCLE risk of bias tool and according to ARRIVE guidelines. The results demonstrated that zinc deficiency led to inconsistent changes in α-diversity and short-chain fatty acid production but led to alterations in bacterial taxa with functions in carbohydrate metabolism, glycan metabolism, and intestinal mucin degradation. High dietary zinc/zinc overload generally resulted in either unchanged or decreased α-diversity, decreased short-chain fatty acid production, and increased bacterial metal resistance and antibiotic resistance genes. Additional studies in human and animal models are needed to further understand zinc physiological status effects on the intestinal microbiome and clarify the applicability of utilizing the gut microbiome as a potential zinc status biomarker.
Collapse
Affiliation(s)
- Jacquelyn Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
3
|
Jory J, Handelman K. Sudden-Onset Acute Obsessive-Compulsive Disorder Associated with Streptococcus and Brain MRI Hyperintensity in a Young Adult. Healthcare (Basel) 2024; 12:226. [PMID: 38255113 PMCID: PMC10815760 DOI: 10.3390/healthcare12020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Pediatric autoimmune neuropsychiatric disorders associated with streptococcal (strep) infections (PANDAS) are a recognized medical entity among children. But evidence for strep-mediated sudden-onset obsessive-compulsive disorder (OCD) in young adults is very limited. Delayed strep assessment and treatment may negatively impact clinical outcomes. METHODS We describe a young adult with acute sudden-onset OCD (age 24), treated unsuccessfully with medication and therapy for 3 years. At age 27, antistreptolysin-O (ASO) was tested, based on extensive pediatric history of strep infections. Antibiotic treatment was initiated. RESULTS Magnetic resonance imaging (MRI) identified a new temporal lobe hyperintensity at OCD onset (age 24), which persisted at ages 25 and 30. ASO titers were elevated from age 27 through 29. Following Amoxicillin treatment, ASO initially increased. Subsequent Amoxicillin + Clavulin treatment produced improved OCD symptoms and treatment response, with no adverse effects. CONCLUSION These results strongly suggest an association among strep infection, neuro-inflammation and sudden-onset OCD in this young adult whose response to medication and therapy was successful only after high-dose antibiotic intervention. Greater OCD remission potential may be possible with earlier identification and antibiotic treatment than 3 years post OCD onset. These findings add to the limited literature on strep as an etiology of the sudden-onset of OCD in young adults. They also lend urgency to increased frontline awareness for early strep and ASO assessment in sudden-onset acute OCD among young adults.
Collapse
Affiliation(s)
- Joan Jory
- Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, ON L8N 3K7, Canada
| | - Kenneth Handelman
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 3K7, Canada;
| |
Collapse
|
4
|
Dangor Z, Seale AC, Baba V, Kwatra G. Early-onset group B streptococcal disease in African countries and maternal vaccination strategies. Front Public Health 2023; 11:1214844. [PMID: 37457277 PMCID: PMC10338870 DOI: 10.3389/fpubh.2023.1214844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Invasive group B streptococcal (GBS) disease is the commonest perinatally-acquired bacterial infection in newborns; the burden is higher in African countries where intrapartum antibiotic prophylaxis strategies are not feasible. In sub-Saharan Africa, almost one in four newborns with GBS early-onset disease will demise, and one in ten survivors have moderate or severe neurodevelopmental impairment. A maternal GBS vaccine to prevent invasive GBS disease in infancy is a pragmatic and cost-effective preventative strategy for Africa. Hexavalent polysaccharide protein conjugate and Alpha family surface protein vaccines are undergoing phase II clinical trials. Vaccine licensure may be facilitated by demonstrating safety and immunological correlates/thresholds suggestive of protection against invasive GBS disease. This will then be followed by phase IV effectiveness studies to assess the burden of GBS vaccine preventable disease, including the effect on all-cause neonatal infections, neonatal deaths and stillbirths.
