1
|
Tariq TB, Munir F, Jabeen I, Gul A, Amir R. Molecular modelling and gene expression analysis to probe the GT-γ trihelix transcription factors in Solanum tuberosum under drought stress. Sci Rep 2025; 15:12471. [PMID: 40216884 PMCID: PMC11992213 DOI: 10.1038/s41598-025-96485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
GT-γ transcription factors, a subfamily known for their involvement in stress responses, remain uncharacterized in Solanum tuberosum under drought stress. This study employed in-silico approaches and in-vitro expression profiling in differential tissues to investigate StGTγ-1, StGTγ-2, StGTγ-3, and StGTγ-4 potential role in the potato's drought tolerance mechanisms. Analysis of cis-regulatory elements showed complex networks controlling stress response. Alpha helices were prevalent in their structures, possibly aiding protein stability and interaction. Additionally, intrinsically disordered regions were observed in some StGT-γ proteins, suggesting their role in stress adaptation through flexibility. Protein structure modeling and validation revealed structural diversity within the GT-γ family, potentially reflecting variations in functionalities. Physicochemical analysis highlighted differences in protein properties that could influence their nuclear function. Post-translational modifications further diversified their functionalities. Subcellular localization prediction and topology analysis confirmed their nuclear localization, aligning with the anticipated role in transcriptional regulation. GT-γ proteins likely regulate genes due to structural variations. This is based on the presence of DNA-binding domains and functional annotation suggesting roles in metabolism, gene expression, and stress response. Molecular docking predicted partners involved in drought response, indicating GT-γ proteins' role in drought tolerance networks. Identified StGT-γ genes were highly expressed in leaves after 14 days of drought stress, indicating their key role in protecting this vulnerable tissue during drought. This study enhances understanding of GT-γ factors and provides a foundation for the functional characterization and in-depth exploration of the role and regulatory mechanisms of GT-γ genes in potato's response to drought stress.
Collapse
Affiliation(s)
- Tayyaba Bint Tariq
- Department of Agricultural Sciences and Technology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faiza Munir
- Department of Agricultural Sciences and Technology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Alvina Gul
- Department of Agricultural Sciences and Technology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rabia Amir
- Department of Agricultural Sciences and Technology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Zheng X, Jian Y, Long Q, Luo Y, Xu X, Zhang Q, Cheng Y, Huang B, Qiu D, Li Z, Zheng J, Zhang W, Deng W. SlASR3 mediates crosstalk between auxin and jasmonic acid signaling to regulate trichome formation in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70053. [PMID: 39981944 DOI: 10.1111/tpj.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Trichomes play a pivotal role in plant resistance to biotic and abiotic stresses. Both auxin and jasmonic acid (JA) could induce tomato type II, V, and VI trichome formation. However, the existence of crosstalk between auxin and JA in trichome formation is not yet fully elucidated. In this study, we identified a Trihelix/MYB-like gene, SlASR3, is inhibited by both auxin and JA and is expressed in type II and VI trichomes in tomatoes. Knock-down or knockout of SlASR3 increased the densities of type II and VI trichomes, whereas overexpression of SlASR3 reduced the densities of type II and VI trichomes. SlASR3 was involved in the indole acetic acid (IAA)- and JA-induced formation of these trichome types. SlARF4 negatively regulated the transcription of SlASR3, and its effect on IAA-induced trichome formation depended on SlASR3. Likewise, SlMYC1 negatively regulated the transcription of SlASR3, and the regulation of SlMYC1 on JA-induced trichome formation was also SlASR3-dependent. Knock-down or knockout of SlASR3 increased the resistance to two-spotted spider mites in tomatoes. The research findings demonstrate that SlASR3 acts as a mediator in the crosstalk between JA and auxin signaling to regulate trichome formation and provide a new candidate gene for enhancing resistance to two-spotted spider mites.
Collapse
Affiliation(s)
- Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
- Southwest Research Center for Cross Breeding of Special Economic Plants, School of Life Science, Leshan Normal University, Sichuan, 614000, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Qian Long
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yingqing Luo
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Dan Qiu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weiqing Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Sun Q, He Z, Wei R, Ye J, Chai L, Cheng Y, Xu Q, Deng X. Red peel regulator 1 links ethylene response factor 25 and β-citraurin biosynthetic genes to regulate ethylene-induced peel reddening in citrus. THE PLANT CELL 2024; 37:koaf010. [PMID: 39792899 PMCID: PMC11760939 DOI: 10.1093/plcell/koaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The reddish apocarotenoid β-citraurin, produced by CAROTENOID CLEAVAGE DIOXYGENASE 4b (CsCCD4b), is responsible for peel reddening in citrus (Citrus spp.). Ethylene induces the characteristic red color of citrus peel, but the underlying molecular mechanism remains largely unclear. Here, we identified red peel regulator 1 (CsRP1), a trihelix transcriptional activator that regulates ethylene-induced peel reddening by directly binding to a key V-myb avian myeloblastosis viral oncogene homolog (MYB)-binding site in the CsCCD4b promoter, thus activating its transcription. Furthermore, 2 drought-responsive cis-elements in the CsRP1 promoter are bound by the ethylene response factor ethylene response factor 25 (CsERF25). We reconstructed the CsERF25-CsRP1-CsCCD4b transcriptional regulatory cascade through transient expression of CsERF25 and CsRP1 in citrus peel and via stable transformation of citrus calli. In this cascade, CsERF25 expression was induced by ethylene to activate CsRP1 expression, and then, CsRP1 directly induced CsCCD4b transcription to catalyze β-citraurin biosynthesis. CsRP1 and CsERF25 also bound to the promoters of other carotenogenic genes and induced their transcription, thereby promoting β-citraurin accumulation. Collectively, our findings reveal a complex regulatory network modulating ethylene-induced citrus peel reddening and provide innovative strategies for improving the nutritional and esthetic values of citrus and other fruit crops.
Collapse
Affiliation(s)
- Quan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhengchen He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ranran Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
4
|
Cao Y, Cheng Z, Sun X, Zhu M, Yue L, Liu H, Wu X, Zhang J, Duan C. Genome-Wide Identification of the Trihelix Transcription Factor Family and Functional Analysis of ZmTHX15 in Maize. Int J Mol Sci 2024; 25:13257. [PMID: 39769022 PMCID: PMC11675602 DOI: 10.3390/ijms252413257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The trihelix transcription factor, which is a plant-specific family, play a critical role in plant growth and development and stress responses. Drought is the main limiting factor affecting yield of maize (Zea mays). However, the identification and characterization of this gene family in maize and its biological functions in response to drought stress have not been reported. Here, 46 Zea mays trihelix genes (ZmTHXs) were identified in the genome. Phylogenetic analysis of the ZmTHXs revealed that the genes were clustered into five subfamilies: GT-1, GT-2, GTγ, SH4, and SIP1. Chromosomal localization analysis showed that the 46 ZmTHXs were unevenly distributed across 10 chromosomes in maize. Cis-acting elements related to abiotic stress in ZmTHXs were found. Most ZmTHXs genes showed significant changes in expression levels under drought treatment. In addition, ZmTHX15-overexpressing Arabidopsis exhibited stronger drought tolerance with less secondary oxidative damage and higher photosynthetic rate. These findings could serve as a basis for future studies on the roles of ZmTHXs and the potential genetic markers for breeding stress-resistant and high-yielding maize varieties.
Collapse
Affiliation(s)
- Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China; (Y.C.); (Z.C.); (X.S.); (M.Z.)
| | - Zeqiang Cheng
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China; (Y.C.); (Z.C.); (X.S.); (M.Z.)
| | - Xinyan Sun
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China; (Y.C.); (Z.C.); (X.S.); (M.Z.)
| | - Meichen Zhu
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China; (Y.C.); (Z.C.); (X.S.); (M.Z.)
| | - Ling Yue
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; (L.Y.); (H.L.); (X.W.)
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; (L.Y.); (H.L.); (X.W.)
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; (L.Y.); (H.L.); (X.W.)
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; (L.Y.); (H.L.); (X.W.)
| | - Canxing Duan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Liu F, Sun X, Sheng O, Dou T, Yang Q, Hu C, Gao H, He W, Deng G, Dong T, Li C, Liu S, Yi G, Bi F. Genome-wide analysis of the trihelix gene family reveals that MaGT21 modulates fruit ripening by regulating the expression of MaACO1 in Musa acuminata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109089. [PMID: 39265241 DOI: 10.1016/j.plaphy.2024.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
The trihelix transcription factor (GT) gene family members play vital roles in plant growth and development, responses to abiotic or biotic stress, and fruit ripening. However, its role in banana fruit ripening remains unclear. Here, 59 MaGT gene members were identified in banana and clustered into five subfamilies, namely GT1, GT2, GTγ, SIP1, and SH4. This classification is completely supported by their gene structures and conserved motif analysis. Transcriptome data analysis indicated that MaGT14, MaGT21, and MaGT27 demonstrated significant differential expression during fruit ripening. Quantitative real-time PCR analysis revealed that these three genes were highly induced by ethylene treatment, responded to cold and heat stress, and had a high expression abundance in ripe fruit. Subcellular localization demonstrated that MaGT21 and MaGT27 functioned as nuclear proteins, while MaGT14 functioned as a nuclear and cell membrane protein. Further investigation indicated MaGT21 could positively stimulate the transcription of the key ethylene biosynthesis gene MaACO1 by directly targeting the GT motif in the promoter. MaGT21 transient overexpression in banana fruit upregulated MaACO1 and accelerated fruit ripening. Our findings provide comprehensive and valuable information for further functional studies of MaGT genes in banana, help to understand the roles of MaGTs during banana fruit ripening.
