1
|
Oh H, Mengist MF, Ma G, Giongo L, Pottorff M, Spencer JA, Perkins-Veazie P, Iorizzo M. Unraveling the genetic architecture of blueberry fruit quality traits: major loci control organic acid content while more complex genetic mechanisms control texture and sugar content. BMC PLANT BIOLOGY 2025; 25:36. [PMID: 39789463 PMCID: PMC11721283 DOI: 10.1186/s12870-025-06061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Fruit quality traits, including taste, flavor, texture, and shelf-life, have emerged as important breeding priorities in blueberry (Vaccinium corymbosum). Organic acids and sugars play crucial roles in the perception of blueberry taste/flavor, where low and high consumer liking are correlated with high organic acids and high sugars, respectively. Blueberry texture and appearance are also critical for shelf-life quality and consumers' willingness-to-pay. As the genetic mechanisms that determine these fruit quality traits remain largely unknown, in this study, an F1 mapping population was used to perform quantitative trait loci (QTL) mapping for pH, titratable acidity (TA), organic acids, total soluble solids (TSS), sugars, fruit size, and texture at harvest and/or post-storage and weight loss. RESULTS Twenty-eight QTLs were detected for acidity-related parameters (pH, TA, and organic acid content). Six QTLs for pH, TA, and citric acid, two for quinic acid, and two for shikimic acid with major effects were consistently detected across two years on the same genomic regions on chromosomes 3, 4, and 5, respectively. Putative candidate genes for these QTLs were also identified using comparative transcriptomic analysis. No QTL was detected for malic acid content, TSS, or individual sugar content. A total of 146 QTLs with minor effects were identified for texture- and size-related parameters. With a few exceptions, these QTLs were generally inconsistent over years and post-storage, indicating a highly quantitative nature. CONCLUSIONS Our findings enhance the understanding of the genetic basis underlying fruit quality traits in blueberry and guide future work to exploit DNA-informed selection strategies in blueberry breeding programs. The major-effect QTLs identified for acidity-related fruit characteristics could be potential targets to develop DNA markers for marker-assisted selection (MAS). On the other hand, genomic selection may be a more suitable approach than MAS when targeting fruit texture, sugars, or size.
Collapse
Affiliation(s)
- Heeduk Oh
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Department of Horticulture, North Carolina State University, Raleigh, NC, 27607, USA
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Agricultural Research Station, Virginia State University, Petersburg, VA, 23806, USA
| | - Guoying Ma
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Lara Giongo
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele a/A, Trento, Italy
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Jessica A Spencer
- Department of Horticulture, North Carolina State University, Raleigh, NC, 27607, USA
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
- Department of Horticulture, North Carolina State University, Raleigh, NC, 27607, USA.
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
- Department of Horticulture, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
2
|
Wang Y, Ding K, Li H, Kuang Y, Liang Z. Biography of Vitis genomics: recent advances and prospective. HORTICULTURE RESEARCH 2024; 11:uhae128. [PMID: 38966864 PMCID: PMC11220177 DOI: 10.1093/hr/uhae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/25/2024] [Indexed: 07/06/2024]
Abstract
The grape genome is the basis for grape studies and breeding, and is also important for grape industries. In the last two decades, more than 44 grape genomes have been sequenced. Based on these genomes, researchers have made substantial progress in understanding the mechanism of biotic and abiotic resistance, berry quality formation, and breeding strategies. In addition, this work has provided essential data for future pangenome analyses. Apart from de novo assembled genomes, more than six whole-genome sequencing projects have provided datasets comprising almost 5000 accessions. Based on these datasets, researchers have explored the domestication and origins of the grape and clarified the gene flow that occurred during its dispersed history. Moreover, genome-wide association studies and other methods have been used to identify more than 900 genes related to resistance, quality, and developmental phases of grape. These findings have benefited grape studies and provide some basis for smart genomic selection breeding. Moreover, the grape genome has played a great role in grape studies and the grape industry, and the importance of genomics will increase sharply in the future.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Kangyi Ding
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayang Li
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangfu Kuang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
3
|
Zhang Y, Liu C, Liu X, Wang Z, Wang Y, Zhong GY, Li S, Dai Z, Liang Z, Fan P. Basic leucine zipper gene VvbZIP61 is expressed at a quantitative trait locus for high monoterpene content in grape berries. HORTICULTURE RESEARCH 2023; 10:uhad151. [PMID: 37701455 PMCID: PMC10493639 DOI: 10.1093/hr/uhad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/26/2023] [Indexed: 09/14/2023]
Abstract
The widely appreciated muscat flavor of grapes and wine is mainly attributable to the monoterpenes that accumulate in ripe grape berries. To identify quantitative trait loci (QTL) for grape berry monoterpene content, an F1 mapping population was constructed by a cross between two grapevine genotypes, one with neutral aroma berries (cv. 'Beifeng') and the other with a pronounced muscat aroma (elite Vitis vinifera line '3-34'). A high-density genetic linkage map spanning 1563.7 cM was constructed using 3332 SNP markers that were assigned to 19 linkage groups. Monoterpenes were extracted from the berry of the F1 progeny, then identified and quantified by gas chromatography-mass spectrometry. Twelve stable QTLs associated with the amounts of 11 monoterpenes in berries were thus identified. In parallel, the levels of RNA in berries from 34 diverse cultivars were estimated by RNA sequencing and compared to the monoterpene content of the berries. The expression of five genes mapping to stable QTLs correlated well with the monoterpene content of berries. These genes, including the basic leucine zipper VvbZIP61 gene on chromosome 12, are therefore considered as potentially being involved in monoterpene metabolism. Overexpression of VvbZIP61 in Vitis amurensis callus through Agrobacterium-mediated transformation significantly increased the accumulation of several monoterpenes in the callus, including nerol, linalool, geranial, geraniol, β-myrcene, and D-limonene. It is hypothesized that VvbZIP61 expression acts to increase muscat flavor in grapes. These results advance our understanding of the genetic control of monoterpene biosynthesis in grapes and provide important information for the marker-assisted selection of aroma compounds in grape breeding.
Collapse
Affiliation(s)
- Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuixia Liu
- Centre for Special Economic Plant Studies, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zemin Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva 14456, USA
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
De Mori G, Cipriani G. Marker-Assisted Selection in Breeding for Fruit Trait Improvement: A Review. Int J Mol Sci 2023; 24:ijms24108984. [PMID: 37240329 DOI: 10.3390/ijms24108984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Breeding fruit species is time-consuming and expensive. With few exceptions, trees are likely the worst species to work with in terms of genetics and breeding. Most are characterized by large trees, long juvenile periods, and intensive agricultural practice, and environmental variability plays an important role in the heritability evaluations of every single important trait. Although vegetative propagation allows for the production of a significant number of clonal replicates for the evaluation of environmental effects and genotype × environment interactions, the spaces required for plant cultivation and the intensity of work necessary for phenotypic surveys slow down the work of researchers. Fruit breeders are very often interested in fruit traits: size, weight, sugar and acid content, ripening time, fruit storability, and post-harvest practices, among other traits relevant to each individual species. The translation of trait loci and whole-genome sequences into diagnostic genetic markers that are effective and affordable for use by breeders, who must choose genetically superior parents and subsequently choose genetically superior individuals among their progeny, is one of the most difficult tasks still facing tree fruit geneticists. The availability of updated sequencing techniques and powerful software tools offered the opportunity to mine tens of fruit genomes to find out sequence variants potentially useful as molecular markers. This review is devoted to analysing what has been the role of molecular markers in assisting breeders in selection processes, with an emphasis on the fruit traits of the most important fruit crops for which examples of trustworthy molecular markers have been developed, such as the MDo.chr9.4 marker for red skin colour in apples, the CCD4-based marker CPRFC1, and LG3_13.146 marker for flesh colour in peaches, papayas, and cherries, respectively.
Collapse
Affiliation(s)
- Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
5
|
Ma W, Lu S, Li W, Nai G, Ma Z, Li Y, Chen B, Mao J. Transcriptome and metabolites analysis of water-stressed grape berries at different growth stages. PHYSIOLOGIA PLANTARUM 2023; 175:e13910. [PMID: 37042463 DOI: 10.1111/ppl.13910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/08/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Drought is one of the main abiotic factors affecting grape quality. However, the impacts of drought stress on sugar and related gene expression during grape berry ripening remain unclear. In this experiment, the grapes were subjected to different levels of continuous water stress from 45 to 120 days after flowering (DAA) to study the changes in berry sugar content and the expression of genes related to sugar metabolism under different water stresses. Data supported that glucose, fructose, sucrose, and soluble sugars increased from 45 DAA. Combined with previous research results, T1, T2, and Ct grape berries with 60 ~ 75 DAA and large differences in sucrose, fructose, glucose and soluble sugars compared with the Ct were selected for RNA sequencing (RNA-seq). Through transcriptome analysis, 4471 differentially expressed genes (DEGs) were screened, and 65 genes in photosynthesis, ABA signaling pathway and photosynthetic carbon metabolism pathway were analyzed further by qRT-PCR. At 60 DAA, the relative expression levels of CAB1R, PsbP, SNRK2, and PYL9 were significantly upregulated in response to water stress, while AHK1, At4g02290 were down-regulated. At 75 DAA, the relative expression levels of ELIP1, GoLS2, At4g02290, Chi5, SAPK, MAPKKK17, NHL6, KINB2, and AHK1 were upregulated. And CAB1R, PsbA, GoLS1, SnRK2, PYL9, and KINGL were significantly downregulated under moderate water stress. In addition, PsbA expression was down-regulated in response to water stress. These results will help us to fully understand the potential connections between glucose metabolism and gene expression in grapes under drought stress.
