1
|
Zhang H, Liu Z, Zheng C, Ma H, Zeng M, Yang X. Root system architecture plasticity with beneficial rhizosphere microbes: Current findings and future perspectives. Microbiol Res 2025; 292:128028. [PMID: 39740636 DOI: 10.1016/j.micres.2024.128028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere microbiota, often referred to as the plant's "second genome" plays a critical role in modulating root system architecture (RSA). Despite this, existing methods to analyze root phenotypes in the context of root-microbe interactions remain limited, and the precise mechanisms affecting RSA by microbes are still not fully understood. This review comprehensively evaluates current root phenotyping techniques relevant to plant-microbe interactions, discusses their limitations, and explores future directions for integrating advanced technologies to elucidate microbial roles in altering RSA. Here, we summarized that microbial metabolite, primarily through auxin signaling pathways, drive root development changes. By harnessing advanced phenotyping tools, we aim to uncover more detailed mechanisms by which microbes modify RSA, providing valuable insights into strategies for optimizing nutrient uptake, bolstering food security, and enhancing resilience against climate-induced environmental stresses.
Collapse
Affiliation(s)
- Hualiang Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zilin Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | | | - Huimin Ma
- Faculty of Agronomy, Jilin Agricultural University, Chang Chun 130118, China
| | - Ming Zeng
- Université de Bordeaux, INRAE, BFP, UMR 1332, Villenave d'Ornon 33140, France
| | - Xuechen Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
2
|
Yuan Y, Dickinson N. Revealing the Complex Interplay of Biostimulant Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2188. [PMID: 39204624 PMCID: PMC11359528 DOI: 10.3390/plants13162188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Some biostimulant products provide proven benefits to plant production, potentially offering more environmentally friendly, sustainable, and natural inputs into production systems. However, the transference and predictability of known benefits between different growth environments, application protocols, and management systems are fraught with difficulty. In this study, we carried out carefully controlled glasshouse and in vitro assays with applications of humic acids, protein hydrolysates, and seaweed extract to compare the variability of biostimulant effects and dosage-dependent variations across diverse conditions, encompassing a sufficient range to comprehensively assess their full spectrum of impacts. The results demonstrated a clear trend of dosage-dependent effects with each biostimulant exhibiting a significant growth-promoting effect within a critical concentration range, but detrimental effects when the concentration fell outside this range. While substantial growth-promoting effects were observed under glasshouse conditions, biostimulant applications tended to be more sensitive and generally led to negative impacts in sterilised conditions. The combined use of biostimulants mostly resulted in detrimental and toxicological responses with only two combined treatments showing marginal synergistic effects. The findings demonstrated a complex interplay between biostimulants and the growth conditions of plants. Lack of knowledge of the indirect effects of different growth media may result in negative impacts of biostimulant applications and combinations of products outside narrow critical concentration ranges.
Collapse
Affiliation(s)
- Ye Yuan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand;
- High Country Salmon, Glenbrook, Twizel 7999, New Zealand
| | - Nicholas Dickinson
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand;
| |
Collapse
|
3
|
Fukada F. Mitigating the Trade-Off between Growth and Stress Resistance in Plants by Fungal Volatile Compounds. PLANT & CELL PHYSIOLOGY 2024; 65:175-178. [PMID: 38288618 DOI: 10.1093/pcp/pcae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Fumi Fukada
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
4
|
Jang S, Choi SK, Zhang H, Zhang S, Ryu CM, Kloepper JW. History of a model plant growth-promoting rhizobacterium, Bacillus velezensis GB03: from isolation to commercialization. FRONTIERS IN PLANT SCIENCE 2023; 14:1279896. [PMID: 37885658 PMCID: PMC10598611 DOI: 10.3389/fpls.2023.1279896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Bacillus velezensis strain GB03 is a Gram-positive rhizosphere bacterium known for its ability to promote plant growth and immunity. This review provides a comprehensive overview of the research on GB03 from its initial discovery in Australian wheat fields in 1971 to its current applications. Recognized as a model plant growth-promoting rhizobacterium (PGPR), GB03 has exhibited outstanding performance in enhancing the growth and protection of many crop plants including cucumber, pepper, wheat, barley, soybean, and cotton. Notably, GB03 has been reported to elicit plant immune response, referred to as induced systemic resistance (ISR), against above-ground pathogens and insect pests. Moreover, a pivotal finding in GB03 was the first-ever identification of its bacterial volatile compounds, which are known to boost plant growth and activate ISR. Research conducted over the past five decades has clearly demonstrated the potential of GB03 as an eco-friendly substitute for conventional pesticides and fertilizers. Validating its safety, the U.S. Environmental Protection Agency endorsed GB03 for commercial use as Kodiak® in 1998. Subsequently, other compounds, such as BioYield™, were released as a biological control agent against soil-borne pathogens and as a biofertilizer, utilizing a durable spore formulation. More recently, GB03 has been utilized as a keystone modulator for engineering the rhizosphere microbiome and for eliciting microbe-induced plant volatiles. These extensive studies on GB03 underscore its significant role in sustainable agriculture, positioning it as a safe and environmentally-friendly solution for crop protection.