Collapse
Affiliation(s)
- Fan Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xueli Sun
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Weidi He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Siwen Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China.
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China.
| |
Collapse
|
6
|
Normantovich M, Amitzur A, Offri S, Pashkovsky E, Shnaider Y, Nizan S, Yogev O, Jacob A, Taylor CG, Desbiez C, Whitham SA, Bar-Ziv A, Perl-Treves R. The melon Fom-1-Prv resistance gene pair: Correlated spatial expression and interaction with a viral protein. PLANT DIRECT 2024; 8:e565. [PMID: 38389929 PMCID: PMC10883720 DOI: 10.1002/pld3.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
The head-to-head oriented pair of melon resistance genes, Fom-1 and Prv, control resistance to Fusarium oxysporum races 0 and 2 and papaya ringspot virus (PRSV), respectively. They encode, via several RNA splice variants, TIR-NBS-LRR proteins, and Prv has a C-terminal extra domain with a second NBS homologous sequence. In other systems, paired R-proteins were shown to operate by "labor division," with one protein having an extra integrated domain that directly binds the pathogen's Avr factor, and the second protein executing the defense response. We report that the expression of the two genes in two pairs of near-isogenic lines was higher in the resistant isoline and inducible by F. oxysporum race 2 but not by PRSV. The intergenic DNA region separating the coding sequences of the two genes acted as a bi-directional promoter and drove GUS expression in transgenic melon roots and transgenic tobacco plants. Expression of both genes was strong in melon root tips, around the root vascular cylinder, and the phloem and xylem parenchyma of tobacco stems and petioles. The pattern of GUS expression suggests coordinated expression of the two genes. In agreement with the above model, Prv's extra domain was shown to interact with the cylindrical inclusion protein of PRSV both in yeast cells and in planta.
Collapse
Affiliation(s)
- Michael Normantovich
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Arie Amitzur
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Sharon Offri
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Ekaterina Pashkovsky
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Yula Shnaider
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Shahar Nizan
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Ohad Yogev
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | | | | | - Steven A Whitham
- Department of Plant Pathology and Microbiology Iowa State University Ames Iowa USA
| | - Amalia Bar-Ziv
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Rafael Perl-Treves
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| |
Collapse
|
7
|
Dong L, Manghwar H. Genome-wide expression analysis of LBD genes in tomato ( Solanum lycopersicum L.) under different light conditions. PLANT SIGNALING & BEHAVIOR 2023; 18:2290414. [PMID: 38059488 PMCID: PMC10732681 DOI: 10.1080/15592324.2023.2290414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Lateral organ boundaries (LOB) domain (LBD) genes, a gene family that encodes the transcription factors (TFs) of plants, plays crucial functions in the development and growth of plants. Currently, genome-wide studies of the LBD family are still limited to tomato (Solanum lycopersicum L.), which is considered an important economic crop. In this study, we performed a genome-wide analysis of LBD in tomato. In total, 56 LBDs were found in the tomato genome. Protein alignment and phylogenetic classification showed that LBDs were conserved with other species. Since light emitting diodes (LEDs) light have promising applications for tomato growth. To better understand the potential function of LBDs in response to LED light in tomato, we conducted a genome-wide expression analysis of LBD genes under different light conditions. As expected, different LED lights affected the tomato growth (e.g. hypocotyl length). RNA-seq data showed that eight LBDs in tomato seedlings were differentially expressed under different light treatments, including white, blue, red, and far-red light, compared to the dark-grown condition. It indicates that these LBDs might regulate plant development in different LED light conditions. Interestingly, two LBD genes (SlLBD1 and SlLBD2) were found to be differentially expressed in four distinct lights, which might be involved in regulating the plant architecture via a complicated TF network, which can be taken into consideration in further investigation.
Collapse
Affiliation(s)
- Limei Dong
- Guangdong Eco-engineering Polytechnic, Guangzhou, Guangdong, P.R. China
| | - Hakim Manghwar
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, P.R. China
| |
Collapse
|
8
|
Lang Z, Xu Z, Li L, He Y, Zhao Y, Zhang C, Hong G, Zhang X. Comprehensive Genomic Analysis of Trihelix Family in Tea Plant ( Camellia sinensis) and Their Putative Roles in Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 13:70. [PMID: 38202377 PMCID: PMC10780335 DOI: 10.3390/plants13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In plants, Trihelix transcription factors are responsible for regulating growth, development, and reaction to various abiotic stresses. However, their functions in tea plants are not yet fully understood. This study identified a total of 40 complete Trihelix genes in the tea plant genome, which are classified into five clades: GT-1 (5 genes), GT-2 (8 genes), GTγ (2 genes), SH4 (7 genes), and SIP1 (18 genes). The same subfamily exhibits similar gene structures and functional domains. Chromosomal mapping analysis revealed that chromosome 2 has the most significant number of trihelix family members. Promoter analysis identified cis-acting elements in C. sinensis trihelix (CsTH), indicating their potential to respond to various phytohormones and stresses. The expression analysis of eight representative CsTH genes from four subfamilies showed that all CsTHs were expressed in more tissues, and three CsTHs were significantly induced under ABA, NaCl, and drought stress. This suggests that CsTHs plays an essential role in tea plant growth, development, and response to osmotic stress. Furthermore, yeast strains have preliminarily proven that CsTH28, CsTH36, and CsTH39 can confer salt and drought tolerance. Our study provides insights into the phylogenetic relationships and functions of the trihelix transcription factors in tea plants. It also presents new candidate genes for stress-tolerance breeding.
Collapse
Affiliation(s)
- Zhuoliang Lang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Zelong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Gaojie Hong
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| |
Collapse
|
9
|
Zhao Y, Liang J, Wang Z, Yan T, Yan X, Wei W, Le M, Sun J. Genome-wide identification and expression analysis of the trihelix transcription factor family in sesame (Sesamum indicum L.) under abiotic stress. Mol Biol Rep 2023; 50:8281-8295. [PMID: 37584845 PMCID: PMC10519867 DOI: 10.1007/s11033-023-08640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND The plant trihelix gene family is among the earliest discovered transcription factor families, and it is vital in modulating light, plant growth, and stress responses. METHODS The identification and characterization of trihelix family members in the sesame genome were analyzed by bioinformatics methods, and the expression patterns of sesame trihelix genes were assessed by quantitative real-time PCR. RESULTS There were 34 trihelix genes discovered in the genome of sesame, which were irregularly distributed among 10 linkage groups. Also, the genome contained 5 duplicate gene pairs. The 34 trihelix genes were divided into six sub-families through a phylogenetic study. A tissue-specific expression revealed that SiTH genes exhibited spatial expression patterns distinct from other trihelix genes in the same subfamily. The cis-element showed that the SiTHs gene promoter contained various elements associated with responses to hormones and multiple abiotic stresses. Additionally, the expression patterns of 8 SiTH genes in leaves under abiotic stresses demonstrated that all selected genes were significantly upregulated or downregulated at least once in the stress period. Furthermore, the SiTH4 gene was significantly induced in response to drought and salt stress, showing that SiTH genes may be engaged in the stress response mechanisms of sesame. CONCLUSION These findings establish a foundation for further investigation of the trihelix gene-mediated response to abiotic stress in sesame.
Collapse
Affiliation(s)
- Yunyan Zhao
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Junchao Liang
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Zhiqi Wang
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Tingxian Yan
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xiaowen Yan
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Meiwang Le
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Jian Sun
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| |
Collapse
|
10
|
Fu M, Li F, Zhou S, Guo P, Chen Y, Xie Q, Chen G, Hu Z. Trihelix transcription factor SlGT31 regulates fruit ripening mediated by ethylene in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5709-5721. [PMID: 37527459 DOI: 10.1093/jxb/erad300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Trihelix proteins are plant-specific transcription factors that are classified as GT factors due to their binding specificity for GT elements, and they play crucial roles in development and stress responses. However, their involvement in fruit ripening and transcriptional regulatory mechanisms remains largely unclear. In this study, we cloned SlGT31, encoding a trihelix protein in tomato (Solanum lycopersicum), and determined that its relative expression was significantly induced by the application of exogenous ethylene whereas it was repressed by the ethylene-inhibitor 1-methylcyclopropene. Suppression of SlGT31 expression resulted in delayed fruit ripening, decreased accumulation of total carotenoids, and reduced ethylene content, together with inhibition of expression of genes related to ethylene and fruit ripening. Conversely, SlGT31-overexpression lines showed opposite results. Yeast one-hybrid and dual-luciferase assays indicated that SlGT31 can bind to the promoters of two key ethylene-biosynthesis genes, ACO1 and ACS4. Taken together, our results indicate that SlGT31 might act as a positive modulator during fruit ripening.