Collapse
Affiliation(s)
- Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Sun Q, He L, Sun L, Xu HY, Fu YQ, Sun ZY, Zhu BQ, Duan CQ, Pan QH. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1142139. [PMID: 36938056 PMCID: PMC10014734 DOI: 10.3389/fpls.2023.1142139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Obtaining new grapevine varieties with unique aromas has been a long-standing goal of breeders. Norisoprenoids are of particular interest to wine producers and researchers, as these compounds are responsible for the important varietal aromas in wine, characterized by a complex floral and fruity smell, and are likely present in all grape varieties. However, the single-nucleotide polymorphism (SNP) loci and candidate genes genetically controlling the norisoprenoid content in grape berry remain unknown. To this end, in this study, we investigated 13 norisoprenoid traits across two years in an F1 population consisting of 149 individuals from a hybrid of Vitis vinifera L. cv. Muscat Alexandria and V. vinifera L. cv. Christmas Rose. Based on 568,953 SNP markers, genome-wide association analysis revealed that 27 candidate SNP loci belonging to 18 genes were significantly associated with the concentrations of norisoprenoid components in grape berry. Among them, 13 SNPs were confirmed in a grapevine germplasm population comprising 97 varieties, including two non-synonymous mutations SNPs within the VvDXS1 and VvGGPPS genes, respectively in the isoprenoid metabolic pathway. Genotype analysis showed that the grapevine individuals with the heterozygous genotype C/T at chr5:2987350 of VvGGPPS accumulated higher average levels of 6-methyl-5-hepten-2-one and β-cyclocitral than those with the homozygous genotype C/C. Furthermore, VvGGPPS was highly expressed in individuals with high norisoprenoids concentrations. Transient overexpression of VvGGPPS in the leaves of Vitis quinquangularis and tobacco resulted in an increase in norisoprenoid concentrations. These findings indicate the importance of VvGGPPS in the genetic control of norisoprenoids in grape berries, serving as a potential molecular breeding target for aroma.
Collapse
Affiliation(s)
- Qi Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei He
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Hai-Ying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ya-Qun Fu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zheng-Yang Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Qing Zhu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
7
|
Ma WF, Li YB, Nai GJ, Liang GP, Ma ZH, Chen BH, Mao J. Changes and response mechanism of sugar and organic acids in fruits under water deficit stress. PeerJ 2022; 10:e13691. [PMID: 36039369 PMCID: PMC9419716 DOI: 10.7717/peerj.13691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/16/2022] [Indexed: 01/19/2023] Open
Abstract
The content and the ratio of soluble sugars and organic acids in fruits are significant indicators for fruit quality. They are affected by multiple environmental factors, in which water-deficient is the most concern. Previous studies found that the content of soluble sugars and organic acids in fruit displayed great differences under varied water stress. It is important to clarify the mechanism of such difference and to provide researchers with systematic knowledge about the response to drought stress and the mechanism of sugar and acid changes in fruits, so that they can better carry out the study of fruit quality under drought stress. Therefore, the researchers studied dozens of research articles about the content of soluble sugar and organic acid, the activity of related metabolic enzymes, and the expression of related metabolic genes in fruits under water stress, and the stress response of plants to water stress. We found that after plants perceived and transmitted the signal of water deficit, the expression of genes related to the metabolism of soluble sugars and organic acids changed. It was then affected the synthesis of metabolic enzymes and changed their metabolic rate, ultimately leading to changes in soluble sugar and organic acid content. Based on the literature review, we described the pathway diagrams of sugar metabolism, organic acid metabolism, mainly malic acid, tartaric acid, and citric acid metabolism, and of the response to drought stress. From many aspects including plants' perception of water stress signal, signal conversion and transmission, induced gene expression, the changes in soluble sugar and the enzyme activities of organic acids, as well as the final sugar and acid content in fruits, this thesis summarized previous studies on the influence of water stress on soluble sugars and the metabolism of organic acids in fruits.
Collapse
|
8
|
Alahakoon D, Fennell A, Helget Z, Bates T, Karn A, Manns D, Mansfield AK, Reisch BI, Sacks G, Sun Q, Zou C, Cadle-Davidson L, Londo JP. Berry Anthocyanin, Acid, and Volatile Trait Analyses in a Grapevine-Interspecific F2 Population Using an Integrated GBS and rhAmpSeq Genetic Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:696. [PMID: 35270166 PMCID: PMC8912348 DOI: 10.3390/plants11050696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Increased map density and transferability of markers are essential for the genetic analysis of fruit quality and stress tolerance in interspecific grapevine populations. We used 1449 GBS and 2000 rhAmpSeq markers to develop a dense map for an interspecific F2 population (VRS-F2) that was derived by selfing a single F1 from a Vitis riparia x 'Seyval blanc' cross. The resultant map contained 2519 markers spanning 1131.3 cM and was highly collinear with the Vitis vinifera 'PN40024' genome. Quantitative trait loci (QTL) for berry skin color and flower type were used to validate the map. Four rhAmpSeq transferable markers were identified that can be used in pairs (one pistillate and one hermaphroditic) to predict pistillate and hermaphrodite flower type with ≥99.7% accuracy. Total and individual anthocyanin diglucoside QTL mapped to chromosome 9 near a 5-O-GLUCOSYLTRANSFERASE candidate gene. Malic acid QTL were observed on chromosome 1 and 6 with two MALATE DEHYRDROGENASE CYTOPLASMIC 1 and ALUMINUM-ACTIVATED MALATE TRANSPORTER 2-LIKE (ALMT) candidate genes, respectively. Modeling malic acid identified a potential QTL on chromosome 8 with peak position in proximity of another ALMT. A first-ever reported QTL for the grassy smelling volatile (E)-2-hexenal was found on chromosome 2 with a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE candidate gene near peak markers.
Collapse
Affiliation(s)
- Dilmini Alahakoon
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Anne Fennell
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Zachary Helget
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Terry Bates
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (T.B.); (G.S.)
| | - Avinash Karn
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| | - David Manns
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.M.); (A.K.M.)
| | - Anna Katharine Mansfield
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.M.); (A.K.M.)
| | - Bruce I. Reisch
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| | - Gavin Sacks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (T.B.); (G.S.)
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA; (Q.S.); (C.Z.)
| | - Cheng Zou
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA; (Q.S.); (C.Z.)
| | | | - Jason P. Londo
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| |
Collapse
|
9
|
Wang Z, Ma B, Yang N, Jin L, Wang L, Ma S, Ruan YL, Ma F, Li M. Variation in the promoter of the sorbitol dehydrogenase gene MdSDH2 affects binding of the transcription factor MdABI3 and alters fructose content in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1183-1198. [PMID: 34888978 DOI: 10.1111/tpj.15624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Fructose (Fru) content is a key determinant of fruit sweetness and quality. An F1 hybrid population of the apple cultivars 'Honeycrisp' × 'Qinguan' was used to investigate the quantitative trait locus (QTL) regions and genes controlling Fru content in fruit. A stable QTL on linkage group (LG) 01 in 'Honeycrisp' was detected on the single nucleotide polymorphism (SNP) genetic linkage maps. In this region, a sorbitol dehydrogenase (SDH) gene, MdSDH2, was detected and showed promoter variations and differential expression patterns between 'Honeycrisp' and 'Qinguan' fruits as well as their hybrids. A SNP variant (A/G) in the MdSDH2 promoter region (SDH2p-491) affected the binding ability of the transcription factor MdABI3, which can affect the expression of MdSDH2. Promoter sequences with an A nucleotide at SDH2p-491 had stronger binding affinity for MdABI3 than those with a G. Among 27 domesticated apple cultivars and wild relatives, this SNP (A/G) was associated with Fru content. Our results indicate that MdSDH2 can alter Fru content as the major regulatory gene and that ABA signaling might be involved in Fru content accumulation in apple fruit.
Collapse
Affiliation(s)
- Zhengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nanxiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ling Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Songya Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
10
|
Reshef N, Karn A, Manns DC, Mansfield AK, Cadle-Davidson L, Reisch B, Sacks GL. Stable QTL for malate levels in ripe fruit and their transferability across Vitis species. HORTICULTURE RESEARCH 2022; 9:uhac009. [PMID: 35369130 PMCID: PMC8968676 DOI: 10.1093/hr/uhac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Malate is a major contributor to the sourness of grape berries (Vitis spp.) and their products, such as wine. Excessive malate at maturity, commonly observed in wild Vitis grapes, is detrimental to grape and wine quality and complicates the introgression of valuable disease resistance and cold hardy genes through breeding. This study investigated an interspecific Vitis family that exhibited strong and stable variation in malate at ripeness for five years and tested the separate contribution of accumulation, degradation, and dilution to malate concentration in ripe fruit in the last year of study. Genotyping was performed using transferable rhAmpSeq haplotype markers, based on the Vitis collinear core genome. Three significant QTL for ripe fruit malate on chromosomes 1, 7, and 17, accounted for over two-fold and 6.9 g/L differences, and explained 40.6% of the phenotypic variation. QTL on chromosomes 7 and 17 were stable in all and in three out of five years, respectively. Variation in pre-veraison malate was the major contributor to variation in ripe fruit malate (39%), and based on two and five years of data, respectively, their associated QTL overlapped on chromosome 7, indicating a common genetic basis. However, use of transferable markers on a closely related Vitis family did not yield a common QTL across families. This suggests that diverse physiological mechanisms regulate the levels of this key metabolite in the Vitis genus, a conclusion supported by a review of over a dozen publications from the past decade, showing malate-associated genetic loci on all 19 chromosomes.
Collapse
Affiliation(s)
| | - Avinash Karn
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - David C Manns
- Department of Food Science, Cornell AgriTech, Geneva, NY 14456, USA
| | | | | | - Bruce Reisch
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Gavin L Sacks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Gong H, Rehman F, Ma Y, A B, Zeng S, Yang T, Huang J, Li Z, Wu D, Wang Y. Germplasm Resources and Strategy for Genetic Breeding of Lycium Species: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:802936. [PMID: 35222468 PMCID: PMC8874141 DOI: 10.3389/fpls.2022.802936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/07/2022] [Indexed: 06/01/2023]
Abstract
Lycium species (goji), belonging to Solanaceae, are widely spread in the arid to semiarid environments of Eurasia, Africa, North and South America, among which most species have affinal drug and diet functions, resulting in their potential to be a superior healthy food. However, compared with other crop species, scientific research on breeding Lycium species lags behind. This review systematically introduces the present germplasm resources, cytological examination and molecular-assisted breeding progress in Lycium species. Introduction of the distribution of Lycium species around the world could facilitate germplasm collection for breeding. Karyotypes of different species could provide a feasibility analysis of fertility between species. The introduction of mapping technology has discussed strategies for quantitative trait locus (QTL) mapping in Lycium species according to different kinds of traits. Moreover, to extend the number of traits and standardize the protocols of trait detection, we also provide 1,145 potential traits (275 agronomic and 870 metabolic) in different organs based on different reference studies on Lycium, tomato and other Solanaceae species. Finally, perspectives on goji breeding research are discussed and concluded. This review will provide breeders with new insights into breeding Lycium species.