Collapse
Affiliation(s)
- Seonghan Jang
- Infectious Disease Research Center, Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida-IFAS, Homestead, FL, United States
| | - Choong-Min Ryu
- Infectious Disease Research Center, Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Joseph W. Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
5
|
Rani A, Rana A, Dhaka RK, Singh AP, Chahar M, Singh S, Nain L, Singh KP, Minz D. Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope. Biotechnol Adv 2023; 63:108078. [PMID: 36513315 DOI: 10.1016/j.biotechadv.2022.108078] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Bacteria emit a large number of volatile organic compounds (VOCs) into the environment. VOCs are species-specific and their emission depends on environmental conditions, such as growth medium, pH, temperature, incubation time and interaction with other microorganisms. These VOCs can enhance plant growth, suppress pathogens and act as signaling molecules during plant-microorganism interactions. Some bacterial VOCs have been reported to show strong antimicrobial, nematicidal, pesticidal, plant defense, induced tolerance and plant-growth-promoting activities under controlled conditions. Commonly produced antifungal VOCs include dimethyl trisulfide, dimethyl disulfide, benzothiazole, nonane, decanone and 1-butanol. Species of Bacillus, Pseudomonas, Arthrobacter, Enterobacter and Burkholderia produce plant growth promoting VOCs, such as acetoin and 2,3-butenediol. These VOCs affect expression of genes involved in defense and development in plant species (i.e., Arabidopsis, tobacco, tomato, potato, millet and maize). VOCs are also implicated in altering pathogenesis-related genes, inducing systemic resistance, modulating plant metabolic pathways and acquiring nutrients. However, detailed mechanisms of action of VOCs need to be further explored. This review summarizes the bioactive VOCs produced by diverse bacterial species as an alternative to agrochemicals, their mechanism of action and challenges for employment of bacterial VOCs for sustainable agricultural practices. Future studies on technological improvements for bacterial VOCs application under greenhouse and open field conditions are warranted.
Collapse
Affiliation(s)
- Annu Rani
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India
| | - Anuj Rana
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India; Centre for Bio-Nanotechnology, CCS HAU, Hisar, India.