Collapse
Affiliation(s)
- Ziyaad Dangor
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna C. Seale
- Bill and Melinda Gates Foundation, Seattle, WA, United States
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vuyelwa Baba
- Department of Obstetrics and Gynaecology, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| |
Collapse
|
5
|
Varghese BR, Goh KGK, Desai D, Acharya D, Chee C, Sullivan MJ, Ulett GC. Variable resistance to zinc intoxication among Streptococcus agalactiae reveals a novel IS1381 insertion element within the zinc efflux transporter gene czcD. Front Immunol 2023; 14:1174695. [PMID: 37304277 PMCID: PMC10251203 DOI: 10.3389/fimmu.2023.1174695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus, is an important human and animal pathogen. Zinc (Zn) is an essential trace element for normal bacterial physiology but intoxicates bacteria at high concentrations. Molecular systems for Zn detoxification exist in S. agalactiae, however the degree to which Zn detoxification may vary among different S. agalactiae isolates is not clear. We measured resistance to Zn intoxication in a diverse collection of clinical isolates of S. agalactiae by comparing the growth of the bacteria in defined conditions of Zn stress. We found significant differences in the ability of different S. agalactiae isolates to resist Zn intoxication; some strains such as S. agalactiae 18RS21 were able to survive and grow at 3.8-fold higher levels of Zn stress compared to other reference strains such as BM110 (6.4mM vs 1.68mM Zn as inhibitory, respectively). We performed in silico analysis of the available genomes of the S. agalactiae isolates used in this study to examine the sequence of czcD, which encodes an efflux protein for Zn that supports resistance in S. agalactiae. Interestingly, this revealed the presence of a mobile insertion sequence (IS) element, termed IS1381, in the 5' region of czcD in S. agalactiae strain 834, which was hyper-resistant to Zn intoxication. Interrogating a wider collection of S. agalactiae genomes revealed identical placement of IS1381 in czcD in other isolates from the clonal-complex-19 (CC19) 19 lineage. Collectively, these results show a resistance spectrum among S. agalactiae isolates enables survival in varying degrees of Zn stress, and this phenotypic variability has implications for understanding bacterial survival in metal stress.
Collapse
Affiliation(s)
- Brian R. Varghese
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Kelvin G. K. Goh
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Collin Chee
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Matthew J. Sullivan
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Moore RE, Spicer SK, Talbert JA, Manning SD, Townsend SD, Gaddy JA. Anti-biofilm Activity of Human Milk Oligosaccharides in Clinical Strains of Streptococcus agalactiae with Diverse Capsular and Sequence Types. Chembiochem 2023; 24:e202200643. [PMID: 36622717 PMCID: PMC10262446 DOI: 10.1002/cbic.202200643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
Group B Streptococcus (GBS) is an encapsulated Gram-positive bacterial pathogen that causes severe perinatal infections. Human milk oligosaccharides (HMOs) are short-chain sugars that have recently been shown to possess antimicrobial and anti-biofilm activity against a variety of bacterial pathogens, including GBS. We have expanded these studies to demonstrate that HMOs can inhibit and dismantle biofilm in both invasive and colonizing strains of GBS. A cohort of 30 diverse strains of GBS were analyzed for susceptibility to HMO-dependent biofilm inhibition or destruction. HMOs were significantly effective at inhibiting biofilm in capsular-type- and sequence-type-specific fashion, with significant efficacy in CpsIb, CpsII, CpsIII, CpsV, and CpsVI strains as well as ST-1, ST-12, ST-19, and ST-23 strains. Interestingly, CpsIa as well as ST-7 and ST-17 were not susceptible to the anti-biofilm activity of HMOs, underscoring the strain-specific effects of these important antimicrobial molecules against the perinatal pathogen Streptococcus agalactiae.
Collapse
Affiliation(s)
- Rebecca E. Moore
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, Tennessee, U.S.A
| | - Sabrina K. Spicer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, U.S.A
| | - Julie A. Talbert
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, U.S.A
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, U.S.A
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, U.S.A
| | - Jennifer A. Gaddy
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, Tennessee, U.S.A
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
- Center for Medicine Health and Society, Vanderbilt University, Nashville, Tennessee, U.S.A
| |
Collapse
|
7
|
Akbari MS, Doran KS, Burcham LR. Metal Homeostasis in Pathogenic Streptococci. Microorganisms 2022; 10:1501. [PMID: 35893559 PMCID: PMC9331361 DOI: 10.3390/microorganisms10081501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus spp. are an important genus of Gram-positive bacteria, many of which are opportunistic pathogens that are capable of causing invasive disease in a wide range of populations. Metals, especially transition metal ions, are an essential nutrient for all organisms. Therefore, to survive across dynamic host environments, Streptococci have evolved complex systems to withstand metal stress and maintain metal homeostasis, especially during colonization and infection. There are many different types of transport systems that are used by bacteria to import or export metals that can be highly specific or promiscuous. Focusing on the most well studied transition metals of zinc, manganese, iron, nickel, and copper, this review aims to summarize the current knowledge of metal homeostasis in pathogenic Streptococci, and their role in virulence.
Collapse
Affiliation(s)
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | |
Collapse
|