Collapse
Affiliation(s)
- Haiguang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fazal Rehman
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Biao A
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tianshun Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jianguo Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong Li
- Agricultural Comprehensive Development Center in Ningxia Hui Autonomous Region, Yinchuan, China
| | | | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Science, Gannan Normal University, Ganzhou, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Cai Y, Yin L, Tu W, Deng Z, Yan J, Dong W, Gao H, Xu J, Zhang N, Wang J, Zhu L, Meng Q, Zhang Y. Ectopic Expression of VvSUC27 Induces Stenospermocarpy and Sugar Accumulation in Tomato Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:759047. [PMID: 34868153 PMCID: PMC8637806 DOI: 10.3389/fpls.2021.759047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Seedless fruits are favorable in the market because of their ease of manipulation. Sucrose transporters (SUTs or SUCs) are essential for carbohydrate metabolism in plants. Whether SUTs participate directly in causing stenospermocarpy, thereby increasing fruit quality, remains unclear. Three SUTs, namely, VvSUC11, VvSUC12, and VvSUC27 from Vitis vinifera, were characterized and ectopic expression in tomatoes. VvSUC11- and VvSUC12-overexpressing lines had similar flower and fruit phenotypes compared with those of the wild type. VvSUC27-overexpressing lines produced longer petals and pistils, an abnormal stigma, much less and shrunken pollen, and firmer seedless fruits. Moreover, produced fruits from all VvSUC-overexpressing lines had a higher soluble solid content and sugar concentration. Transcriptomic analysis revealed more genes associated with carbohydrate metabolism and sugar transport and showed downregulation of auxin- and ethylene-related signaling pathways during early fruit development in VvSUC27-overexpressing lines relative to that of the wild type. Our findings demonstrated that stenospermocarpy can be induced by overexpression of VvSUC27 through a consequential reduction in nutrient delivery to pollen at anthesis, with a subsequent downregulation of the genes involved in carbohydrate metabolism and hormone signaling. These commercially desirable results provide a new strategy for bioengineering stenospermocarpy in tomatoes and in other fruit plants.
Collapse
Affiliation(s)
- Yumeng Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Key Laboratory, Academy of Agricultural Sciences, Nanning, China
| | - Wenrui Tu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhefang Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenjie Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Han Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinxu Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Zhu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qingyong Meng
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Jia D, Wu P, Shen F, Li W, Zheng X, Wang Y, Yuan Y, Zhang X, Han Z. Genetic variation in the promoter of an R2R3-MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.). PLANT PHYSIOLOGY 2021; 186:549-568. [PMID: 33624810 PMCID: PMC8154052 DOI: 10.1093/plphys/kiab098] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/13/2021] [Indexed: 05/25/2023]
Abstract
Deciphering the mechanism of malate accumulation in apple (Malus domestica Borkh.) fruits can help to improve their flavor quality and enhance their benefits for human health. Here, we analyzed malate content as a quantitative trait that is determined mainly by genetic effects. In a previous study, we identified an R2R3-MYB transcription factor named MdMYB44 that was a candidate gene in qtl08.1 (quantitative trait locus mapped to chromosome 8) of fruit malate content. In the present study, we established that MdMYB44 negatively regulates fruit malate accumulation by repressing the promoter activity of the malate-associated genes Ma1 (Al-Activated Malate Transporter 9), Ma10 (P-type ATPase 10), MdVHA-A3 (V-type ATPase A3), and MdVHA-D2 (V-type ATPase D2). Two single-nucleotide polymorphisms (SNPs) in the MdMYB44 promoter, SNP A/G and SNP T/-, were experimentally shown to associate with fruit malate content. The TATA-box in the MdMYB44 promoter in the presence of SNP A enhances the basal activity of the MdMYB44 promoter. The binding of a basic-helix-loop-helix transcription factor MdbHLH49 to the MdMYB44 promoter was enhanced by the presence of SNP T, leading to increased MdMYB44 transcript levels and reduced malate accumulation. Furthermore, MdbHLH49 interacts with MdMYB44 and enhances MdMYB44 activity. The two SNPs could be used in combination to select for sour or non-sour apples, providing a valuable tool for the selection of fruit acidity by the apple breeding industry. This research is important for understanding the complex molecular mechanisms of fruit malate accumulation and accelerating the development of germplasm innovation in apple species and cultivars.
Collapse
Affiliation(s)
- Dongjie Jia
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Wu
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Fei Shen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Li
- College of Horticulture, Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
| | - Xiaodong Zheng
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongzhang Wang
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongbing Yuan
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinzhong Zhang
- College of Horticulture, Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Zhong H, Zhang F, Zhou X, Pan M, Xu J, Hao J, Han S, Mei C, Xian H, Wang M, Ji J, Shi W, Wu X. Genome-Wide Identification of Sequence Variations and SSR Marker Development in the Munake Grape Cultivar. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.664835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Munake grape cultivar produces uniquely flavored and high-quality fruits. Despite the numerous beneficial agronomic traits of Munake, there are few genetic resources available for this cultivar. To address this knowledge gap, the entire genome was sequenced using whole-genome sequencing approaches and compared with a Vitis vinifera L. reference genome. This study describes more than 3 million single nucleotide polymorphism (SNP), 300,000 insertion and deletion (InDel), 14,000 structural variation (SV), and 80,000 simple sequence repeat (SSR) markers (one SSR per 4.23 kb), as well as their primers. Among the SSRs, 44 SSR primer pairs were randomly selected and validated by polymerase chain reaction (PCR), allowing discrimination between the different Munake cultivar genotypes. The genetic data provided allow a deeper understanding of Munake cultivar genomic sequence and contribute to better knowledge of the genetic basis behind its key agronomic traits.
Collapse
|
15
|
Su K, Guo Y, Zhong W, Lin H, Liu Z, Li K, Li Y, Guo X. High-Density Genetic Linkage Map Construction and White Rot Resistance Quantitative Trait Loci Mapping for Genus Vitis Based on Restriction Site-Associated DNA Sequencing. PHYTOPATHOLOGY 2021; 111:659-670. [PMID: 33635092 DOI: 10.1094/phyto-12-19-0480-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grape white rot (Coniothyrium diplodiella) is a major fungal disease affecting grape yield and quality. Quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits of grapevine. This study was conducted to construct a high-density map and conduct QTL mapping for grapevine white rot resistance. A mapping population with 177 genotypes was developed from interspecific hybridization of a white rot-resistant cultivar (Vitis vinifera × V. labrusca 'Zhuosexiang') and white rot-susceptible cultivar (V. vinifera 'Victoria'). Single-nucleotide polymorphism (SNP) markers were developed by restriction site-associated DNA sequencing. The female, male, and integrated maps contained 2,501, 4,110, and 6,249 SNP markers with average genetic distances of adjacent markers of 1.25, 0.77, and 0.50 cM, respectively. QTL mapping was conducted based on white rot resistance identification of 177 individuals in July and August of 2017 and 2018. Notably, one stable QTL related to white rot resistance was detected and located on linkage group LG14. The phenotypic variance ranged from 12.93 to 13.43%. An SNP marker (chr14_3929380), which cosegregated with white rot resistance, was discovered and shows potential for use in marker-assisted selection to generate new grapevine cultivars with resistance to white rot.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| | - Weihao Zhong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, People's Republic of China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| |
Collapse
|
16
|
Burbidge CA, Ford CM, Melino VJ, Wong DCJ, Jia Y, Jenkins CLD, Soole KL, Castellarin SD, Darriet P, Rienth M, Bonghi C, Walker RP, Famiani F, Sweetman C. Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. FRONTIERS IN PLANT SCIENCE 2021; 12:643024. [PMID: 33747023 PMCID: PMC7970118 DOI: 10.3389/fpls.2021.643024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 05/29/2023]
Abstract
Tartaric acid (TA) is an obscure end point to the catabolism of ascorbic acid (Asc). Here, it is proposed as a "specialized primary metabolite", originating from carbohydrate metabolism but with restricted distribution within the plant kingdom and lack of known function in primary metabolic pathways. Grapes fall into the list of high TA-accumulators, with biosynthesis occurring in both leaf and berry. Very little is known of the TA biosynthetic pathway enzymes in any plant species, although recently some progress has been made in this space. New technologies in grapevine research such as the development of global co-expression network analysis tools and genome-wide association studies, should enable more rapid progress. There is also a lack of information regarding roles for this organic acid in plant metabolism. Therefore this review aims to briefly summarize current knowledge about the key intermediates and enzymes of TA biosynthesis in grapes and the regulation of its precursor, ascorbate, followed by speculative discussion around the potential roles of TA based on current knowledge of Asc metabolism, TA biosynthetic enzymes and other aspects of fruit metabolism.
Collapse
Affiliation(s)
| | | | | | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | | | - Kathleen Lydia Soole
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Darriet
- Université Bordeaux, Unité de recherche OEnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Oenology, Nyon, Switzerland
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
17
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
18
|
Bigard A, Romieu C, Sire Y, Torregrosa L. Vitis vinifera L. Diversity for Cations and Acidity Is Suitable for Breeding Fruits Coping With Climate Warming. FRONTIERS IN PLANT SCIENCE 2020; 11:01175. [PMID: 33072139 PMCID: PMC7536366 DOI: 10.3389/fpls.2020.01175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/20/2020] [Indexed: 05/31/2023]
Abstract
The selection of grapevine varieties is considered to be the smartest strategy for adapting the viticulture to climate warming. Present knowledge of the diversity of grape solutes known to be influenced by temperature is too limited to perform genetic improvement strategies. This study aimed to characterize the diversity for major cations (K+, Mg2+, Ca2+, NH4 +) of the Vitis vinifera fruit and their effect on acidity. Two developmental stages were targeted: the end of green growth, when organic acids reach a maximum, and the physiological ripe stage defined by the stopping of solutes and water import at the maximum volume of the berry. Twelve varieties and 21 microvines from the same segregating population were selected from preliminary phenotyping. The concentration of cations depended on the stage of fruit development, the genotype and the environment with GxE effects. In the ripe grape, K+ concentration varied from 28 to 57 mmol.L-1 with other cations being less concentrated. Combined with the variation in organic acids, cation concentration diversity resulted in titratable acidity of the ripe fruit ranging from 38 to 215 meq.L-1. These results open new perspectives for the selection of varieties to mitigate the adverse effects of climate warming on grape quality.