Collapse
Affiliation(s)
- Mengjie Fu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yanan Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Hu J, Liu T, Huo H, Liu S, Liu M, Liu C, Zhao M, Wang K, Wang Y, Zhang M. Genome-wide characterization, evolutionary analysis, and expression pattern analysis of the trihelix transcription factor family and gene expression analysis under MeJA treatment in Panax ginseng. BMC PLANT BIOLOGY 2023; 23:376. [PMID: 37525122 PMCID: PMC10392005 DOI: 10.1186/s12870-023-04390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Panax ginseng is a well-known medicinal plant with several pharmacological uses in China. The trihelix family transcription factors, also known as GT factors, can be involved in the regulation of growth and developmental processes in plants. There have been no in-depth reports or systematic studies about the trihelix transcription factor in ginseng. In this study, the structure, chromosomal localization, gene duplication, phylogeny, functional differentiation, expression patterns and coexpression interactions of trihelix transcripts were analysed using bioinformatics methods based on the ginseng transcriptome database. Thirty-two trihelix transcription factor genes were identified in ginseng, and these genes were alternatively spliced to obtain 218 transcripts. These transcripts were unevenly distributed on different chromosomes of ginseng, and phylogenetic analysis classified the PgGT transcripts into five subgroups. Gene Ontology (GO) analysis classified PgGT transcripts into eight functional subclasses, indicating that they are functionally diverse. The expression pattern analysis of 218 PgGT transcripts revealed that their expression was tissue-specific and spatiotemporally-specific in 14 different tissues of 4-year-old ginseng, 4 different ages of ginseng roots, and 42 farmers' cultivars of 4-year-old ginseng roots. Despite the differences in the expression patterns of these transcripts, coexpression network analysis revealed that these transcripts could be expressed synergistically in ginseng. In addition, two randomly selected PgGT transcripts in each of the five different subfamilies were subjected to methyl jasmonate treatment at different times, and PgGT was able to respond to the regulation of methy1 jasmonate. These results provide a theoretical basis and gene resources for an in-depth study of the function of trihelix genes in other plants.
Collapse
Affiliation(s)
- Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Tao Liu
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Huimin Huo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| |
Collapse
|
12
|
Zhu L, Hu J, Li R, Liu C, Jiang Y, Liu T, Liu M, Zhao M, Wang Y, Wang K, Zhang M. Transcriptome-Wide Integrated Analysis of the PgGT25-04 Gene in Controlling Ginsenoside Biosynthesis in Panax ginseng. PLANTS (BASEL, SWITZERLAND) 2023; 12:1980. [PMID: 37653897 PMCID: PMC10224475 DOI: 10.3390/plants12101980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 08/13/2023]
Abstract
Panax ginseng is a valuable medicinal herb of the Araliaceae family with various pharmacological activities. The Trihelix transcription factors family is involved in growth and secondary metabolic processes in plants, but no studies have been reported on the involvement of Trihelix genes in secondary metabolic processes in ginseng. In this study, weighted co-expression network analysis, correlation analysis between PgGTs and ginsenosides and key enzyme genes, and interaction network analysis between PgGTs and key enzyme genes were used to screen out the PgGT25-04 gene, which was negatively correlated with ginsenoside synthesis. Using ABA treatment of ginseng hair roots, PgGT genes were found to respond to ABA signals. Analysis of the sequence characteristics and expression pattern of the PgGT25-04 gene in ginseng revealed that its expression is spatiotemporally specific. The interfering vector pBI121-PgGT25-04 containing the PgGT25-04 gene was constructed, and the ginseng adventitious roots were transformed using the Agrobacterium-mediated method to obtain the pBI121-PgGT25-04 positive hairy root monocot line. The saponin contents of positive ginseng hair roots were measured by HPLC, and the changes in PgGT25-04 and key enzyme genes in positive ginseng hair roots were detected via fluorescence quantitative RT-PCR. These results preliminarily identified the role of the PgGT25-04 gene in the secondary metabolism of ginseng in Jilin to provide a theoretical basis for the study of Trihelix transcription factors in Panax ginseng.
Collapse
Affiliation(s)
- Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Ruiqi Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| |
Collapse
|
13
|
Li Y, Hu Z, Dong Y, Xie Z. Overexpression of the cotton trihelix transcription factor GhGT23 in Arabidopsis mediates salt and drought stress tolerance by binding to GT and MYB promoter elements in stress-related genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1144650. [PMID: 36938019 PMCID: PMC10017854 DOI: 10.3389/fpls.2023.1144650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Cotton (Gossypium hirsutum L.) is the world's most economically valuable textile crop. However, cotton plants are often subjected to numerous abiotic stresses that can dramatically limit yield. Trihelix transcription factors (TTFs) play important roles in abiotic stress responses in many plant species, and efforts to better understand their roles in cotton abiotic stress responses are ongoing. In this study, a member of the cotton TTF family (GhGT23) was functionally characterized. This protein contains a SANT domain and is a member of the SIP subfamily of TTF proteins. GhGT23 was significantly (p < 0.05) and highly expressed in cotton fiber compared to relatively low expression in other tissues. A significant (p < 0.05) increase in GhGT23 expression occurred in cotton seedlings within 12 hours of drought, salt, and ABA exposure. The GhGT23 protein localized in the nucleus but exhibited no signs of transactivation activity. GhGT23 overexpression in Arabidopsis conferred enhanced drought and salt stress tolerance. The expression of stress-related genes was higher in transgenic Arabidopsis expressing GhGT23 than in wild-type plants subjected to salt stress. The results of electrophoretic mobility shift assay revealed that GhGT23 could bind to the GT cis-elements GT-1Box (Box II), GT2-Box, GT3-Box, GT-3a (Site1-type), GT-3b, and Box as well as the MYB cis-elements MBS1 and MRE4. Our results demonstrate that GhGT23 positively regulates salt and drought stress responses, possibly by enhancing the expression of stress-related genes.
Collapse
Affiliation(s)
- Yue Li
- College of Life Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Ziyao Hu
- College of Life Science, Xinjiang Agricultural University, Urumqi, China
| | - Yongmei Dong
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Zongming Xie
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| |
Collapse
|
14
|
Liu M, Liu T, Liu W, Wang Z, Kong L, Lu J, Zhang Z, Su X, Liu X, Ma W, Ren W. Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family and response of PgGT1 under Abiotic Stresses in Platycodon grandiflorus. Gene 2023; 869:147398. [PMID: 36990256 DOI: 10.1016/j.gene.2023.147398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/25/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
The trihelix gene family plays an important role in plant growth and abiotic stress responses. Through the analysis of genomic and transcriptome data, 35 trihelix family members were identified for the first time in Platycodon grandiflorus; they were classified into five subfamilies: GT-1, GT-2, SH4, GTγ, and SIP1. The gene structure, conserved motifs and evolutionary relationships were analyzed. Prediction of physicochemical properties of the 35 trihelix proteins founded, the number of amino acid molecules is between 93 and 960, theoretical isoelectric point is between 4.24 and 9.94, molecular weight is between 9829.77 and 107435.38, 4 proteins among them were stable, and all GRAVY is negative. The full-length cDNA sequence of the PgGT1 gene of the GT-1 subfamily was cloned by PCR. It is a 1165 bp ORF encoding a 387 amino acid protein, with a molecular weight of 43.54 kDa. The predicted subcellular localization of the protein in the nucleus was experimentally verified. After being treated with NaCl, PEG6000, MeJA, ABA, IAA, SA, and ethephon, the expression of PgGT1 gene showed an up-regulated trend except for the roots treated with NaCl and ABA. This study laid a bioinformatics foundation for the research of trihelix gene family and the cultivation of excellent germplasm of P. grandiflorus.
Collapse
|
15
|
Liu HF, Zhang TT, Liu YQ, Kang H, Rui L, Wang DR, You CX, Xue XM, Wang XF. Genome-wide analysis of the 6B-INTERACTING PROTEIN1 gene family with functional characterization of MdSIP1-2 in Malus domestica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:89-100. [PMID: 36621305 DOI: 10.1016/j.plaphy.2022.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Trihelix transcription factors consist of five subfamilies, including GT-1, GT-2, SH4, GTγ, and SIP1, which play important roles in the responses to biotic and abiotic stresses, however, seldom is known about the role of the SIP1 genes in apples. In this study, 12 MdSIP1 genes were first identified in apples by genome-wide analysis, and contained conserved MYB/SANT-like domains. Expression patterns analyses showed that the MdSIP1 genes had different tissue expression patterns, and different transcription levels in response to abiotic stresses, indicating that MdSIP1s may play multiple roles under various abiotic stresses. Among them, the MdSIP1-2 gene was cloned and ectopic transformed into Arabidopsis, and its biology function was identified. The subcellular localization showed that MdSIP1-2 protein was specifically localized in the nucleus, and that overexpression of MdSIP1-2 promoted the development of lateral roots, increased abscisic acid (ABA) sensitivity, and improved salt and drought tolerance. These findings suggested that MdSIP1-2 plays an important role in root development, ABA synthesis, and salt and drought stress tolerance. In conclusion, these results lay a solid foundation for determining the role of MdSIP1 in the growth and development and abiotic stress tolerance of apples.
Collapse
Affiliation(s)
- Hao-Feng Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ting-Ting Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Qi Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui Kang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Min Xue
- Shandong Institute of Pomology, Taian, Shandong, 271000, China.
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
16
|
Wang J, Cheng Y, Shi X, Feng L. GT Transcription Factors of Rosa rugosa Thunb. Involved in Salt Stress Response. BIOLOGY 2023; 12:biology12020176. [PMID: 36829455 PMCID: PMC9952457 DOI: 10.3390/biology12020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Rosa rugosa was a famous aromatic plant while poor salt tolerance of commercial cultivars has hindered its culture in saline-alkali soil. In many plants, the roles of GT (or trihelix) genes in salt stresses responses have been emerging. In the wild R. rugosa, a total of 37 GTs (RrGTs) were grouped into GT-1, GT-2, GTγ, SH4, and SIP1 lineages. SIP1 lineage expanded by transposition. The motifs involved in the binding of GT cis-elements were conserved. Four RrGTs (RrGT11/14/16/18) significantly differentially expressed in roots or leaves under salt stress. The responsive patterns within 8 h NaCl treatment indicated that RrGTγ-4 (RrGT18) and RrGT-1 (RrGT16) were significantly induced by salt in roots of R. rugosa. Subcellular localizations of RrSIP1 (RrGT11) and RrGTγ-4 were on chloroplasts while RrGT-1 and RrSIP2 (RrGT14) located on cell nucleus. Regulation of ion transport could be the most important role of RrSIPs and RrGTγ-4. And RrGT-1 could be a halophytic gene with higher transcription abundance than glycophytic GT-1. These results provide key clue for further investigations of roles of RrGTs in salt stress response and would be helpful in the understanding the salt tolerance regulation mechanism of R. rugosa.