| | - Rahul Kumar Dhaka
- Centre for Bio-Nanotechnology, CCS HAU, Hisar, India; Department of Chemistry, College of Basic Science & Humanities, CCS HAU, Hisar, India
| | - Arvind Pratap Singh
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Madhvi Chahar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendargarh, India
| | - Lata Nain
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar, India; Vice Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, UP, India
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
6
|
Almeida OAC, de Araujo NO, Mulato ATN, Persinoti GF, Sforça ML, Calderan-Rodrigues MJ, Oliveira JVDC. Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1056082. [PMID: 36844905 PMCID: PMC9948655 DOI: 10.3389/fpls.2022.1056082] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting bacteria (PGPB) represent an eco-friendly alternative to reduce the use of chemical products while increasing the productivity of economically important crops. The emission of small gaseous signaling molecules from PGPB named volatile organic compounds (VOCs) has emerged as a promising biotechnological tool to promote biomass accumulation in model plants (especially Arabidopsis thaliana) and a few crops, such as tomato, lettuce, and cucumber. Rice (Oryza sativa) is the most essential food crop for more than half of the world's population. However, the use of VOCs to improve this crop performance has not yet been investigated. Here, we evaluated the composition and effects of bacterial VOCs on the growth and metabolism of rice. First, we selected bacterial isolates (IAT P4F9 and E.1b) that increased rice dry shoot biomass by up to 83% in co-cultivation assays performed with different durations of time (7 and 12 days). Metabolic profiles of the plants co-cultivated with these isolates and controls (without bacteria and non-promoter bacteria-1003-S-C1) were investigated via 1H nuclear magnetic resonance. The analysis identified metabolites (e.g., amino acids, sugars, and others) with differential abundance between treatments that might play a role in metabolic pathways, such as protein synthesis, signaling, photosynthesis, energy metabolism, and nitrogen assimilation, involved in rice growth promotion. Interestingly, VOCs from IAT P4F9 displayed a more consistent promotion activity and were also able to increase rice dry shoot biomass in vivo. Molecular identification by sequencing the 16S rRNA gene of the isolates IAT P4F9 and E.1b showed a higher identity with Serratia and Achromobacter species, respectively. Lastly, volatilomes of these and two other non-promoter bacteria (1003-S-C1 and Escherichia coli DH5α) were evaluated through headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Compounds belonging to different chemical classes, such as benzenoids, ketones, alcohols, sulfide, alkanes, and pyrazines, were identified. One of these VOCs, nonan-2-one, was validated in vitro as a bioactive compound capable of promoting rice growth. Although further analyses are necessary to properly elucidate the molecular mechanisms, our results suggest that these two bacterial isolates are potential candidates as sources for bioproducts, contributing to a more sustainable agriculture.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Aline Tieppo Nogueira Mulato
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Maurício Luís Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
7
|
Fadiji AE, Santoyo G, Yadav AN, Babalola OO. Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Front Microbiol 2022; 13:962427. [PMID: 35966701 PMCID: PMC9372271 DOI: 10.3389/fmicb.2022.962427] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Globally, agriculture is under a lot of pressure due to rising population and corresponding increases in food demand. However, several variables, including improper mechanization, limited arable land, and the presence of several biotic and abiotic pressures, continually impact agricultural productivity. Drought is a notable destructive abiotic stress and may be the most serious challenge confronting sustainable agriculture, resulting in a significant crop output deficiency. Numerous morphological and physiological changes occur in plants as a result of drought stress. Hence, there is a need to create mitigation techniques since these changes might permanently harm the plant. Current methods used to reduce the effects of drought stress include the use of film farming, super-absorbent hydrogels, nanoparticles, biochar, and drought-resistant plant cultivars. However, most of these activities are money and labor-intensive, which offer limited plant improvement. The use of plant-growth-promoting bacteria (PGPB) has proven to be a preferred method that offers several indirect and direct advantages in drought mitigation. PGPB are critical biological elements which have favorable impacts on plants’ biochemical and physiological features, leading to improved sugar production, relative water content, leaf number, ascorbic acid levels, and photosynthetic pigment quantities. This present review revisited the impacts of PGPB in ameliorating the detrimental effects of drought stress on plants, explored the mechanism of action employed, as well as the major challenges encountered in their application for plant growth and development.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Eternal University, Baru Sahib, India
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|
8
|
Koyro HW, Huchzermeyer B. From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. PLANTS 2022; 11:plants11131654. [PMID: 35807605 PMCID: PMC9269222 DOI: 10.3390/plants11131654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Crop resistance to environmental stress is a major issue. The globally increasing land degradation and desertification enhance the demand on management practices to balance both food and environmental objectives, including strategies that tighten nutrient cycles and maintain yields. Agriculture needs to provide, among other things, future additional ecosystem services, such as water quantity and quality, runoff control, soil fertility maintenance, carbon storage, climate regulation, and biodiversity. Numerous research projects have focused on the food–soil–climate nexus, and results were summarized in several reviews during the last decades. Based on this impressive piece of information, we have selected only a few aspects with the intention of studying plant–soil interactions and methods for optimization. In the short term, the use of soil amendments is currently attracting great interest to cover the current demand in agriculture. We will discuss the impact of biochar at water shortage, and plant growth promoting bacteria (PGPB) at improving nutrient supply to plants. In this review, our focus is on the interplay of both soil amendments on primary reactions of photosynthesis, plant growth conditions, and signaling during adaptation to environmental stress. Moreover, we aim at providing a general overview of how dehydration and salinity affect signaling in cells. With the use of the example of abscisic acid (ABA) and ethylene, we discuss the effects that can be observed when biochar and PGPB are used in the presence of stress. The stress response of plants is a multifactorial trait. Nevertheless, we will show that plants follow a general concept to adapt to unfavorable environmental conditions in the short and long term. However, plant species differ in the upper and lower regulatory limits of gene expression. Therefore, the presented data may help in the identification of traits for future breeding of stress-resistant crops. One target for breeding could be the removal and efficient recycling of damaged as well as needless compounds and structures. Furthermore, in this context, we will show that autophagy can be a useful goal of breeding measures, since the recycling of building blocks helps the cells to overcome a period of imbalanced substrate supply during stress adjustment.