Collapse
Affiliation(s)
- Antoine Bigard
- AGAP, University of Montpellier, CIRAD, INRAe, Institut Agro, Montpellier, France
- UE INRAe de Pech Rouge, University of Montpellier, INRAe, Gruissan, France
| | - Charles Romieu
- AGAP, University of Montpellier, CIRAD, INRAe, Institut Agro, Montpellier, France
- GENOVIGNE, University of Montpellier, IFV, INRAe, Institut Agro, Montpellier, France
| | - Yannick Sire
- UE INRAe de Pech Rouge, University of Montpellier, INRAe, Gruissan, France
| | - Laurent Torregrosa
- AGAP, University of Montpellier, CIRAD, INRAe, Institut Agro, Montpellier, France
- UE INRAe de Pech Rouge, University of Montpellier, INRAe, Gruissan, France
- GENOVIGNE, University of Montpellier, IFV, INRAe, Institut Agro, Montpellier, France
| |
Collapse
|
19
|
Wang H, Yan A, Sun L, Zhang G, Wang X, Ren J, Xu H. Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC PLANT BIOLOGY 2020; 20:411. [PMID: 32883214 PMCID: PMC7470616 DOI: 10.1186/s12870-020-02630-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/30/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aroma, berry firmness and berry shape are three main quality traits in table grape production, and also the important target traits in grapevine breeding. However, the information about their genetic mechanisms is limited, which results in low accuracy and efficiency of quality breeding in grapevine. Mapping and isolation of quantitative trait locus (QTLs) based on the construction of genetic linkage map is a powerful approach to decipher the genetic determinants of complex quantitative traits. RESULTS In the present work, a final integrated map consisting of 3411 SLAF markers on 19 linkage groups (LGs) with an average distance of 0.98 cM between adjacent markers was generated using the specific length amplified fragment sequencing (SLAF-seq) technique. A total of 9 significant stable QTLs for Muscat flavor, berry firmness and berry shape were identified on two linkage groups among the hybrids analyzed over three consecutive years from 2016 to 2018. Notably, new stable QTLs for berry firmness and berry shape were found on LG 8 respectively for the first time. Based on biological function and expression profiles of candidate genes in the major QTL regions, 3 genes (VIT_08s0007g00440, VIT_08s0040g02740 and VIT_08s0040g02350) related to berry firmness and 3 genes (VIT_08s0032g01110, VIT_08s0032g01150 and VIT_08s0105g00200) linked to berry shape were highlighted. Overexpression of VIT_08s0032g01110 in transgenic Arabidopsis plants caused the change of pod shape. CONCLUSIONS A new high-density genetic map with total 3411 markers was constructed with SLAF-seq technique, and thus enabled the detection of narrow interval QTLs for relevant traits in grapevine. VIT_08s0007g00440, VIT_08s0040g02740 and VIT_08s0040g02350 were found to be related to berry firmness, while VIT_08s0032g01110, VIT_08s0032g01150 and VIT_08s0105g00200 were linked to berry shape.
Collapse
Affiliation(s)
- Huiling Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Ailing Yan
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P.R. China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Guojun Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Xiaoyue Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Jiancheng Ren
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Haiying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China.
| |
Collapse
|
20
|
Ma L, Sun L, Guo Y, Lin H, Liu Z, Li K, Guo X. Transcriptome analysis of table grapes (Vitis vinifera L.) identified a gene network module associated with berry firmness. PLoS One 2020; 15:e0237526. [PMID: 32804968 PMCID: PMC7430731 DOI: 10.1371/journal.pone.0237526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Berry firmness is one of the main selection criteria for table grape breeding. However, the underlying genetic determinants and mechanisms involved in gene expression during berry development are still poorly understood. In this study, eighteen libraries sampled from Vitis vinifera L. cv. ‘Red Globe’ and ‘Muscat Hamburg’ at three developmental stages (preveraison, veraison and maturation) were analyzed by RNA sequencing (RNA-Seq). The firmness of ‘Red Globe’ was significantly higher than that of ‘Muscat Hamburg’ at the three developmental stages. In total, a set of 4,559 differentially expressed genes (DEGs) was identified between ‘Red Globe’ and ‘Muscat Hamburg’ in the preveraison (2,259), veraison (2030) and maturation stages (2682), including 302 transcription factors (TFs). Weighted gene coexpression network analysis (WGCNA) showed that 23 TFs were predicted to be highly correlated with fruit firmness and propectin content. In addition, the differential expression of the PE, PL, PG, β-GAL, GATL, WAK, XTH and EXP genes might be the reason for the differences in firmness between ‘Red Globe’ and ‘Muscat Hamburg’. The results will provide new information for analysis of grape berry firmness and softening.
Collapse
Affiliation(s)
- Li Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- Liaoning Institute of Pomology, Yingkou, Liaoning, P.R. China
| | - Lingjun Sun
- Liaoning Institute of Pomology, Yingkou, Liaoning, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- * E-mail: (YG); (XG)
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- * E-mail: (YG); (XG)
| |
Collapse
|
21
|
Muñoz-Espinoza C, Di Genova A, Sánchez A, Correa J, Espinoza A, Meneses C, Maass A, Orellana A, Hinrichsen P. Identification of SNPs and InDels associated with berry size in table grapes integrating genetic and transcriptomic approaches. BMC PLANT BIOLOGY 2020; 20:365. [PMID: 32746778 PMCID: PMC7397606 DOI: 10.1186/s12870-020-02564-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/21/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Berry size is considered as one of the main selection criteria in table grapes breeding programs, due to the consumer preferences. However, berry size is a complex quantitive trait under polygenic control, and its genetic determination of berry weight is not yet fully understood. The aim of this work was to perform marker discovery using a transcriptomic approach, in order to identify and characterize SNP and InDel markers associated with berry size in table grapes. We used an integrative analysis based on RNA-Seq, SNP/InDel search and validation on table grape segregants and varieties with different genetic backgrounds. RESULTS Thirty SNPs and eight InDels were identified using a transcriptomic approach (RNA-Seq). These markers were selected from SNP/InDel found among segregants from a Ruby x Sultanina population with contrasting phenotypes for berry size. The set of 38 SNP and InDel markers was distributed in eight chromosomes. Genotype-phenotype association analyses were performed using a set of 13 RxS segregants and 41 table grapes varieties with different genetic backgrounds during three seasons. The results showed several degrees of association of these markers with berry size (10.2 to 30.7%) as other berry-related traits such as length and width. The co-localization of SNP and /or InDel markers and previously reported QTLs and candidate genes associated with berry size were analysed. CONCLUSIONS We identified a set of informative and transferable SNP and InDel markers associated with berry size. Our results suggest the suitability of SNPs and InDels as candidate markers for berry weight in seedless table grape breeding. The identification of genomic regions associated with berry weight in chromosomes 8, 15 and 17 was achieved with supporting evidence derived from a transcriptome experiment focused on SNP/InDel search, as well as from a QTL-linkage mapping approach. New regions possibly associated with berry weight in chromosomes 3, 6, 9 and 14 were identified.
Collapse
Affiliation(s)
- Claudia Muñoz-Espinoza
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Av. República 330, 3rd floor, Santiago, Chile
| | - Alex Di Genova
- Center for Mathematical Modeling (UMI2807-CNRS) and Department of Mathematical Engineering, Faculty of Mathematical and Physical Sciences, Universidad de Chile, Av. Blanco Encalada 2120, 7th floor, Santiago, Chile
| | - Alicia Sánchez
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - José Correa
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - Alonso Espinoza
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Av. República 330, 3rd floor, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Av. República 330, 3rd floor, Santiago, Chile
- Center for Genome Regulation, Av. Blanco Encalada 2085, 3rd floor, Santiago, Chile
| | - Alejandro Maass
- Center for Mathematical Modeling (UMI2807-CNRS) and Department of Mathematical Engineering, Faculty of Mathematical and Physical Sciences, Universidad de Chile, Av. Blanco Encalada 2120, 7th floor, Santiago, Chile
- Center for Genome Regulation, Av. Blanco Encalada 2085, 3rd floor, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Av. República 330, 3rd floor, Santiago, Chile
- Center for Genome Regulation, Av. Blanco Encalada 2085, 3rd floor, Santiago, Chile
| | - Patricio Hinrichsen
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| |
Collapse
|
22
|
Sun L, Li S, Jiang J, Tang X, Fan X, Zhang Y, Liu J, Liu C. New quantitative trait locus (QTLs) and candidate genes associated with the grape berry color trait identified based on a high-density genetic map. BMC PLANT BIOLOGY 2020; 20:302. [PMID: 32605636 PMCID: PMC7325011 DOI: 10.1186/s12870-020-02517-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/23/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Berry color is an important trait in grapes and is mainly determined by the anthocyanin content and composition. To further explore the coloring mechanism of grape berries, the F1 population of Vitis vinifera 'Red Globe' × 'Muscat Hamburg' was used to map the color locus, and transcriptome analysis was performed to assist in screening candidate genes. RESULTS A total of 438,407 high-quality single-nucleotide polymorphisms (SNPs) were obtained from whole-genome resequencing (WGS) of the population, and 27,454 SNPs were selected to construct a high-density genetic map. The selected SNPs were clustered into 19 linkage groups (LGs) spanning a genetic distance of 1442.638 cM. Berry color was evaluated by color grade, chromatic aberration, total anthocyanin content and anthocyanin composition. The Pearson correlation coefficients of these phenotypes in 2017 and 2018 were significant at the 0.01 level. The major color locus of MYBA1 and MYBA2 on LG2 was identified, explaining between 26 and 63.6% of all phenotypic variance. Furthermore, 9 additional QTLs with smaller effects were detected on Chr2, Chr4, Chr6, Chr11 and Chr17. Combined with the gene annotation and RNA-seq data, multiple new candidate genes were selected from the above QTLs. CONCLUSION These results indicated that grape berry color is a quantitative trait controlled by a major color locus and multiple minor loci. Though the major color locus was consistent with previous studies, several minor QTLs and candidate genes associated with grape berry color and anthocyanin accumulation were identified in this study. And the specific regulatory mechanism still needs to be further explored.