Collapse
Affiliation(s)
| | | | | | - Liguo Feng
- Correspondence: ; Tel.: +86-514-8797-1026
| |
Collapse
|
17
|
Zhao D, Gao F, Guan P, Gao J, Guo Z, Guo J, Cui H, Li Y, Zhang G, Li Z, Guo L. Identification and analysis of differentially expressed trihelix genes in maize ( Zea mays) under abiotic stresses. PeerJ 2023; 11:e15312. [PMID: 37151290 PMCID: PMC10158769 DOI: 10.7717/peerj.15312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Background Trihelix transcription factors play important roles in triggering plant growth and imparting tolerance against biotic and abiotic stresses. However, a systematical analysis of the trihelix transcription factor family under heat and drought stresses in maize has not been reported. Methods PlantTFDB and TBtools were employed to identify the trihelix domain-containing genes in the maize genome. The heat-regulated transcriptome data for maize were obtained from NCBI to screen differentially expressed ZmTHs genes through statistical analysis. The basic protein sequences, chromosomal localization, and subcellular localization were analyzed using Maize GDB, Expasy, SOMPA, TBtools, and Plant-mPLoc. The conserved motifs, evolutionary relationships, and cis-elements, were analyzed by MEME, MEGA7.0 and PlantCARE software, respectively. The tissue expression patterns of ZmTHs and their expression profiles under heat and drought stress were detected using quantitative real-time PCR (qRT-PCR). Results A total of 44 trihelix family members were discovered, and members were distributed over 10 chromosomes in the maize genome. A total of 11 genes were identified that were regulated by heat stress; these were unevenly distributed on chromosomes 1, 2, 4, 5, and 10. ZmTHs encoded a total of 16 proteins, all of which were located in the nucleus; however, ZmTH04.1 was also distributed in the chloroplast. The protein length varied from 206 to 725 amino acids; the molecular weight ranged from 22.63 to 76.40 kD; and the theoretical isoelectric point (pI) ranged from 5.24 to 11.2. The protein's secondary structures were mainly found to be random coils and α-helices, with fewer instances of elongation chains and β-rotations. Phylogenetic relationship analysis showed that these can be divided into five sub-groups. The conserved domain of ZmTHs was GT1 or MyB_DNA-Bind_4. The protein and gene structure of ZmTHs differed greatly among the subfamilies, while the structures within the subfamilies were similar. The promoter of ZmTHs contained abundant tissue-specific expression cis-acting elements and abiotic stress response elements. qRT-PCR analysis showed that ZmTHs expression levels were significantly different in different tissues. Furthermore, the expression of ZmTH08 was dramatically up-regulated by heat stress, while the expression of ZmTH03, ZmTH04, ZmTH05, ZmTH06, ZmTH07, ZmTH09, ZmTH10, and ZmTH11 were down-regulated by heat stress. Upon PEG-simulated drought stress, ZmTH06 was significantly up-regulated, while ZmTH01 and ZmTH07 were down-regulated. Conclusions We performed a genome-wide, systematic identification and analysis of differentially expressed trihelix genes under heat and drought stresses in maize.
Collapse
Affiliation(s)
- Dongbo Zhao
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| | - Fengju Gao
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| | | | - Jiansheng Gao
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| | - Zhihui Guo
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| | - Jianjun Guo
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| | - Huini Cui
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| | - Yongjun Li
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| | - Guijun Zhang
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| | - Zhao Li
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| | - Lianghai Guo
- Dezhou Academy of Agricultural Science, Dezhou, Shandong, China
| |
Collapse
|
18
|
Conservation and Divergence of the Trihelix Genes in Brassica and Expression Profiles of BnaTH Genes in Brassica napus under Abiotic Stresses. Int J Mol Sci 2022; 23:ijms232415766. [PMID: 36555407 PMCID: PMC9779230 DOI: 10.3390/ijms232415766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Trihelix (TH) proteins are a family of plant-specific transcription factors that play a role in light response and are extensively involved in plant growth and development, as well as in various stress responses. However, the function of TH genes in Brassica napus (B. napus) remains unclear, as does the evolution and differentiation pattern of TH genes in Brassica plants. Here, we identified a total of 455 TH genes in seven species, including six Brassica species and Arabidopsis, which were grouped into five clades, GT-1, GT-2, GTγ, SH4, and SIP1, each with 69, 142, 44, 55, and 145 members, respectively. The types and distributions of motifs of the TH proteins and the structures of the TH genes are conserved in the same subgroup, and some variations in certain amino acid residues occur in B. napus when inheriting motifs from Brassica rapa (B. rapa) and Brassica oleracea (B. oleracea). Collinearity analysis revealed that the massive expansion of TH genes in tetraploid species was attributed to the hetero-tetraploidization of diploid ancestors and gene duplication events within the tetraploid species. Comparative analysis of the membership numbers of five subgroups in different species revealed that the GT-2 and SIP1 genes underwent significant expansion during evolution, possibly to support the better adaptation of plants to their environments. The differential expression of the BnaTH genes under five stresses indicates that the BnaTH genes are involved in plant responses to stresses such as drought, cold, and heat. The presence of different stress-responsive cis-elements in the upstream promoter region of the genes indicated that BnaTH genes have the potential to cope with variable environments. Meanwhile, qRT-PCR analyses also confirmed that five TH genes respond to different abiotic stresses. Our results provide information and candidates for further studies on the role of TH genes in stress resistance of B. napus.
Collapse
|
19
|
Li Y, Hu Z, Dong Y, Xie Z. Trihelix Transcriptional Factor GhGT26 of Cotton Enhances Salinity Tolerance in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202694. [PMID: 36297717 PMCID: PMC9610538 DOI: 10.3390/plants11202694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 05/24/2023]
Abstract
Cotton (Gossypium hirsutum L.), the most important textile crop worldwide, often encounters abiotic stress during its growing season and its productivity is significantly limited by adverse factors. Trihelix transcription factors (also known as GT factors) are important proteins involved in the morphological development and responses to abiotic stress in plants. However, their functions and molecular mechanisms in the cotton toward abiotic stress response remain unclear. In this study, a member (GhGT26) of the cotton Trihelix family was functionally characterized in the model plant Arabidopsis. This protein containing a SANT domain belongs to the GT-1 subgroup of trihelix proteins. GhGT26 was widely expressed in tissues (with the highest level in flower) and responded to high salt and ABA treatments at the transcriptional level. Using the Arabidopsis protoplast assay system, we found that the GhGT26 protein was located in the cell nuclei. The EMSA assay revealed that the GhGT26 protein could bind to the Site1-type GT cis elements (GT-3a) and MYB elements MRE3 and MRE4. The overexpression of GhGT26 improved plant tolerance to salt stress in transgenic Arabidopsis plants. Although ABA inhibits root elongation, the statistical analysis revealed that the root lengths of GhGT26-overexpressing Arabidopsis were the same as the wild plants after ABA treatment. Our results demonstrate that GhGT26 positively regulates salt stress via ABA-independent pathways. This evidence suggests that the GhGT26 may participate in the regulation of stress tolerance in cotton.
Collapse
Affiliation(s)
- Yue Li
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi 832000, China
- College of Life Science, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China
| | - Ziyao Hu
- College of Life Science, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China
| | - Yongmei Dong
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi 832000, China
| | - Zongming Xie
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi 832000, China
| |
Collapse
|
20
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
21
|
Zhu M, Bin J, Ding H, Pan D, Tian Q, Yang X, Wang L, Yue Y. Insights into the trihelix transcription factor responses to salt and other stresses in Osmanthus fragrans. BMC Genomics 2022; 23:334. [PMID: 35488201 PMCID: PMC9055724 DOI: 10.1186/s12864-022-08569-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osmanthus fragrans is an evergreen plant with high ornamental and economic values. However, they are easily injured by salt stress, which severely limits their use in high salinity areas. The trihelix transcription factor (TF) family, as one of the earliest discovered TF families in plants, plays an essential part in responses to different abiotic stresses, and it has potential functions in improving the salt-tolerance capability of O. fragrans. RESULTS In this study, 56 trihelix genes (OfGTs) were first identified in O. fragrans and then divided into five subfamilies in accordance with a phylogenetic tree analysis. The OfGTs were found to be located randomly on the 20 O. fragrans chromosomes, and an analysis of gene replication events indicated that the OfGT gene family underwent strong purification selection during the evolutionary process. The analysis of conserved motifs and gene structures implied that the OfGT members in the same subfamily have similar conserved motifs and gene structures. A promoter cis-elements analysis showed that all the OfGT genes contained multiple abiotic and hormonal stress-related cis-elements. The RNA-seq data suggested that the OfGTs have specific expression patterns in different tissues, and some were induced by salt stress. The qRT-PCR analysis of 12 selected OfGTs confirmed that OfGT1/3/21/33/42/45/46/52 were induced, with OfGT3/42/46 being the most highly expressed. In addition, OfGT42/OfGT46 had a co-expression pattern under salt-stress conditions. OfGT3/42/46 were mainly localized in the nuclei and exhibited no transcriptional activities based on the analysis of the subcellular localization and transcriptional activity assay. Furthermore, the expression levels of most of the selected OfGTs were induced by multiple abiotic and hormonal stresses, and the expression patterns of some OfGTs were also highly correlated with gibberellic acid and methyl jasmonate levels. Remarkably, the transient transformation results showed lower MDA content and increased expression of ROS-related genes NbAPX in transgenic plants, which implying OfGT3/42/46 may improve the salt tolerance of tobacco. CONCLUSIONS The results implied that the OfGT genes were related to abiotic and hormonal stress responses in O. fragrans, and that the OfGT3/42/46 genes in particular might play crucial roles in responses to salt stress. This study made a comprehensive summary of the OfGT gene family, including functions and co-expression patterns in response to salt and other stresses, as well as an evolutionary perspective. Consequently, it lays a foundation for further functional characterizations of these genes.