Collapse
Affiliation(s)
- Hans-Werner Koyro
- Institute of Plantecology, Justus-Liebig-University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Correspondence:
| | - Bernhard Huchzermeyer
- Institute of Botany, Leibniz Universitaet Hannover, Herrenhaeuser Str. 2, 30416 Hannover, Germany; or
- AK Biotechnology, VDI-BV-Hannover, Hanomagstr. 12, 30449 Hannover, Germany
| |
Collapse
|
9
|
Sharifi R, Jeon JS, Ryu CM. Belowground plant-microbe communications via volatile compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:463-486. [PMID: 34727189 DOI: 10.1093/jxb/erab465] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Volatile compounds play important roles in rhizosphere biological communications and interactions. The emission of plant and microbial volatiles is a dynamic phenomenon that is affected by several endogenous and exogenous signals. Diffusion of volatiles can be limited by their adsorption, degradation, and dissolution under specific environmental conditions. Therefore, rhizosphere volatiles need to be investigated on a micro and spatiotemporal scale. Plant and microbial volatiles can expand and specialize the rhizobacterial niche not only by improving the root system architecture such that it serves as a nutrient-rich shelter, but also by inhibiting or promoting the growth, chemotaxis, survival, and robustness of neighboring organisms. Root volatiles play an important role in engineering the belowground microbiome by shaping the microbial community structure and recruiting beneficial microbes. Microbial volatiles are appropriate candidates for improving plant growth and health during environmental challenges and climate change. However, some technical and experimental challenges limit the non-destructive monitoring of volatile emissions in the rhizosphere in real-time. In this review, we attempt to clarify the volatile-mediated intra- and inter-kingdom communications in the rhizosphere, and propose improvements in experimental design for future research.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, South Korea
| |
Collapse
|
10
|
Song C, Jin K, Raaijmakers JM. Designing a home for beneficial plant microbiomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102025. [PMID: 33684884 DOI: 10.1016/j.pbi.2021.102025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The plant microbiome comprises a highly diverse community of saprotrophic, mutualistic, and pathogenic microbes that can affect plant growth and plant health. There is substantial interest to exploit beneficial members of plant microbiomes for new sustainable management strategies in crop production. However, poor survival and colonization of plant tissues by introduced microbial isolates as well as lack of expression of the plant growth-promoting or disease-suppressive traits at the right time and place are still major limitations for successful implementation of microbiomes in future agricultural practices and plant breeding programs. Similar to building a home for humans, we discuss different strategies of building a home for beneficial plant microbiomes, here referred to as the 'MicrobiHome'.