Collapse
Affiliation(s)
- Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shenchang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaoping Tang
- Pomology Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jihong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
23
|
Su K, Xing H, Guo Y, Zhao F, Liu Z, Li K, Li Y, Guo X. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. BMC Genomics 2020; 21:419. [PMID: 32571215 PMCID: PMC7310074 DOI: 10.1186/s12864-020-06836-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022] Open
Abstract
Background Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent ‘Cabernet sauvignon’ and paternal parent ‘Zuoyouhong’. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map. Results We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected. Conclusions High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Huiyang Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| | - Fangyuan Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| |
Collapse
|
24
|
Cai Y, Yan J, Tu W, Deng Z, Dong W, Gao H, Xu J, Zhang N, Yin L, Meng Q, Zhang Y. Expression of Sucrose Transporters from Vitis vinifera Confer High Yield and Enhances Drought Resistance in Arabidopsis. Int J Mol Sci 2020; 21:ijms21072624. [PMID: 32283825 PMCID: PMC7177370 DOI: 10.3390/ijms21072624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/10/2023] Open
Abstract
Sucrose is the predominant form of sugar transported from photosynthetic (source) to non-photosynthetic (sink) organs in higher plants relying on the transporting function of sucrose transporters (SUTs or SUCs). Many SUTs have been identified and characterized in both monocots and dicots. However, the function of sucrose transporters (SUTs or SUCs) from Vitis is not clear. As the world’s most planted grape species, Vitis vinifera owns three sucrose transport activity verified SUTs. In this study, we constructed three kinds of VvSUC (Vitis vinifera SUC)-overexpressing transgenic Arabidopsis. VvSUC-overexpressing transgenic Arabidopsis was cultured on sucrose-supplemented medium. VvSUC11- and VvSUC12-overexpressing lines had similar thrived growth phenotypes, whereas the size and number of leaves and roots from VvSUC27-overexpressing lines were reduced compared with that of WT. When plants were cultured in soil, all SUT transgenic seedlings produced more number of leaves and siliques, resulting in higher yield (38.6% for VvSUC12-transformants) than that of WT. Besides, VvSUC27-transformants and VvSUC11-transformants enhanced drought resistance in Arabidopsis, providing a promising target for crop improvement
Collapse
Affiliation(s)
- Yumeng Cai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Jing Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Wenrui Tu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Zhefang Deng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Wenjie Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Han Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Jinxu Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Nan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Qingyong Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China;
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yali Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
- Correspondence: ; Tel.: +86-010-62737465
| |
Collapse
|
25
|
Nvsvrot T, Xia W, Xiao Z, Zhan C, Liu M, Yang X, Zhang Y, Wang N. Combining QTL Mapping with Genome Resequencing Identifies an Indel in an R Gene that is Associated with Variation in Leaf Rust Disease Resistance in Poplar. PHYTOPATHOLOGY 2020; 110:900-906. [PMID: 31958037 DOI: 10.1094/phyto-10-19-0402-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poplar trees (Populus spp.) are important and are widely grown worldwide. However, the extensive occurrence of leaf rust disease caused by Melampsora spp. seriously inhibits their growth and reduces their biomass. In our previous study, a high-quality genetic map was constructed for the poplar F1 population I-69 × XYY by using next-generation sequencing-based genotyping-by-sequencing. Here, we collected phenotypic data on leaf rust disease resistance on three different dates for all 300 progenies of the F1 population. Combining a high-quality genetic map and phenotypic data, we were able to detect 11 major quantitative trait loci (QTLs) for leaf rust disease resistance. Among these 11 QTLs, two pairs were detected on at least two dates. In the corresponding genomic sequence, we found that resistance (R) gene clusters were located in these two QTL regions. By using genome resequencing, PCR confirmation and statistical analysis, a 611-bp deletion within an R gene in one QTL region was found to be associated with variation in leaf rust disease resistance. A PCR-based examination of this 611-bp deletion was performed. This 611-bp deletion was also found to affect mRNA splicing and form a new protein with the loss of some key protein domains. Based on this study, we were able to determine the genetic architecture of variation in poplar leaf rust disease resistance, and the 611-bp deletion in the R gene could be used as a diagnostic marker for future poplar molecular breeding.
Collapse
Affiliation(s)
- Tashbek Nvsvrot
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxiu Xia
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Logistics Service Group, Wuhan University, Wuhan, 430070, China
| | - Zheng'ang Xiao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang Zhan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meifeng Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqing Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
26
|
Duchêne É, Dumas V, Butterlin G, Jaegli N, Rustenholz C, Chauveau A, Bérard A, Le Paslier MC, Gaillard I, Merdinoglu D. Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:993-1008. [PMID: 31932953 DOI: 10.1007/s00122-019-03524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/23/2019] [Indexed: 05/08/2023]
Abstract
In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.
Collapse
Affiliation(s)
- Éric Duchêne
- SVQV, Univ. Strasbourg, INRAE, 68000, Colmar, France.
| | - Vincent Dumas
- SVQV, Univ. Strasbourg, INRAE, 68000, Colmar, France
| | | | | | | | | | | | | | - Isabelle Gaillard
- BPMP, Univ. Montpellier, CNRS, INRAE, SupAgro, 34000, Montpellier, France
| | | |
Collapse
|
27
|
Zhao Y, Zhao Y, Guo Y, Su K, Shi X, Liu D, Zhang J. High-density genetic linkage-map construction of hawthorn and QTL mapping for important fruit traits. PLoS One 2020; 15:e0229020. [PMID: 32045463 PMCID: PMC7012432 DOI: 10.1371/journal.pone.0229020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/28/2020] [Indexed: 11/30/2022] Open
Abstract
Few reports exist on QTL mapping of the important economic traits of hawthorn. We hybridized the cultivars ‘Shandongdamianqiu’ (female parent) and ‘Xinbinruanzi’ (male parent), and 130 F1 individuals and the two parents were used for RAD-seq, SNP development, and high-density linkage map construction. Three genetic maps were obtained, one for each of the parents and an integrated one. In these three maps, 17 linkage groups were constructed. The female and male parent maps contained 2657 and 4088 SNP markers, respectively, and had genetic distances of 2689.65 and 2558.41 cM, respectively, whereas the integrated map was 2470.02 cM, and contained 6,384 SNP markers. QTL mapping based on six agronomic traits, namely fruit transverse diameter, vertical diameter, single fruit weight, pericarp brittleness, pericarp puncture hardness, and average sarcocarp firmness were conducted, and 25 QTLs were detected in seven linkage groups. Explained phenotypic variation rate ranged from 17.7% to 35%. This genetic map contains the largest number of molecular markers ever obtained from hawthorn and will provide an important future reference for fine QTL mapping of economic traits and molecular assisted selection of hawthorn.
Collapse
Affiliation(s)
- Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R.C
| | - Yidi Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R.C
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R.C
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, P.R.C
- * E-mail: (YG); (JZ)
| | - Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R.C
| | - Xiaochang Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R.C
| | - Di Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R.C
| | - Jijun Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and technology, Qinhuangdao, P.R.C
- * E-mail: (YG); (JZ)
| |
Collapse
|
28
|
Guillaumie S, Decroocq S, Ollat N, Delrot S, Gomès E, Cookson SJ. Dissecting the control of shoot development in grapevine: genetics and genomics identify potential regulators. BMC PLANT BIOLOGY 2020; 20:43. [PMID: 31996141 PMCID: PMC6988314 DOI: 10.1186/s12870-020-2258-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/20/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Grapevine is a crop of major economic importance, yet little is known about the regulation of shoot development in grapevine or other perennial fruits crops. Here we combine genetic and genomic tools to identify candidate genes regulating shoot development in Vitis spp. RESULTS An F2 population from an interspecific cross between V. vinifera and V. riparia was phenotyped for shoot development traits, and three Quantitative Trait Loci (QTLs) were identified on linkage groups (LGs) 7, 14 and 18. Around 17% of the individuals exhibited a dwarfed phenotype. A transcriptomic study identified four candidate genes that were not expressed in dwarfed individuals and located within the confidence interval of the QTL on LG7. A deletion of 84,482 bp was identified in the genome of dwarfed plants, which included these four not expressed genes. One of these genes was VviCURLY LEAF (VviCLF), an orthologue of CLF, a regulator of shoot development in Arabidopsis thaliana. CONCLUSIONS The phenotype of the dwarfed grapevine plants was similar to that of clf mutants of A. thaliana and orthologues of the known targets of CLF in A. thaliana were differentially expressed in the dwarfed plants. This suggests that CLF, a major developmental regulator in A. thaliana, also controls shoot development in grapevine.
Collapse
Affiliation(s)
- Sabine Guillaumie
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France.
| | - Stéphane Decroocq
- UMR1332 BFP, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Nathalie Ollat
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Serge Delrot
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Eric Gomès
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| | - Sarah J Cookson
- UMR1287 EGFV, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Villenave d'Ornon, France
| |
Collapse
|
29
|
Construction of a High-Density Genetic Map and Mapping of Firmness in Grapes ( Vitis vinifera L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2020; 21:ijms21030797. [PMID: 31991832 PMCID: PMC7037167 DOI: 10.3390/ijms21030797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Berry firmness is one of the most important quality traits in table grapes. The underlying molecular and genetic mechanisms for berry firmness remain unclear. We constructed a high-density genetic map based on whole-genome resequencing to identify loci associated with berry firmness. The genetic map had 19 linkage groups, including 1662 bin markers (26,039 SNPs), covering 1463.38 cM, and the average inter-marker distance was 0.88 cM. An analysis of berry firmness in the F1 population and both parents for three consecutive years revealed continuous variability in F1, with a distribution close to the normal distribution. Based on the genetic map and phenotypic data, three potentially significant quantitative trait loci (QTLs) related to berry firmness were identified by composite interval mapping. The contribution rate of each QTL ranged from 21.5% to 28.6%. We identified four candidate genes associated with grape firmness, which are related to endoglucanase, abscisic acid (ABA), and transcription factors. A qRT-PCR analysis revealed that the expression of abscisic-aldehyde oxidase-like gene (VIT_18s0041g02410) and endoglucanase 3 gene (VIT_18s0089g00210) in Muscat Hamburg was higher than in Crimson Seedless at the veraison stage, which was consistent with that of parent berry firmness. These results confirmed that VIT_18s0041g02410 and VIT_18s0089g00210 are candidate genes associated with berry firmness.
Collapse
|
30
|
Kui L, Tang M, Duan S, Wang S, Dong X. Identification of Selective Sweeps in the Domesticated Table and Wine Grape ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:572. [PMID: 32477387 PMCID: PMC7240110 DOI: 10.3389/fpls.2020.00572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
Grapevine (Vitis vinifera) is one of the most important fruit species in the Classical Mediterranean world. It is thought to have been domesticated 6,000-8,000 years ago in the Near East. However, the domestication of its wild relative into wine grapes or table grapes remains largely unknown. In this study, we analyzed 30 table grapes, 30 wine grapes, 30 dual-purpose grape accessions, as well as 30 wild relatives (Vitis vinifera ssp. sylvestris). The phenotypic comparison showed striking differences in berry weight, acidity and the content of aroma. Based on a total of 7,522,958 single-nucleotide polymorphisms, we identified several significant selective sweep regions for table and wine grapes. Besides the well-known sex-determination locus on chromosome 2, the other four highest signals shared by table and wine grapes could not be linked to the known QTLs. The identification of these genomic regions under selection sweep may reveal agronomically important traits that have been selected during grape domestication. This information not only sheds light on the mechanisms of adaptions and diversification, but also guide the genetic improvement in breeding programs.