Collapse
Affiliation(s)
- Meilin Zhu
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jing Bin
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Huifen Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Duo Pan
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qingyin Tian
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
22
|
Liu X, Wu D, Shan T, Xu S, Qin R, Li H, Negm M, Wu D, Li J. The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice. PLANT MOLECULAR BIOLOGY 2020; 103:545-560. [PMID: 32504260 DOI: 10.1007/s11103-020-01010-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/01/2020] [Indexed: 05/21/2023]
Abstract
OsGTγ-2, a trihelix transcription factor, is a positive regulator of rice responses to salt stress by regulating the expression of ion transporters. Salinity stress seriously restricts rice growth and yield. Trihelix transcription factors (GT factors) specifically bind to GT elements and play a diverse role in plant morphological development and responses to abiotic stresses. In our previous study, we found that the GT-1 element (GAAAAA) is a key element in the salinity-induced OsRAV2 promoter. Here, we identified a rice OsGTγ family member, OsGTγ-2, which directly interacted with the GT-1 element in the OsRAV2 promoter. OsGTγ-2 specifically targeted the nucleus, was mainly expressed in roots, sheathes, stems and seeds, and was induced by salinity, osmotic and oxidative stresses and abscisic acid (ABA). The seed germination rate, seedling growth and survival rate under salinity stress was improved in OsGTγ-2 overexpressing lines (PZmUbi::OsGTγ-2). In contrast, CRISPR/Cas9-mediated OsGTγ-2 knockout lines (osgtγ-2) showed salt-hypersensitive phenotypes. In response to salt stress, different Na+ and K+ acclamation patterns were observed in PZmUbi::OsGTγ-2 lines and osgtγ-2 plants were observed. The molecular mechanism of OsGTγ-2 in rice salt adaptation was also investigated. Several major genes responsible for ion transporting, such as the OsHKT2; 1, OsHKT1; 3 and OsNHX1 were transcriptionally regulated by OsGTγ-2. A subsequent yeast one-hybrid assay and EMSA indicated that OsGTγ-2 directly interacted with the promoters of OsHKT2; 1, OsNHX1 and OsHKT1; 3. Taken together, these results suggest that OsGTγ-2 is an important positive regulator involved in rice responses to salt stress and suggest a potential role for OsGTγ-2 in regulating salinity adaptation in rice.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei, 230031, China
| | - Dechuan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Tiaofeng Shan
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Shanbin Xu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Ruiying Qin
- Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei, 230031, China
| | - Hao Li
- Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei, 230031, China
| | - Mahrous Negm
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| | - Juan Li
- Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei, 230031, China.
| |
Collapse
|
23
|
Wang Y, Gong X, Liu W, Kong L, Si X, Guo S, Sun J. Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:147-156. [PMID: 32416344 DOI: 10.1016/j.plaphy.2020.04.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 05/29/2023]
Abstract
Numerous studies have demonstrated that spermidine (Spd) plays a critical role in salt tolerance in plants, but the associated mechanism remains largely unknown. In this study, we investigated the role of gibberellin (GA) in Spd-induced salt tolerance and the expression of GT-3b transcription factor in cucumber. The results showed that exogenous Spd significantly increased the salt tolerance of cucumber plants, while its effects were compromised in the presence of methylglyoxal bis-guanylhydrazone (MGBG), an inhibitor of Spd biosynthesis. Interestingly, the expression of GT-3b was significantly induced by Spd under salt stress, and the promoter sequence of GT-3b was predicted to contain cis-acting regulatory elements that could respond to phytohormones, such as GA, salicylic acid (SA), and methyl jasmonate (MeJA). The application of GA3, SA and MeJA as foliar spray could induce the expression of GT-3b. In addition, exogenous Spd dramatically increased the expression of genes related to GA biosynthesis, the activity of gibberellin oxidase, and the accumulation of GA3, whereas these effects were attenuated in the MGBG-treated plants. Furthermore, the application of GA3 increased GT-3b expression and salt tolerance, whereas these effects were blocked when the plants were treated with paclobutrazol (PAZ), a GA biosynthesis inhibitor. Similarly, the Spd-induced salt tolerance was compromised in the PAZ-treated plants. Our results suggest that GA mediates Spd-induced salt tolerance and the expression of GT-3b in cucumber. These results provide a new perspective for understanding the molecular mechanism of Spd-regulated salt tolerance in plants.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowen Gong
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weikang Liu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Kong
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Si
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Magwanga RO, Kirungu JN, Lu P, Yang X, Dong Q, Cai X, Xu Y, Wang X, Zhou Z, Hou Y, Nyunja R, Agong SG, Hua J, Zhang B, Wang K, Liu F. Genome wide identification of the trihelix transcription factors and overexpression of Gh_A05G2067 (GT-2), a novel gene contributing to increased drought and salt stresses tolerance in cotton. PHYSIOLOGIA PLANTARUM 2019; 167:447-464. [PMID: 30629305 PMCID: PMC6850275 DOI: 10.1111/ppl.12920] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 05/20/2023]
Abstract
We identified 102, 51 and 51 proteins encoded by the trihelix genes in Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii, respectively. RNA sequence data and real-time quantitative polymerase chain reaction analysis showed that Gh_A05G2067 (GT-2) was highly upregulated under drought and salt stress conditions. Transient expression of GT-2-green fluorescent protein fusion protein in protoplast showed that GT-2 was localized in the nucleus. The overexpression of GT-2 conferred an enhanced drought tolerance to cotton, with lower malondialdehyde, hydrogen peroxide contents and higher reactive oxygen scavenging enzyme activities. Moreover, chlorophyll content, relative leaf water content (RLWC), excised leaf water loss (ELWL) and cell membrane stability (CMS) were relatively stable in the GT-2-overexpressed lines compared to wild-type (WT). Similarly, stress-responsive genes RD29A, SOS1, ABF4 and CBL1 were highly upregulated in the GT-2-overexpressed lines but were significantly downregulated in WT. In addition, the GT-2-silenced cotton plants exhibited a high level of oxidation injury, due to high levels of oxidant enzymes, in addition to negative effects on CMS, ELWL, RLWC and chlorophyll content. These results mark the foundation for future exploration of the trihelix genes in cotton, with an aim of developing more resilient, versatile and highly tolerant cotton genotypes.
Collapse
Affiliation(s)
- Richard O. Magwanga
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
- Jaramogi Oginga OdingaUniversity of Science and TechnologySchool of Biological and Physical Sciences (SBPS), P.O Box 210‐40601, BondoKenya
| | - Joy N. Kirungu
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Pu Lu
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Xiu Yang
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Qi Dong
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Xiaoyan Cai
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Yanchao Xu
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Xingxing Wang
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Zhongli Zhou
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Yuqing Hou
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Regina Nyunja
- Jaramogi Oginga OdingaUniversity of Science and TechnologySchool of Biological and Physical Sciences (SBPS), P.O Box 210‐40601, BondoKenya
| | - Stephen G. Agong
- Jaramogi Oginga OdingaUniversity of Science and TechnologySchool of Biological and Physical Sciences (SBPS), P.O Box 210‐40601, BondoKenya
| | | | - Baohong Zhang
- North Carolina State UniversityRaleighNorth Carolina
| | - Kunbo Wang
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| | - Fang Liu
- Institute of Cotton ResearchChinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton BiologyAnyang 455000China
| |
Collapse
|
25
|
Identification and in Silico Characterization of GT Factors Involved in Phytohormone and Abiotic Stresses Responses in Brachypodium distachyon. Int J Mol Sci 2019; 20:ijms20174115. [PMID: 31450734 PMCID: PMC6747514 DOI: 10.3390/ijms20174115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
GT factors play critical roles in plant growth and development and in response to various environmental stimuli. Considering the new functions of GT factors on the regulation of plant stress tolerance and seeing as few studies on Brachypodium distachyon were available, we identified GT genes in B. distachyon, and the gene characterizations and phylogenies were systematically analyzed. Thirty-one members of BdGT genes were distributed on all five chromosomes with different densities. All the BdGTs could be divided into five subfamilies, including GT-1, GT-2, GTγ, SH4, and SIP1, based upon their sequence homology. BdGTs exhibited considerably divergent structures among each subfamily according to gene structure and conserved functional domain analysis, but the members within the same subfamily were relatively structure-conserved. Synteny results indicated that a large number of syntenic relationship events existed between rice and B. distachyon. Expression profiles indicated that the expression levels of most of BdGT genes were changed under abiotic stresses and hormone treatments. Moreover, the co-expression network exhibited a complex regulatory network between BdGTs and BdWRKYs as well as that between BdGTs and BdMAPK cascade gene. Results showed that GT factors might play multiple functions in responding to multiple environmental stresses in B. distachyon and participate in both the positive and negative regulation of WRKY- or MAPK-mediated stress response processes. The genome-wide analysis of BdGTs and the co-regulation network under multiple stresses provide valuable information for the further investigation of the functions of BdGTs in response to environment stresses.