Collapse
Affiliation(s)
- Chunxu Song
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| | - Kemo Jin
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands; Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
11
|
Méndez-Gómez M, Barrera-Ortiz S, Castro-Mercado E, López-Bucio J, García-Pineda E. The nature of the interaction Azospirillum-Arabidopsis determine the molecular and morphological changes in root and plant growth promotion. PROTOPLASMA 2021; 258:179-189. [PMID: 33009649 DOI: 10.1007/s00709-020-01552-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/31/2020] [Indexed: 05/26/2023]
Abstract
Plant growth promoting rhizobacteria influence host functional and adaptive traits via complex mechanisms that are just started to be clarified. Azospirillum brasilense acts as a probiotic bacterium, but detailed information about its molecular mechanisms of phytostimulation is scarce. Three interaction systems were established to analyze the impact of A. brasilense Sp245 on the phenotype of Arabidopsis seedlings, and underlying molecular responses were assessed under the following growth conditions: (1) direct contact of roots with the bacterium, (2) chemical communication via diffusible compounds produced by the bacterium, (3) signaling via volatiles. A. brasilense Sp245 improved shoot and root biomass and lateral root production in the three interaction systems assayed. Cell division, quiescent center, and differentiation protein reporters pCYCB1;1::GUS, WOX5::GFP, and pAtEXP7::GUS had a variable expression in roots depending of the nature of interaction. pCYCB1;1::GUS and WOX5::GFP increased with volatile compounds, whereas pAtEXP7::GUS expression was enhanced towards the root tip in plants with direct contact with the bacterium. The auxin reporter DR5::GUS was highly expressed with diffusible and volatile compounds, and accordingly, auxin signaling mutants pin3, slr1, arf7arf19, and tir1afb2afb3 showed differential phytostimulant responses when compared with the wild type. By contrast, ethylene signaling was not determinant to mediate root changes in response to the different interactions, as observed using the ethylene-related mutants etr1, ein2, and ein3. Our data highlight the diverse effects by which A. brasilense Sp245 improves plant growth and root architectural traits and define a critical role of auxin but not ethylene in mediating root response to bacterization.
Collapse
Affiliation(s)
- Manuel Méndez-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', 58040, Morelia, Michoacan, Mexico
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', 58040, Morelia, Michoacan, Mexico
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', 58040, Morelia, Michoacan, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', 58040, Morelia, Michoacan, Mexico
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', 58040, Morelia, Michoacan, Mexico.
| |
Collapse
|
12
|
Baudson C, Delory BM, Spaepen S, du Jardin P, Delaplace P. Developmental plasticity of Brachypodium distachyon in response to P deficiency: Modulation by inoculation with phosphate-solubilizing bacteria. PLANT DIRECT 2021; 5:e00296. [PMID: 33532689 PMCID: PMC7833465 DOI: 10.1002/pld3.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/17/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mineral phosphorus (P) fertilizers must be used wisely in order to preserve rock phosphate, a limited and non-renewable resource. The use of bio-inoculants to improve soil nutrient availability and trigger an efficient plant response to nutrient deficiency is one potential strategy in the attempt to decrease P inputs in agriculture. METHOD An in vitro co-cultivation system was used to study the response of Brachypodium distachyon to contrasted P supplies (soluble and poorly soluble forms of P) and inoculation with P solubilizing bacteria. Brachypodium's responses to P conditions and inoculation with bacteria were studied in terms of developmental plasticity and P use efficiency. RESULTS Brachypodium showed plasticity in its biomass allocation pattern in response to variable P conditions, specifically by prioritizing root development over shoot productivity under poorly soluble P conditions. Despite the ability of the bacteria to solubilize P, shoot productivity was depressed in plants inoculated with bacteria, although the root system development was maintained. The negative impact of bacteria on biomass production in Brachypodium might be attributed to inadequate C supply to bacteria, an increased competition for P between both organisms under P-limiting conditions, or an accumulation of toxic bacterial metabolites in our cultivation system. Both P and inoculation treatments impacted root system morphology. The modulation of Brachypodium's developmental response to P supplies by P solubilizing bacteria did not lead to improved P use efficiency. CONCLUSION Our results support the hypothesis that plastic responses of Brachypodium cultivated under P-limited conditions are modulated by P solubilizing bacteria. The considered experimental context impacts plant-bacteria interactions. Choosing experimental conditions as close as possible to real ones is important in the selection of P solubilizing bacteria. Both persistent homology and allometric analyses proved to be useful tools that should be considered when studying the impact of bio-inoculants on plant development in response to varying nutritional context.