Collapse
Affiliation(s)
- Ling Kui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Min Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Nowbio Biotechnology Company, Kunming, China
| | | | - Xiao Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Nowbio Biotechnology Company, Kunming, China
- *Correspondence: Xiao Dong,
| |
Collapse
|
31
|
Tello J, Roux C, Chouiki H, Laucou V, Sarah G, Weber A, Santoni S, Flutre T, Pons T, This P, Péros JP, Doligez A. A novel high-density grapevine (Vitis vinifera L.) integrated linkage map using GBS in a half-diallel population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2237-2252. [PMID: 31049634 DOI: 10.1007/s00122-019-03351-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/20/2019] [Indexed: 05/21/2023]
Abstract
A half-diallel population involving five elite grapevine cultivars was generated and genotyped by GBS, and highly-informative segregation data was used to construct a high-density genetic map for Vitis vinifera L. Grapevine is one of the most relevant fruit crops in the world. Deeper genetic knowledge could assist modern grapevine breeding programs to develop new wine grape varieties able to face climate change effects. To assist in the rapid identification of markers for crop yield components, grape quality traits and adaptation potential, we generated a large Vitis vinifera L. population (N = 624) by crossing five red wine cultivars in a half-diallel scheme, which was subsequently sequenced by an efficient GBS procedure. A high number of fully informative genetic variants was detected using a novel mapping approach capable of reconstructing local haplotypes from adjacent biallelic SNPs, which were subsequently used to construct the densest consensus genetic map available for the cultivated grapevine to date. This 1378.3-cM map integrates 10 bi-parental consensus maps and orders 4437 markers in 3353 unique positions on 19 chromosomes. Markers are well distributed all along the grapevine reference genome, covering up to 98.8% of its genomic sequence. Additionally, a good agreement was observed between genetic and physical orders, adding confidence in the quality of this map. Collectively, our results pave the way for future genetic studies (such as fine QTL mapping) aimed to understand the complex relationship between genotypic and phenotypic variation in the cultivated grapevine. In addition, the method used (which efficiently delivers a high number of fully informative markers) could be of interest to other outbred organisms, notably perennial fruit crops.
Collapse
Affiliation(s)
- Javier Tello
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Catherine Roux
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Hajar Chouiki
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Valérie Laucou
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Gautier Sarah
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Audrey Weber
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Sylvain Santoni
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Timothée Flutre
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Thierry Pons
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Patrice This
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Jean-Pierre Péros
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Agnès Doligez
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France.
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
32
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
33
|
Zhang Z, Zou L, Ren C, Ren F, Wang Y, Fan P, Li S, Liang Z. VvSWEET10 Mediates Sugar Accumulation in Grapes. Genes (Basel) 2019; 10:genes10040255. [PMID: 30925768 PMCID: PMC6523336 DOI: 10.3390/genes10040255] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
Sugar accumulation is a critical event during grape berry ripening that determines the grape market values. Berry cells are highly dependent on sugar transporters to mediate cross-membrane transport. However, the role of sugar transporters in improving sugar accumulation in berries is not well established in grapes. Herein we report that a Sugars Will Eventually be Exported Transporter (SWEET), that is, VvSWEET10, was strongly expressed at the onset of ripening (véraison) and can improve grape sugar content. VvSWEET10 encodes a plasma membrane-localized transporter, and the heterologous expression of VvSWEET10 indicates that VvSWEET10 is a hexose-affinity transporter and has a broad spectrum of sugar transport functions. VvSWEET10 overexpression in grapevine calli and tomatoes increased the glucose, fructose, and total sugar levels significantly. The RNA sequencing results of grapevine transgenic calli showed that many sugar transporter genes and invertase genes were upregulated and suggest that VvSWEET10 may mediate sugar accumulation. These findings elucidated the role of VvSWEET10 in sugar accumulation and will be beneficial for the improvement of grape berry quality in the future.
Collapse
Affiliation(s)
- Zhan Zhang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Luming Zou
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chong Ren
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fengrui Ren
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
34
|
Zheng X, Tang Y, Ye J, Pan Z, Tan M, Xie Z, Chai L, Xu Q, Fraser PD, Deng X. SLAF-Based Construction of a High-Density Genetic Map and Its Application in QTL Mapping of Carotenoids Content in Citrus Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:994-1002. [PMID: 30589260 DOI: 10.1021/acs.jafc.8b05176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carotenoids are important antioxidant components in the human diet. To develop carotenoid-rich agricultural products by genetic intervention, understanding the genetic basis of carotenoids variation is essential. In this study, we constructed a high-density integrated genetic map with 3817 molecular markers using specific locus amplified fragment (SLAF) sequencing from a C. reticulata × P. trifoliata F1 pseudotestcross population. A total of 17 significant quantitative trait loci (QTLs) distributed on Chromosomes (Chr) 2, 3, 5, 6, and 9 were detected to determine the carotenoid variation in the population. In particular, three QTL colocalizations for multiple carotenoid constituents were observed on Chr 2, 3, and 9, one of which was located on Chr2:34,654,608-35430715 accounted for 20.1-25.4% of the variation of luteoxanthin, auroxanthin, lutein, violaxanthin, and total carotenoid content. Overall, this study provides a genetic foundation for marker-assisted selection (MAS) breeding of nutritionally enhanced citrus fruit.
Collapse
Affiliation(s)
- Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) , Huazhong Agricultural University , Wuhan , China
| | - Yuqing Tang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) , Huazhong Agricultural University , Wuhan , China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) , Huazhong Agricultural University , Wuhan , China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) , Huazhong Agricultural University , Wuhan , China
| | - Meilian Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) , Huazhong Agricultural University , Wuhan , China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) , Huazhong Agricultural University , Wuhan , China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) , Huazhong Agricultural University , Wuhan , China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) , Huazhong Agricultural University , Wuhan , China
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway , University of London , Egham, Surrey TW20 0EX , United Kingdom
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) , Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
35
|
Fu P, Tian Q, Lai G, Li R, Song S, Lu J. Cgr1, a ripe rot resistance QTL in Vitis amurensis 'Shuang Hong' grapevine. HORTICULTURE RESEARCH 2019; 6:67. [PMID: 31231525 PMCID: PMC6544659 DOI: 10.1038/s41438-019-0148-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 05/09/2023]
Abstract
Ripe rot is a serious grapevine disease in Vitis L. and Muscadinia (Planch.) Small. However, resistance to this disease has been reported in some oriental Vitis species. To identify resistance-related Quantitative Trait Loci (QTLs) from the Chinese grape species V. amurensis, an F1 population of V. vinifera 'Cabernet Sauvignon' × V. amurensis 'Shuang Hong' was used to map the ripe rot resistance loci expected in 'Shuang Hong' grape. A total of 7598 single nucleotide polymorphisms (SNPs) between the parents were identified in our previous study, and 934 SNPs were selected for genetic map construction. These SNPs are distributed across the 19 chromosomes covering a total of 1665.31 cM in length, with an average of 1.81 cM between markers. Ripe rot resistance phenotypes among the hybrids were evaluated in vitro using excised leaves for three consecutive years from 2016 to 2018; a continuous variation was found among the F1 hybrids, and the Pearson correlation coefficients of the phenotypes scored in all three years were significant at the 0.01 level. Notably, the first QTL reported for resistance to grape ripe rot disease, named Cgr1, was identified on chromosome 14 of 'Shuang Hong' grapevine. Cgr1 could explain up to 19.90% of the phenotypic variance. In addition, a SNP named 'np19345' was identified as a molecular marker closely linked to the peak of Cgr1 and has the potential to be developed as a marker for the Cgr1 resistance haplotype.
Collapse
Affiliation(s)
- Peining Fu
- Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Quanyou Tian
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Gongti Lai
- Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Rongfang Li
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
36
|
Zhu J, Guo Y, Su K, Liu Z, Ren Z, Li K, Guo X. Construction of a highly saturated Genetic Map for Vitis by Next-generation Restriction Site-associated DNA Sequencing. BMC PLANT BIOLOGY 2018; 18:347. [PMID: 30541441 PMCID: PMC6291968 DOI: 10.1186/s12870-018-1575-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/26/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND High-saturate molecular linkage maps are an important tool in studies on plant molecular biology and assisted breeding. Development of a large set of single nucleotide polymorphisms (SNPs) via next-generation sequencing (NGS)-based methods, restriction-site associated DNA sequencing (RAD-seq), and the generation of a highly saturated genetic map help improve fine mapping of quantitative trait loci (QTL). RESULTS We generated a highly saturated genetic map to identify significant traits in two elite grape cultivars and 176 F1 plants. In total, 1,426,967 high-quality restriction site-associated DNA tags were detected; 51,365, 23,683, and 70,061 markers were assessed in 19 linkage groups (LGs) for the maternal, paternal, and integrated maps, respectively. Our map was highly saturated in terms of marker density and average "Gap ≤ 5 cM" percentage. CONCLUSIONS In this study, RAD-seq of 176 F1 plants and their parents yielded 8,481,484 SNPs and 1,646,131 InDel markers, of which 65,229 and 4832, respectively, were used to construct a highly saturated genetic map for grapevine. This map is expected to facilitate genetic studies on grapevine, including an evaluation of grapevine and deciphering the genetic basis of economically and agronomically important traits. Our findings provide basic essential genetic data the grapevine genetic research community, which will lead to improvements in grapevine breeding.
Collapse
Affiliation(s)
- Junchi Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
- Ministry of Education Key Laboratory of Protected Horticulture, Shenyang, 110866 People’s Republic of China
| | - Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Zhihua Ren
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
37
|
Molecular characterization of a diverse Iranian table grapevine germplasm using REMAP markers: population structure, linkage disequilibrium and association mapping of berry yield and quality traits. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Xia W, Xiao Z, Cao P, Zhang Y, Du K, Wang N. Construction of a high-density genetic map and its application for leaf shape QTL mapping in poplar. PLANTA 2018; 248:1173-1185. [PMID: 30088086 DOI: 10.1007/s00425-018-2958-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 05/12/2023]
Abstract
High-quality and dense genetic maps were constructed, and leaf shape variation was dissected by QTL mapping in poplar. Species in the genus Populus, also known as poplars, are important woody species and considered model plants for perennial trees. High-density genetic maps are valuable genomic resources for population genetics. Here, we generated a high-quality and dense genetic map for an F1 poplar population using high-throughput NGS-based genotyping. A total of 92,097 high-quality SNP markers were developed by stringent filtering and identification. In total, 889 and 1650 SNPs formed the female and male genetic maps, respectively. To test the application of the genetic maps, QTL mapping of leaf shape was conducted for this F1 population. A total of nine parameters were scored for leaf shape variation in three different environments. Combining genetic maps and measurements of the nine leaf shape parameters, we mapped a total of 42 significant QTLs. The highest LOD score of all QTLs was 9.2, and that QTL explained the most (15.13%) trait variation. A total of nine QTLs could be detected in at least two environments, and they were located in two genomic regions. Within these two QTL regions, some candidate genes for regulating leaf shape were predicted through functional annotation. The successful mapping of leaf shape QTLs demonstrated the utility of our genetic maps. According to the performance of this study, we were able to provide high-quality and dense genetic maps and dissect the leaf shape variation in poplar.