Collapse
|
26
|
Ma Z, Liu M, Sun W, Huang L, Wu Q, Bu T, Li C, Chen H. Genome-wide identification and expression analysis of the trihelix transcription factor family in tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2019; 19:344. [PMID: 31390980 PMCID: PMC6686422 DOI: 10.1186/s12870-019-1957-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In the study, the trihelix family, also referred to as GT factors, is one of the transcription factor families. Trihelix genes play roles in the light response, seed maturation, leaf development, abiotic and biological stress and other biological activities. However, the trihelix family in tartary buckwheat (Fagopyrum tataricum), an important usable medicinal crop, has not yet been thoroughly studied. The genome of tartary buckwheat has recently been reported and provides a theoretical basis for our research on the characteristics and expression of trihelix genes in tartary buckwheat based at the whole level. RESULTS In the present study, a total of 31 FtTH genes were identified based on the buckwheat genome. They were named from FtTH1 to FtTH31 and grouped into 5 groups (GT-1, GT-2, SH4, GTγ and SIP1). FtTH genes are not evenly distributed on the chromosomes, and we found segmental duplication events of FtTH genes on tartary buckwheat chromosomes. According to the results of gene and motif composition, FtTH located in the same group contained analogous intron/exon organizations and motif organizations. qRT-PCR showed that FtTH family members have multiple expression patterns in stems, roots, leaves, fruits, and flowers and during fruit development. CONCLUSIONS Through our study, we identified 31 FtTH genes in tartary buckwheat and synthetically further analyzed the evolution and expression pattern of FtTH proteins. The structure and motif organizations of most genes are conserved in each subfamily, suggesting that they may be functionally conserved. The FtTH characteristics of the gene expression patterns indicate functional diversity in the time and space in the tartary buckwheat life process. Based on the discussion and analysis of FtTH gene function, we screened some genes closely related to the growth and development of tartary buckwheat. This will help us to further study the function of FtTH genes through experimental exploration in tartary buckwheat growth and improve the fruit of tartary buckwheat.
Collapse
Affiliation(s)
- Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
27
|
Xiao J, Hu R, Gu T, Han J, Qiu D, Su P, Feng J, Chang J, Yang G, He G. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BMC Genomics 2019; 20:287. [PMID: 30975075 PMCID: PMC6460849 DOI: 10.1186/s12864-019-5632-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The trihelix gene family is a plant-specific transcription factor family that plays important roles in plant growth, development, and responses to abiotic stresses. However, to date, no systemic characterization of the trihelix genes has yet been conducted in wheat and its close relatives. RESULTS We identified a total of 94 trihelix genes in wheat, as well as 22 trihelix genes in Triticum urartu, 29 in Aegilops tauschii, and 31 in Brachypodium distachyon. We analyzed the chromosomal locations and orthology relations of the identified trihelix genes, and no trihelix gene was found to be located on chromosome 7A, 7B, or 7D of wheat, thereby reflecting the uneven distributions of wheat trihelix genes. Phylogenetic analysis indicated that the 186 identified trihelix proteins in wheat, rice, B. distachyon, and Arabidopsis were clustered into five major clades. The trihelix genes belonging to the same clades usually shared similar motif compositions and exon/intron structural patterns. Five pairs of tandem duplication genes and three pairs of segmental duplication genes were identified in the wheat trihelix gene family, thereby validating the supposition that more intrachromosomal gene duplication events occur in the genome of wheat than in that of other grass species. The tissue-specific expression and differential expression profiling of the identified genes under cold and drought stresses were analyzed by using RNA-seq data. qRT-PCR was also used to confirm the expression profiles of ten selected wheat trihelix genes under multiple abiotic stresses, and we found that these genes mainly responded to salt and cold stresses. CONCLUSIONS In this study, we identified trihelix genes in wheat and its close relatives and found that gene duplication events are the main driving force for trihelix gene evolution in wheat. Our expression profiling analysis demonstrated that wheat trihelix genes responded to multiple abiotic stresses, especially salt and cold stresses. The results of our study built a basis for further investigation of the functions of wheat trihelix genes and provided candidate genes for stress-resistant wheat breeding programs.
Collapse
Affiliation(s)
- Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Jiapeng Han
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Ding Qiu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Peipei Su
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Jialu Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| |
Collapse
|
28
|
Wang C, Wang Y, Pan Q, Chen S, Feng C, Hai J, Li H. Comparison of Trihelix transcription factors between wheat and Brachypodium distachyon at genome-wide. BMC Genomics 2019; 20:142. [PMID: 30770726 PMCID: PMC6377786 DOI: 10.1186/s12864-019-5494-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Plant Trihelix transcription factors, specifically bind to GT elements and play important roles in plant physiology and development. Wheat is a main cereal crop. Brachypodium distachyon is a close relative of wheat and has been described as a new model species for studying of grass functional genomics. Presently, little is known about wheat and B. distachyon Trihelix genes. RESULTS In 51 species, 2387 Trihelix genes were identified, including 80 wheat Trihelix genes and 27 B. distachyon Trihelix genes. Consistent with the results of previous studies, these genes were classified into five subfamilies: GT-1, GT-2, SIP1, GTγ, and SH4. Members of the same subfamily shared similar gene structures and common motifs. Most TaGT and BdGT genes contained many kinds of cis-elements, such as development-, stress-, and phytohormone-related cis-acting elements. Additionally, 21 randomly selected TaGT genes were mainly expressed in the roots and flowers, while the expression of 19 selected BdGT genes was constitutive. These results indicate that the roles of Trihelix genes in wheat and B. distachyon might have diversified during the evolutionary process. The expression of the most selected TaGT and BdGT genes was down-regulated when exposed to low temperatures, NaCl, ABA, and PEG, implying that TaGT and BdGT genes negatively respond to abiotic stress. On the contrary, the expression of some genes was up-regulated under heat stress. CONCLUSIONS Trihelix genes exist extensively in plants and have many functions. During the evolutionary process, this gene family expanded and their functions diversified. As a result, the expression pattern and functions of members of the same family might be different. This study lays a foundation for further functional analyses of TaGT and BdGT genes.
Collapse
Affiliation(s)
- Chengwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Yu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Qi Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Cuizhu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Jiangbo Hai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| |
Collapse
|
29
|
Maize similar to RCD1 gene induced by salt enhances Arabidopsis thaliana abiotic stress resistance. Biochem Biophys Res Commun 2018; 503:2625-2632. [PMID: 30097269 DOI: 10.1016/j.bbrc.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
Abstract
Plant SRO (SIMILAR TO RCD-ONE) proteins play important roles in regulating oxidation and metal ion metabolism. Numbers of SRO proteins have been functional identified in Arabidopsis and rice, but little is known in maize. In this study, we identified a salt induced SRO gene, ZmSRO1b, from maize and analyzed its characteristics. ZmSRO1b expressed mainly in leaf tissues. The ZmSRO1b is encoded by 595 amino acid residues and shared conserved protein models with AtRCD1 and AtSRO1 from Arabidopsis. Promoter-elements analysis showed ZmSRO1b promoter harbored salt and metal stress responsive elements, DRE, GT-like and MRE. Further promoter inductive analysis by GUS staining and quantification confirmed that ZmSRO1b promoter was induced by salt and cadmium (Cd). Methylviologen (MV) simulated oxidative stress showed ZmSRO1b promoter was also induced by MV. Overexpression of ZmSRO1b in Arabidopsis plants showed increased resistance to salt, Cd and oxidative stress. Our results for the first time experimentally validate the function of ZmSRO1b and contribute to the better understanding of SRO genes across different plant species.
Collapse
|
30
|
Yu C, Song L, Song J, Ouyang B, Guo L, Shang L, Wang T, Li H, Zhang J, Ye Z. ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:140-149. [PMID: 29576067 DOI: 10.1016/j.plantsci.2018.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/09/2017] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Abiotic stress, such as drought and cold stress, have a major impact on plant growth and development. The trihelix transcription factor family plays important roles in plant morphological development and adaptation to abiotic stresses. In this study, we isolated a cold-induced gene named ShCIGT from the wild tomato species Solanum habrochaites and found that it contributes to abiotic stress tolerance. ShCIGT belongs to the GT-1 subfamily of the trihelix transcription factors. It was constitutively expressed in various tissues. Its expression was induced by multiple abiotic stresses and abscisic acid (ABA). Overexpression of ShCIGT in cultivated tomato enhanced cold and drought stress tolerance. In addition, the transgenic plants displayed a reduced sensitivity to ABA during post-germination growth. We found that ShCIGT interacts with SnRK1, an energy sensor in the metabolic signaling network, which controls plant metabolism, growth and development, and stress tolerance. Based on these data, we conclude ShCIGT may improve abiotic-stress tolerance in tomato by interacting with SnRK1.