Collapse
Affiliation(s)
- Caroline Baudson
- Plant SciencesGembloux Agro‐Bio TechUniversity of LiègeLiègeBelgium
| | | | - Stijn Spaepen
- Leuven Institute for Beer ResearchUniversity of LeuvenLeuvenBelgium
| | | | - Pierre Delaplace
- Plant SciencesGembloux Agro‐Bio TechUniversity of LiègeLiègeBelgium
| |
Collapse
|
13
|
Portraying Fungal Mechanisms in Stress Tolerance: Perspective for Sustainable Agriculture. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Nawaz A, Shahbaz M, Asadullah, Imran A, Marghoob MU, Imtiaz M, Mubeen F. Potential of Salt Tolerant PGPR in Growth and Yield Augmentation of Wheat ( Triticum aestivum L.) Under Saline Conditions. Front Microbiol 2020; 11:2019. [PMID: 33117299 PMCID: PMC7562815 DOI: 10.3389/fmicb.2020.02019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Soil salinity has emerged as a major obstacle to meet world food demands. Halo-tolerant plant growth promoting rhizobacteria (PGPR) are potential bioinoculants to enhance crop productivity in saline agriculture. Current work was aimed at studying individual or synergetic impact of salt tolerant PGPR on wheat growth and yield under saline conditions. A pot experiment was conducted on two wheat genotypes (Aas-11; salt tolerant and Galaxy-13; salt sensitive) inoculated with Pseudomonas fluorescence, Bacillus pumilus, and Exiguobacterium aurantiacum alone and in consortium. The salt tolerant variety (Aas-11) exhibited maximum root fresh (665.2%) and dry biomass (865%), free proline (138.12%) and total soluble proteins (155.9%) contents, CAT (41.7%) activity and shoot potassium uptake (81.08%) upon inoculation with B. pumilus, while improved shoot dry weight (70.39%), water (23.49%) and osmotic (29.65%) potential, POD (60.51%) activity, enhanced root potassium (286.36%) and shoot calcium (400%) were manifested by E. aurantiacum. Highest shoot length (14.38%), fresh weight (72.73%), potassium (29.7%) and calcium (400%) acquisition as well as glycinebetaine (270.31%) content were found in plants treated with PGPR consortium. On the other hand, in the salt sensitive variety (Galaxy-13), P. fluorescens treated plants showed significantly improved leaf-water relations, glycinebetaine (10.78%) content, shoot potassium (23.07%), root calcium (50%) uptake, and yield parameters, respectively. Plant root length (71.72%) and potassium content (113.39%), root and shoot fresh and dry biomass, turgor potential (231.02%) and free proline (317.2%) content were maximum upon PGPR inoculation in consortium. Overall, Aas-11 (salt tolerant variety) showed significantly better performance than Galaxy-13 (salt sensitive variety). This study recommends B. pumilus and E. aurantiacum for the salt tolerant (Aas-11) and P. fluorescens for the salt sensitive (Galaxy-13) varieties, as potential bioinoculants to augment their growth and yield through modulation of morpho-physiological and biochemical attributes under saline conditions.
Collapse
Affiliation(s)
- Aniqa Nawaz
- Stress Physiology Lab, Department of Botany, University of Agriculture, Faisalabad, Pakistan.,Microbial Physiology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Shahbaz
- Stress Physiology Lab, Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Asadullah
- Phytohormone Lab, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Asma Imran
- Microbial Physiology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad U Marghoob
- Microbial Physiology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Imtiaz
- Microbial Physiology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Fathia Mubeen
- Microbial Physiology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| |
Collapse
|
15
|
Tzec-Interián JA, Desgarennes D, Carrión G, Monribot-Villanueva JL, Guerrero-Analco JA, Ferrera-Rodríguez O, Santos-Rodríguez DL, Liahut-Guin N, Caballero-Reyes GE, Ortiz-Castro R. Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLoS One 2020; 15:e0231215. [PMID: 32267901 PMCID: PMC7141680 DOI: 10.1371/journal.pone.0231215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