Collapse
Affiliation(s)
- Wenxiu Xia
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng'ang Xiao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kebing Du
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
39
|
Wang H, Zhao S, Mao K, Dong Q, Liang B, Li C, Wei Z, Li M, Ma F. Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress. BMC PLANT BIOLOGY 2018; 18:136. [PMID: 29940853 PMCID: PMC6019725 DOI: 10.1186/s12870-018-1308-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/10/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Improvement of water-use efficiency (WUE) can effectively reduce production losses caused by drought stress. A better understanding of the genetic determination of WUE in crops under drought stress has great potential value for developing cultivars adapted to arid regions. To identify the genetic loci associated with WUE and reveal genes responsible for the trait in apple, we aim to map the quantitative trait loci (QTLs) for carbon isotope composition, the proxy for WUE, applying two contrasting irrigating regimes over the two-year experiment and search for the candidate genes encompassed in the mapped QTLs. RESULTS We constructed a high-density genetic linkage map with 10,172 markers of apple, using single nucleotide polymorphism (SNP) markers obtained through restriction site-associated DNA sequencing (RADseq) and a final segregating population of 350 seedlings from the cross of Honeycrisp and Qinguan. In total, 33 QTLs were identified for carbon isotope composition in apple under both well-watered and drought-stressed conditions. Three QTLs were stable over 2 years under drought stress on linkage groups LG8, LG15 and LG16, as validated by Kompetitive Allele-Specific PCR (KASP) assays. In those validated QTLs, 258 genes were screened according to their Gene Ontology functional annotations. Among them, 28 genes were identified, which exhibited significant responses to drought stress in 'Honeycrisp' and/or 'Qinguan'. These genes are involved in signaling, photosynthesis, response to stresses, carbohydrate metabolism, protein metabolism and modification, hormone metabolism and transport, transport, respiration, transcriptional regulation, and development regulation. They, especially those for photoprotection and relevant signal transduction, are potential candidate genes connected with WUE regulation in drought-stressed apple. CONCLUSIONS We detected three stable QTLs for carbon isotope composition in apple under drought stress over 2 years, and validated them by KASP assay. Twenty-eight candidate genes encompassed in these QTLs were identified. These stable genetic loci and series of genes provided here serve as a foundation for further studies on marker-assisted selection of high WUE and regulatory mechanism of WUE in apple exposed to drought conditions, respectively.
Collapse
Affiliation(s)
- Haibo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Bowen Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhiwei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
40
|
Ji F, Wei W, Liu Y, Wang G, Zhang Q, Xing Y, Zhang S, Liu Z, Cao Q, Qin L. Construction of a SNP-Based High-Density Genetic Map Using Genotyping by Sequencing (GBS) and QTL Analysis of Nut Traits in Chinese Chestnut ( Castanea mollissima Blume). FRONTIERS IN PLANT SCIENCE 2018; 9:816. [PMID: 29963069 PMCID: PMC6011034 DOI: 10.3389/fpls.2018.00816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 05/28/2018] [Indexed: 05/09/2023]
Abstract
Chinese chestnut is a wildly distributed nut species with importantly economic value. The nut size and ripening period are mainly desired breeding objectives in Chinese chestnut. However, high-density linkage maps and quantitative trait loci (QTL) analyses related to nut traits are less than satisfactory, which hinders progress in the breeding of Chinese chestnut. Here, a single nucleotide polymorphism (SNP)-based high-density linkage map was constructed through genotyping-by-sequencing (GBS) of an F1 cross between the two widely grown Chinese chestnut cultivars 'Yanshanzaofeng' and 'Guanting No. 10'. The genetic linkage map consists of 2,620 SNP markers with a total length of 1078.06 cM in 12 linkage groups (LGs) and an average marker distance of 0.41 cM. 17 QTLs were identified for five nut traits, specifically single-nut weight (SNW), nut width (NW), nut thickness (NT), nut height (NH), and ripening period (RP), based on phenotypic data from two successive years. Of the 17 QTLs, two major QTLs, i.e., qNT-I-1 and qRP-B-1 related to the NT and RP traits, respectively, were exploited. Moreover, the data revealed one pleiotropic QTL at 23.97 cM on LG I, which might simultaneously control SNW, NT, and NW. This study provides useful benchmark information concerning high-density genetic mapping and QTLs identification related to nut size and ripening period, and will accelerate genetic improvements for nuts in the marker-assisted selection (MAS) breeding of Chinese chestnut.
Collapse
Affiliation(s)
- Feiyang Ji
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Wei Wei
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Yang Liu
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Guangpeng Wang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Changli, China
| | - Qing Zhang
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Shuhang Zhang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Changli, China
| | - Zhihao Liu
- Novogene Bioinformatics Technology Co., Ltd., Tianjin, China
| | - Qingqin Cao
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Department of Biological Science and Engineering, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beijing, China
| | - Ling Qin
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| |
Collapse
|
41
|
Bigard A, Berhe DT, Maoddi E, Sire Y, Boursiquot JM, Ojeda H, Péros JP, Doligez A, Romieu C, Torregrosa L. Vitis vinifera L. Fruit Diversity to Breed Varieties Anticipating Climate Changes. FRONTIERS IN PLANT SCIENCE 2018; 9:455. [PMID: 29765379 PMCID: PMC5938353 DOI: 10.3389/fpls.2018.00455] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/22/2018] [Indexed: 05/04/2023]
Abstract
The wine industry is facing critical issues due to climate changes since production is established on very tight Genotype × Environment interaction bases. While, some cultivation practices may reduce adverse effects of abiotic stresses on the vines, e.g., the use of irrigation to mitigate drought, the deleterious impacts of warming on fruit development are difficult to manage. Elevated temperature alters grapevine fruit growth and composition, with a critical increase of the sugars/organic acids ratio. Select grapes with improved metabolite balances to offset high temperature effects is a valuable option to sustain viticulture. Unfortunately, the lack of knowledge about the genetic diversity for fruit traits impacted by temperature impairs the design of breeding programs. This study aimed to assess the variation in berry volume, main sugars and organic acids amounts in genetic resources. Fruit phenotyping focused on two critical stages of development: the end of green lag phase when organic acidity reaches its maximum, and the ripe stage when sugar unloading and water uptake stop. For that purpose, we studied a panel of 33 genotypes, including 12 grapevine varieties and 21 microvine offspring. To determine the date of sampling for each critical stage, fruit texture and growth were carefully monitored. Analyses at both stages revealed large phenotypic variation for malic and tartaric acids, as well as for sugars and berry size. At ripe stage, fruit fresh weight ranged from 1.04 to 5.25 g and sugar concentration from 751 to 1353 mmol.L-1. The content in organic acids varied both in quantity (from 80 to 361 meq.L-1) and in composition, with malic to tartaric acid ratio ranging from 0.13 to 3.62. At the inter-genotypic level, data showed no link between berry growth and osmoticum accumulation per fruit unit, suggesting that berry water uptake is not dependent only on fruit osmotic potential. Diversity among varieties for berry size, sugar accumulation and malic to tartaric acid ratio could be exploited through cross-breeding. This provides interesting prospects for improving grapevine to mitigate some adverse effects of climate warming on grapevine fruit volume and quality.
Collapse
Affiliation(s)
- Antoine Bigard
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
| | - Dargie T Berhe
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
- SNNPRS, Dilla University, Dilla, Ethiopia
| | - Eleonora Maoddi
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Yannick Sire
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
| | | | - Hernan Ojeda
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
- UE INRA de Vassal, Grapevine Biological Resource Centre, University of Montpellier, INRA, Montpellier, France
| | - Jean-Pierre Péros
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Agnès Doligez
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Charles Romieu
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Laurent Torregrosa
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
| |
Collapse
|
42
|
Smith HM, Smith BP, Morales NB, Moskwa S, Clingeleffer PR, Thomas MR. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLoS One 2018; 13:e0193121. [PMID: 29462210 PMCID: PMC5819801 DOI: 10.1371/journal.pone.0193121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/05/2018] [Indexed: 11/17/2022] Open
Abstract
Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.
Collapse
Affiliation(s)
- Harley M. Smith
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Brady P. Smith
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Norma B. Morales
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Sam Moskwa
- CSIRO Information Management & Technology, Clayton South, Victoria, Australia
| | | | - Mark R. Thomas
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| |
Collapse
|
43
|
Gascuel Q, Diretto G, Monforte AJ, Fortes AM, Granell A. Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape. FRONTIERS IN PLANT SCIENCE 2017; 8:652. [PMID: 28553296 PMCID: PMC5427129 DOI: 10.3389/fpls.2017.00652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices.
Collapse
Affiliation(s)
- Quentin Gascuel
- Laboratory of Plant-Microbe Interactions, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Toulouse UniversityCastanet Tolosan, France
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research CentreRome, Italy
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Ana M. Fortes
- Faculdade de Ciências de Lisboa, Instituto de Biossistemas e Ciências Integrativas (BioISI), Universidade de LisboaLisboa, Portugal
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| |
Collapse
|
44
|
Marrano A, Birolo G, Prazzoli ML, Lorenzi S, Valle G, Grando MS. SNP-Discovery by RAD-Sequencing in a Germplasm Collection of Wild and Cultivated Grapevines (V. vinifera L.). PLoS One 2017; 12:e0170655. [PMID: 28125640 PMCID: PMC5268455 DOI: 10.1371/journal.pone.0170655] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/09/2017] [Indexed: 01/27/2023] Open
Abstract
Whole-genome comparisons of Vitis vinifera subsp. sativa and V. vinifera subsp. sylvestris are expected to provide a better estimate of the valuable genetic diversity still present in grapevine, and help to reconstruct the evolutionary history of a major crop worldwide. To this aim, the increase of molecular marker density across the grapevine genome is fundamental. Here we describe the SNP discovery in a grapevine germplasm collection of 51 cultivars and 44 wild accessions through a novel protocol of restriction-site associated DNA (RAD) sequencing. By resequencing 1.1% of the grapevine genome at a high coverage, we recovered 34K BamHI unique restriction sites, of which 6.8% were absent in the ‘PN40024’ reference genome. Moreover, we identified 37,748 single nucleotide polymorphisms (SNPs), 93% of which belonged to the 19 assembled chromosomes with an average of 1.8K SNPs per chromosome. Nearly half of the SNPs fell in genic regions mostly assigned to the functional categories of metabolism and regulation, whereas some nonsynonymous variants were identified in genes related with the detection and response to environmental stimuli. SNP validation was carried-out, showing the ability of RAD-seq to accurately determine genotypes in a highly heterozygous species. To test the usefulness of our SNP panel, the main diversity statistics were evaluated, highlighting how the wild grapevine retained less genetic variability than the cultivated form. Furthermore, the analysis of Linkage Disequilibrium (LD) in the two subspecies separately revealed how the LD decays faster within the domesticated grapevine compared to its wild relative. Being the first application of RAD-seq in a diverse grapevine germplasm collection, our approach holds great promise for exploiting the genetic resources available in one of the most economically important fruit crops.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Genomics and Biology of Fruit Crops, Grapevine Genetics and Breeding, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trentino, Italy
- * E-mail:
| | - Giovanni Birolo
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | - Maria Lucia Prazzoli
- Department of Genomics and Biology of Fruit Crops, Grapevine Genetics and Breeding, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trentino, Italy
| | - Silvia Lorenzi
- Department of Genomics and Biology of Fruit Crops, Grapevine Genetics and Breeding, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trentino, Italy
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Maria Stella Grando
- Department of Genomics and Biology of Fruit Crops, Grapevine Genetics and Breeding, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trentino, Italy
| |
Collapse
|
45
|
du Plessis K, Young PR, Eyéghé-Bickong HA, Vivier MA. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries. FRONTIERS IN PLANT SCIENCE 2017; 8:1261. [PMID: 28775728 PMCID: PMC5518647 DOI: 10.3389/fpls.2017.01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/04/2017] [Indexed: 05/19/2023]
Abstract
An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening.