Collapse
Affiliation(s)
- Chuying Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lulu Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianwen Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijie Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lele Shang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
31
|
Xu H, Shi X, He L, Guo Y, Zang D, Li H, Zhang W, Wang Y. Arabidopsis thaliana Trihelix Transcription Factor AST1 Mediates Salt and Osmotic Stress Tolerance by Binding to a Novel AGAG-Box and Some GT Motifs. PLANT & CELL PHYSIOLOGY 2018; 59:946-965. [PMID: 29420810 DOI: 10.1093/pcp/pcy032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/02/2018] [Indexed: 05/15/2023]
Abstract
Trihelix transcription factors are characterized by containing a conserved trihelix (helix-loop-helix-loop-helix) domain that binds to GT elements required for light response, and they play roles in light stress and in abiotic stress responses. However, only a few of them have been functionally characterized. In the present study, we characterized the function of AST1 (Arabidopsis SIP1 clade Trihelix1) in response to salt and osmotic stress. AST1 shows transcriptional activation activity, and its expression is induced by osmotic and salt stress. A conserved sequence highly present in the promoters of genes regulated by AST1 was identified, which was bound by AST1, and termed the AGAG-box with the sequence [A/G][G/A][A/T]GAGAG. Additionally, AST1 also binds to some GT motifs including the sequence of GGTAATT, TACAGT, GGTAAAT and GGTAAA, but failed in binding to the sequence of GTTAC and GGTTAA. Chromatin immunoprecipitation combined with quantitative real-time reverse transcription-PCR analysis suggested that AST1 binds to the AGAG-box and/or some GT motifs to regulate the expression of stress tolerance genes, resulting in reduced reactive oxygen species, Na+ accumulation, stomatal apertures, lipid peroxidation, cell death and water loss rate, and increased proline content and reactive oxygen species scavenging capability. These physiological changes affected by AST1 finally improve salt and osmotic tolerance.
Collapse
Affiliation(s)
- Hongyun Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Xinxin Shi
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Lin He
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yong Guo
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Dandan Zang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Hongyan Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Wenhui Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
32
|
Yan Z, Jia J, Yan X, Shi H, Han Y. Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence. PLANT MOLECULAR BIOLOGY 2017; 95:549-565. [PMID: 29076025 DOI: 10.1007/s11103-017-0667-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/07/2017] [Indexed: 05/19/2023]
Abstract
The two novel CCCH zinc-finger and K-homolog (KH) proteins, KHZ1 and KHZ2, play important roles in regulating flowering and senescence redundantly in Arabidopsis. The CCCH zinc-finger proteins and K-homolog (KH) proteins play important roles in plant development and stress responses. However, the biological functions of many CCCH zinc-finger proteins and KH proteins remain uncharacterized. In Arabidopsis, KHZ1 and KHZ2 are characterized as two novel CCCH zinc-finger and KH domain proteins which belong to subfamily VII in CCCH family. We obtained khz1, khz2 mutants and khz1 khz2 double mutants, as well as overexpression (OE) lines of KHZ1 and KHZ2. Compared with the wild type (WT), the khz2 mutants displayed no defects in growth and development, and the khz1 mutants were slightly late flowering, whereas the khz1 khz2 double mutants showed a pronounced late flowering phenotype. In contrast, artificially overexpressing KHZ1 and KHZ2 led to the early flowering. Consistent with the late flowering phenotype, the expression of flowering repressor gene FLC was up-regulated, while the expression of flowering integrator and floral meristem identity (FMI) genes were down-regulated significantly in khz1 khz2. In addition, we also observed that the OE plants of KHZ1 and KHZ2 showed early leaf senescence significantly, whereas the khz1 khz2 double mutants showed delayed senescence of leaf and the whole plant. Both KHZ1 and KHZ2 were ubiquitously expressed throughout the tissues of Arabidopsis. KHZ1 and KHZ2 were localized to the nucleus, and possessed both transactivation activities and RNA-binding abilities. Taken together, we conclude that KHZ1 and KHZ2 have redundant roles in the regulation of flowering and senescence in Arabidopsis.
Collapse
Affiliation(s)
- Zongyun Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianheng Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoyuan Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huiying Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuzhen Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep 2017; 7:10031. [PMID: 28855698 PMCID: PMC5577154 DOI: 10.1038/s41598-017-10730-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Salinity affects growth and development of plants, but mangroves exhibit exceptional salt tolerance. With direct exposure to salinity, mangrove roots possess specific adaptations to tolerate salt stress. Therefore, studying the early effects of salt on mangrove roots can help us better understand the tolerance mechanisms. Using two-month-old greenhouse-grown seedlings of the mangrove tree Avicennia officinalis subjected to NaCl treatment, we profiled gene expression changes in the roots by RNA-sequencing. Of the 6547 genes that were differentially regulated in response to salt treatment, 1404 and 5213 genes were significantly up- and down-regulated, respectively. By comparative genomics, 93 key salt tolerance-related genes were identified of which 47 were up-regulated. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in ethylene and auxin signaling were up-regulated while those involved in ABA signaling were down-regulated. These results imply that ABA-independent signaling pathways also play a major role in salt tolerance of A. officinalis. Further, ethylene response factors (ERFs) were abundantly expressed upon salt treatment and the Arabidopsis mutant aterf115, a homolog of AoERF114 is characterized. Overall, our results would help in understanding the possible molecular mechanism underlying salt tolerance in plants.
Collapse
|
34
|
Li QT, Lu X, Song QX, Chen HW, Wei W, Tao JJ, Bian XH, Shen M, Ma B, Zhang WK, Bi YD, Li W, Lai YC, Lam SM, Shui GH, Chen SY, Zhang JS. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication. PLANT PHYSIOLOGY 2017; 173:2208-2224. [PMID: 28184009 PMCID: PMC5373050 DOI: 10.1104/pp.16.01610] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/06/2017] [Indexed: 05/18/2023]
Abstract
Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops.
Collapse
Affiliation(s)
- Qing-Tian Li
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Xiang Lu
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Qing-Xin Song
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Hao-Wei Chen
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Wei Wei
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Jian-Jun Tao
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Xiao-Hua Bian
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Ming Shen
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Biao Ma
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Wan-Ke Zhang
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Ying-Dong Bi
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Wei Li
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Yong-Cai Lai
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Sin-Man Lam
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Guang-Hou Shui
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| | - Jin-Song Zhang
- State Key Laboratory of Plant Genomics (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.) and State Key Laboratory of Molecular Developmental Biology (S.L., G.S.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China (Q.L., X.L., Q.S., H.C., W.W., J.T., X.B., M.S., B.M., W.Z., S.C., J.Z.); and
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China (Y.B., W.L., Y.L.)
| |
Collapse
|
35
|
Luo J, Tang S, Mei F, Peng X, Li J, Li X, Yan X, Zeng X, Liu F, Wu Y, Wu G. BnSIP1-1, a Trihelix Family Gene, Mediates Abiotic Stress Tolerance and ABA Signaling in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:44. [PMID: 28184229 PMCID: PMC5266734 DOI: 10.3389/fpls.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 05/26/2023]
Abstract
The trihelix family genes have important functions in light-relevant and other developmental processes, but their roles in response to adverse environment are largely unclear. In this study, we identified a new gene, BnSIP1-1, which fell in the SIP1 (6b INTERACTING PROTEIN1) clade of the trihelix family with two trihelix DNA binding domains and a fourth amphipathic α-helix. BnSIP1-1 protein specifically targeted to the nucleus, and its expression can be induced by abscisic acid (ABA) and different stresses. Overexpression of BnSIP1-1 improved seed germination under osmotic pressure, salt, and ABA treatments. Moreover, BnSIP1-1 decreased the susceptibility of transgenic seedlings to osmotic pressure and ABA treatments, whereas there was no difference under salt stress between the transgenic and wild-type seedlings. ABA level in the transgenic seedlings leaves was higher than those in the control plants under normal condition. Under exogenous ABA treatment and mannitol stress, the accumulation of ABA in the transgenic plants was higher than that in the control plants; while under salt stress, the difference of ABA content before treatment was gradually smaller with the prolongation of salt treatment time, then after 24 h of treatment the ABA level was similar in transgenic and wild-type plants. The transcription levels of several general stress marker genes (BnRD29A, BnERD15, and BnLEA1) were higher in the transgenic plants than the wild-type plants, whereas salt-responsive genes (BnSOS1, BnNHX1, and BnHKT) were not significantly different or even reduced compared with the wild-type plants, which indicated that BnSIP1-1 specifically exerted different regulatory mechanisms on the osmotic- and salt-response pathways in seedling period. Overall, these findings suggested that BnSIP1-1 played roles in ABA synthesis and signaling, salt and osmotic stress response. To date, information about the involvement of the Brassica napus trihelix gene in abiotic response is scarce. Here, we firstly reported abiotic stress response and possible function mechanisms of a new trihelix gene in B. napus.
Collapse
Affiliation(s)
- Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Shaohua Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Fengling Mei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang UniversityNanchang, China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Xiaofei Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Yuhua Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| |
Collapse
|
36
|
Phukan UJ, Jeena GS, Tripathi V, Shukla RK. Regulation of Apetala2/Ethylene Response Factors in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:150. [PMID: 28270817 PMCID: PMC5318435 DOI: 10.3389/fpls.2017.00150] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
Multiple environmental stresses affect growth and development of plants. Plants try to adapt under these unfavorable condition through various evolutionary mechanisms like physiological and biochemical alterations connecting various network of regulatory processes. Transcription factors (TFs) like APETALA2/ETHYLENE RESPONSE FACTORS (AP2/ERFs) are an integral component of these signaling cascades because they regulate expression of a wide variety of down stream target genes related to stress response and development through different mechanism. This downstream regulation of transcript does not always positively or beneficially affect the plant but also they display some developmental defects like senescence and reduced growth under normal condition or sensitivity to stress condition. Therefore, tight auto/cross regulation of these TFs at transcriptional, translational and domain level is crucial to understand. The present manuscript discuss the multiple regulation and advantage of plasticity and specificity of these family of TFs to a wide or single downstream target(s) respectively. We have also discussed the concern which comes with the unwanted associated traits, which could only be averted by further study and exploration of these AP2/ERFs.