Collapse
Affiliation(s)
- Kari du Plessis
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Philip R. Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Hans A. Eyéghé-Bickong
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- Institute for Grape and Wine Sciences, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- *Correspondence: Melané A. Vivier
| |
Collapse
|
46
|
Wang Z, Cheng Y, Yin Y, Yu C, Yang Y, Shi Q, Hao Z, Li H. Genetic linkage map construction and QTL mapping of seedling height, basal diameter and crown width of Taxodium 'Zhongshanshan 302' × T. mucronatum. SPRINGERPLUS 2016; 5:936. [PMID: 27386380 PMCID: PMC4929119 DOI: 10.1186/s40064-016-2617-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
Abstract
Taxodium is a genus renowned for its fast growth, good form and tolerance of flooding, salt, alkalinity, disease and strong winds. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers based on an F1 population containing 148 individuals generated from a cross between T. ‘Zhongshanshan 302’ and T. mucronatum. The map has a total length of 976.5 cM, with a mean distance of 7.0 cM between markers, and contains 34 linkage groups with 179 markers (171 SRAPs and 8 SSRs). Quantitative trait loci (QTLs) affecting growth traits, such as seedling height, basal diameter and crown width, were detected based on the constructed linkage map. Four significant QTLs were identified, three of which, namely qtSH-1 for seedling height, qtBD-1 for basal diameter and qtCW-1 for crown width, were located at 2.659 cM of LG7 with logarithm odds values of 3.72, 3.49 and 3.93, respectively, and explained 24.9, 27.0 and 21.7 % of the total variation of the three grown traits, respectively. Another QTL for crown width (qtCW-2) was detected at 1.0 cM on LG13, with a logarithm of odds value of 3.15, and explained 31.7 % of the total variation of crown width. This is the first report on the construction of a genetic linkage map and QTL analysis in Taxodium, laying the groundwork for the construction of a high-density genetic map and QTL mapping in the genus Taxodium.
Collapse
Affiliation(s)
- Ziyang Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Yanli Cheng
- Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Ying Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Qin Shi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Ziyuan Hao
- Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Huogen Li
- Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| |
Collapse
|
47
|
Yang S, Fresnedo-Ramírez J, Sun Q, Manns DC, Sacks GL, Mansfield AK, Luby JJ, Londo JP, Reisch BI, Cadle-Davidson LE, Fennell AY. Next Generation Mapping of Enological Traits in an F2 Interspecific Grapevine Hybrid Family. PLoS One 2016; 11:e0149560. [PMID: 26974672 PMCID: PMC4790954 DOI: 10.1371/journal.pone.0149560] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/02/2016] [Indexed: 12/04/2022] Open
Abstract
In winegrapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids content (SS), malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine quality, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression, linkage map construction and quantitative trait locus (QTL) mapping has relied on F1 families with the use of simple sequence repeat (SSR) and other markers. This study presents the construction of a genetic map by single nucleotide polymorphisms identified through genotyping-by-sequencing (GBS) technology in an F2 mapping family of 424 progeny derived from a cross between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, ‘Seyval’. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage groups, covering 95% of the genome with an average distance between markers of 1.67 cM. Compared to an SSR map previously developed for this F2 family, these results represent an improved map covering a greater portion of the genome with higher marker density. The accuracy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA and SS related traits were detected. A joint MA and SS QTL spans a region with candidate genes involved in the malate metabolism pathway. We present an analytical pipeline for calling intercross GBS markers and a high-density linkage map for a large F2 family of the highly heterozygous Vitis genus. This study serves as a model for further genetic investigations of the molecular basis of additional unique characters of North American hybrid wine cultivars and to enhance the breeding process by marker-assisted selection. The GBS protocols for identifying intercross markers developed in this study can be adapted for other heterozygous species.
Collapse
Affiliation(s)
- Shanshan Yang
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| | - Jonathan Fresnedo-Ramírez
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Rhodes Hall, Ithaca, New York, United States of America
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Rhodes Hall, Ithaca, New York, United States of America
| | - David C. Manns
- Department of Food Science, Cornell University—NYSAES, Geneva, New York, United States of America
| | - Gavin L. Sacks
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Anna Katharine Mansfield
- Department of Food Science, Cornell University—NYSAES, Geneva, New York, United States of America
| | - James J. Luby
- Department of Horticultural Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jason P. Londo
- USDA-ARS Grape Genetics Research Unit, Geneva, New York, United States of America
| | - Bruce I. Reisch
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| | | | - Anne Y. Fennell
- Plant Science Department, South Dakota State University, Brookings, South Dakota, United States of America
- BioSNTR, Brookings, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
48
|
Beltramo C, Valentini N, Portis E, Torello Marinoni D, Boccacci P, Sandoval Prando MA, Botta R. Genetic mapping and QTL analysis in European hazelnut (Corylus avellana L.). MOLECULAR BREEDING 2016; 36:27. [PMID: 0 DOI: 10.1007/s11032-016-0450-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
49
|
Houel C, Chatbanyong R, Doligez A, Rienth M, Foria S, Luchaire N, Roux C, Adivèze A, Lopez G, Farnos M, Pellegrino A, This P, Romieu C, Torregrosa L. Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC PLANT BIOLOGY 2015; 15:205. [PMID: 26283631 PMCID: PMC4539925 DOI: 10.1186/s12870-015-0588-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/06/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND The increasing temperature associated with climate change impacts grapevine phenology and development with critical effects on grape yield and composition. Plant breeding has the potential to deliver new cultivars with stable yield and quality under warmer climate conditions, but this requires the identification of stable genetic determinants. This study tested the potentialities of the microvine to boost genetics in grapevine. A mapping population of 129 microvines derived from Picovine x Ugni Blanc flb, was genotyped with the Illumina® 18 K SNP (Single Nucleotide Polymorphism) chip. Forty-three vegetative and reproductive traits were phenotyped outdoors over four cropping cycles, and a subset of 22 traits over two cropping cycles in growth rooms with two contrasted temperatures, in order to map stable QTLs (Quantitative Trait Loci). RESULTS Ten stable QTLs for berry development and quality or leaf area were identified on the parental maps. A new major QTL explaining up to 44 % of total variance of berry weight was identified on chromosome 7 in Ugni Blanc flb, and co-localized with QTLs for seed number (up to 76 % total variance), major berry acids at green lag phase (up to 35 %), and other yield components (up to 25 %). In addition, a minor QTL for leaf area was found on chromosome 4 of the same parent. In contrast, only minor QTLs for berry acidity and leaf area could be found as moderately stable in Picovine. None of the transporters recently identified as mutated in low acidity apples or Cucurbits were included in the several hundreds of candidate genes underlying the above berry QTLs, which could be reduced to a few dozen candidate genes when a priori pertinent biological functions and organ specific expression were considered. CONCLUSIONS This study combining the use of microvine and a high throughput genotyping technology was innovative for grapevine genetics. It allowed the identification of 10 stable QTLs, including the first berry acidity QTLs reported so far in a Vitis vinifera intra-specific cross. Robustness of a set of QTLs was assessed with respect to temperature variation.
Collapse
Affiliation(s)
- Cléa Houel
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
- INRA, UMR AGAP, F-34060, Montpellier, France.
| | - Ratthaphon Chatbanyong
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
- INRA, UMR AGAP, F-34060, Montpellier, France.
| | | | - Markus Rienth
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
- INRA, UMR AGAP, F-34060, Montpellier, France.
- Fondation Jean Poupelain, 30 rue Gâte Chien, F-16100, Javrezac, France.
- Changins, Haute Ecole de Viticulture et Oenologie, 1260, Nyon, Switzerland.
| | - Serena Foria
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, I-33100, Udine, Italy.
| | - Nathalie Luchaire
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
- Montpellier SupAgro, UMR LEPSE, F- 34060, Montpellier, France.
| | | | | | - Gilbert Lopez
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
| | - Marc Farnos
- INRA, UMR AGAP, F-34060, Montpellier, France.
| | - Anne Pellegrino
- Montpellier SupAgro, UMR LEPSE, F- 34060, Montpellier, France.
| | | | | | | |
Collapse
|
50
|
Hyma KE, Barba P, Wang M, Londo JP, Acharya CB, Mitchell SE, Sun Q, Reisch B, Cadle-Davidson L. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine. PLoS One 2015; 10:e0134880. [PMID: 26244767 PMCID: PMC4526651 DOI: 10.1371/journal.pone.0134880] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023] Open
Abstract
Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to adapt portions of the pipeline to other family types, genotyping technologies or applications.
Collapse
Affiliation(s)
- Katie E. Hyma
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
- Genomic Diversity Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Paola Barba
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Jason P. Londo
- USDA-ARS Grape Genetics Research Unit, Geneva, New York, United States of America
| | - Charlotte B. Acharya
- Genomic Diversity Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Sharon E. Mitchell
- Genomic Diversity Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Bruce Reisch
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| | - Lance Cadle-Davidson
- USDA-ARS Grape Genetics Research Unit, Geneva, New York, United States of America
| |
Collapse
|