Collapse
Affiliation(s)
- Ujjal J. Phukan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Gajendra S. Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Vineeta Tripathi
- Botany Division, CSIR-Central Drug Research InstituteLucknow, India
| | - Rakesh K. Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
- *Correspondence: Rakesh K. Shukla
| |
Collapse
|
37
|
Matías-Hernández L, Aguilar-Jaramillo AE, Osnato M, Weinstain R, Shani E, Suárez-López P, Pelaz S. TEMPRANILLO Reveals the Mesophyll as Crucial for Epidermal Trichome Formation. PLANT PHYSIOLOGY 2016; 170:1624-39. [PMID: 26802039 PMCID: PMC4775113 DOI: 10.1104/pp.15.01309] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/21/2016] [Indexed: 05/08/2023]
Abstract
Plant trichomes are defensive specialized epidermal cells. In all accepted models, the epidermis is the layer involved in trichome formation, a process controlled by gibberellins (GAs) in Arabidopsis rosette leaves. Indeed, GA activates a genetic cascade in the epidermis for trichome initiation. Here we report that TEMPRANILLO (TEM) genes negatively control trichome initiation not only from the epidermis but also from the leaf layer underneath the epidermis, the mesophyll. Plants over-expressing or reducing TEM specifically in the mesophyll, display lower or higher trichome numbers, respectively. We surprisingly found that fluorescently labeled GA3 accumulates exclusively in the mesophyll of leaves, but not in the epidermis, and that TEM reduces its accumulation and the expression of several newly identified GA transporters. This strongly suggests that TEM plays an essential role, not only in GA biosynthesis, but also in regulating GA distribution in the mesophyll, which in turn directs epidermal trichome formation. Moreover, we show that TEM also acts as a link between GA and cytokinin signaling in the epidermis by negatively regulating downstream genes of both trichome formation pathways. Overall, these results call for a re-evaluation of the present theories of trichome formation as they reveal mesophyll essential during epidermal trichome initiation.
Collapse
Affiliation(s)
- Luis Matías-Hernández
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain (L.M.-H., A.E.A.-J., M.O., P.S.-L., S.P.); ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain (S.P.); and Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 39040, Tel Aviv, Israel (R.W., E.S.)
| | - Andrea E Aguilar-Jaramillo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain (L.M.-H., A.E.A.-J., M.O., P.S.-L., S.P.); ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain (S.P.); and Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 39040, Tel Aviv, Israel (R.W., E.S.)
| | - Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain (L.M.-H., A.E.A.-J., M.O., P.S.-L., S.P.); ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain (S.P.); and Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 39040, Tel Aviv, Israel (R.W., E.S.)
| | - Roy Weinstain
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain (L.M.-H., A.E.A.-J., M.O., P.S.-L., S.P.); ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain (S.P.); and Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 39040, Tel Aviv, Israel (R.W., E.S.)
| | - Eilon Shani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain (L.M.-H., A.E.A.-J., M.O., P.S.-L., S.P.); ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain (S.P.); and Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 39040, Tel Aviv, Israel (R.W., E.S.)
| | - Paula Suárez-López
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain (L.M.-H., A.E.A.-J., M.O., P.S.-L., S.P.); ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain (S.P.); and Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 39040, Tel Aviv, Israel (R.W., E.S.)
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain (L.M.-H., A.E.A.-J., M.O., P.S.-L., S.P.); ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain (S.P.); and Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 39040, Tel Aviv, Israel (R.W., E.S.)
| |
Collapse
|
38
|
Song A, Wu D, Fan Q, Tian C, Chen S, Guan Z, Xin J, Zhao K, Chen F. Transcriptome-Wide Identification and Expression Profiling Analysis of Chrysanthemum Trihelix Transcription Factors. Int J Mol Sci 2016; 17:ijms17020198. [PMID: 26848650 PMCID: PMC4783932 DOI: 10.3390/ijms17020198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 12/19/2015] [Accepted: 01/28/2016] [Indexed: 12/23/2022] Open
Abstract
Trihelix transcription factors are thought to feature a typical DNA-binding trihelix (helix-loop-helix-loop-helix) domain that binds specifically to the GT motif, a light-responsive DNA element. Members of the trihelix family are known to function in a number of processes in plants. Here, we characterize 20 trihelix family genes in the important ornamental plant chrysanthemum (Chrysanthemum morifolium). Based on transcriptomic data, 20 distinct sequences distributed across four of five groups revealed by a phylogenetic tree were isolated and amplified. The phylogenetic analysis also identified four pairs of orthologous proteins shared by Arabidopsis and chrysanthemum and five pairs of paralogous proteins in chrysanthemum. Conserved motifs in the trihelix proteins shared by Arabidopsis and chrysanthemum were analyzed using MEME, and further bioinformatic analysis revealed that 16 CmTHs can be targeted by 20 miRNA families and that miR414 can target 9 CmTHs. qPCR results displayed that most chrysanthemum trihelix genes were highly expressed in inflorescences, while 20 CmTH genes were in response to phytohormone treatments and abiotic stresses. This work improves our understanding of the various functions of trihelix gene family members in response to hormonal stimuli and stress.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dan Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qingqing Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chang Tian
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kunkun Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
39
|
Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. PLANT MOLECULAR BIOLOGY 2016; 90:49-62. [PMID: 26482477 DOI: 10.1007/s11103-015-0393-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/14/2015] [Indexed: 05/21/2023]
Abstract
Salt is a major environmental stress factor that can affect rice growth and yields. Recent studies suggested that members of the AP2/ERF domain-containing RAV (related to ABI3/VP1) TF family are involved in abiotic stress adaptation. However, the transcriptional response of rice RAV genes (OsRAVs) to salt has not yet been fully characterized. In this study, the expression patterns of all five OsRAVs were examined under salt stress. Only one gene, OsRAV2, was stably induced by high-salinity treatment. Further expression profile analyses indicated that OsRAV2 is transcriptionally regulated by salt, but not KCl, osmotic stress, cold or ABA (abscisic acid) treatment. To elucidate the regulatory mechanism of the stress response at the transcriptional level, we isolated and characterized the promoter region of OsRAV2 (P OsRAV2 ). Transgenic analysis indicated that P OsRAV2 is induced by salt stress but not osmotic stress or ABA treatment. Serial 5' deletions and site-specific mutations in P OsRAV2 revealed that a GT-1 element located at position -664 relative to the putative translation start site is essential for the salt induction of P OsRAV2 . The regulatory function of the GT-1 element in the salt induction of OsRAV2 was verified in situ in plants with targeted mutations generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system. Taken together, our results indicate that the GT-1 element directly controls the salt response of OsRAV2. This study provides a better understanding of the putative functions of OsRAVs and the molecular regulatory mechanisms of plant genes under salt stress.
Collapse
Affiliation(s)
- Yong-Bo Duan
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Rui-Ying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Rong-Fang Xu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ya-Chun Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hui Ma
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Li Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Peng-Cheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Jian-Bo Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
40
|
Genome-wide identification and expression profiling analysis of trihelix gene family in tomato. Biochem Biophys Res Commun 2015; 468:653-9. [DOI: 10.1016/j.bbrc.2015.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/23/2022]
|
41
|
García-Cano E, Magori S, Sun Q, Ding Z, Lazarowitz SG, Citovsky V. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF. PLoS One 2015; 10:e0142128. [PMID: 26571494 PMCID: PMC4646629 DOI: 10.1371/journal.pone.0142128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 02/01/2023] Open
Abstract
Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis.
Collapse
Affiliation(s)
- Elena García-Cano
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
| | - Shimpei Magori
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York, United States of America
| | - Zehong Ding
- Computational Biology Service Unit, Cornell University, Ithaca, New York, United States of America
| | - Sondra G. Lazarowitz
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Virdi AS, Singh S, Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:809. [PMID: 26528296 PMCID: PMC4604306 DOI: 10.3389/fpls.2015.00809] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amardeep S. Virdi
- Texture Analysis Laboratory, Department of Food Science & Technology, Guru Nanak Dev UniversityAmritsar, India
| | - Supreet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| | - Prabhjeet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| |
Collapse
|
43
|
Burgess DG, Xu J, Freeling M. Advances in understanding cis regulation of the plant gene with an emphasis on comparative genomics. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:141-7. [PMID: 26247124 DOI: 10.1016/j.pbi.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/26/2015] [Accepted: 07/07/2015] [Indexed: 05/07/2023]
Abstract
The plant gene model remains largely an extrapolation from animals, with the cis functional unit, the gene, cast as a dynamic looping structure. Molecular genetics with model plants continues to make advances; highlighted here are quantitative-occupancy results from the Arabidopsis thaliana (Arabidopsis) Phytochrome-Interacting bHLH transcription Factors (PIF) quartet. Compared to this complex snapshot, results from chromatin occupancy and other Encyclopedia of DNA Elements (ENCODE)-like approaches increase our transcription factor-motif cognate library, but regulation cannot by itself be inferred from binding. Complementary published Arabidopsis conserved noncoding sequence lists are compared, evaluated, merged, and released. Comparative genomic approaches have identified a cis modifier of a gene's expression-hypothetically, a transposon-based 'rheostat'-that works in all cells, times and places.
Collapse
Affiliation(s)
- Diane G Burgess
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, United States.
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, United States
| |
Collapse
|
44
|
Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:600. [PMID: 26322054 PMCID: PMC4532166 DOI: 10.3389/fpls.2015.00600] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Transient changes in intracellular Ca(2+) concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are major Ca(2+) sensors, playing critical roles in interpreting encrypted Ca(2+) signals. Ca(2+)-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes, and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca(2+) signal and overview of Ca(2+) signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca(2+)/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca(2+)/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of reactive oxygen species signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca(2+)/CaM-mediated signaling warrant further investigation. Ca(2+)/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca(2+) signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca(2+)/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Luqin Xu
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Amarjeet Singh
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - B. W. Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| |
Collapse
|