Plants interact with a great variety of microorganisms that inhabit the rhizosphere or the epiphytic and endophytic phyllosphere and that play critical roles in plant growth as well as the biocontrol of phytopathogens and insect pests. Avocado fruit damage caused by the thrips species Scirtothrips perseae leads to economic losses of 12–51% in many countries. In this study, a screening of bacteria associated with the rhizosphere or endophytic phyllosphere of avocado roots was performed to identify bacterial isolates with plant growth-promoting activity in vitro assays with Arabidopsis seedlings and to assess the biocontrol activity of the isolates against Scirtothrips perseae. The isolates with beneficial, pathogenic and/or neutral effects on Arabidopsis seedlings were identified. The plant growth-promoting bacteria were clustered in two different groups (G1 and G3B) based on their effects on root architecture and auxin responses, particularly bacteria of the Pseudomonas genus (MRf4-2, MRf4-4 and TRf2-7) and one Serratia sp. (TS3-6). Twenty strains were selected based on their plant growth promotion characteristics to evaluate their potential as thrips biocontrol agents. Analyzing the biocontrol activity of S. perseae, it was identified that Chryseobacterium sp. shows an entomopathogenic effect on avocado thrips survival. Through the metabolic profiling of compounds produced by bacteria with plant growth promotion activity, bioactive cyclodipeptides (CDPs) that could be responsible for the plant growth-promoting activity in Arabidopsis were identified in Pseudomonas, Serratia and Stenotrophomonas. This study unravels the diversity of bacteria from the avocado rhizosphere and highlights the potential of a unique isolate to achieve the biocontrol of S. perseae.
Collapse
Affiliation(s)
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología, Xalapa, Veracruz, México
| | - Gloria Carrión
- Red de Biodiversidad y Sistemática, Instituto de Ecología, Xalapa, Veracruz, México
- * E-mail: (ROC); (GC)
| | | | | | | | | | - Nut Liahut-Guin
- Red de Biodiversidad y Sistemática, Instituto de Ecología, Xalapa, Veracruz, México
| | | | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, Xalapa, Veracruz, México
- Catedratico-CONACyT en el Instituto de Ecología A. C., Xalapa, Veracruz, México
- * E-mail: (ROC); (GC)
| |
Collapse
|
16
|
Nosheen A, Bano A, Naz R, Yasmin H, Hussain I, Ullah F, Keyani R, Hassan MN, Tahir AT. Nutritional value of Sesamum indicum L. was improved by Azospirillum and Azotobacter under low input of NP fertilizers. BMC PLANT BIOLOGY 2019; 19:466. [PMID: 31684880 PMCID: PMC6829804 DOI: 10.1186/s12870-019-2077-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 10/16/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Sesame (Sesame indicum L.) is well-known as a versatile industrial crop having various usages and contains 50-55% oil, 20% protein, 14-20% carbohydrate and 2-3% fiber. Several environmental factors are known to adversely affect yield and productivity of sesame. Our overall aim was to improve the growth, yield and quality of sesame cv. TS-3 using plant growth promoting rhizobacteria (PGPR) and saving the nitrogen and phosphate fertilizers (NP) by 50%. Field experiment (randomized complete block design) was conducted during the months of July to October of two consecutive years 2012-2013. Azospirillum (AL) and Azotobacter (AV) were applied as seed inoculation alone as well as along with half of the recommended dose of nitrogen (N) and phosphate (P) fertilizers (urea and diammonium phosphate) at the rate of 25 kg/ha and 30 kg/ha respectively. RESULTS Here we report that A. lipoferum along with half dose of NP fertilizers (ALCF) were highly effective in increasing the agronomic and yield traits of sesame as compared to the control. A. vinelandii plus NP fertilizers (AVCF) exhibited higher seed oil content. Minimum acid value, optimum specific gravity and modified fatty acid composition were observed in ALCF treatment. Increase in oleic acid by ALCF is directly linked with improved oil quality for health benefits as oleic acid is the fatty acid which creates a balance between saturation and unsaturation of oil and for the hypotensive (blood pressure reducing) effects. CONCLUSION It is inferred that ALCF treatment improved plant growth, seed yield and oil quality of sesame pertaining to good quality edible oil production.
Collapse
Affiliation(s)
- Asia Nosheen
- Department of Biosciences, COMSATS University, Park Road, Chak Shahzad, Islamabad, 44000 Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University, Park Road, Chak Shahzad, Islamabad, 44000 Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, Park Road, Chak Shahzad, Islamabad, 44000 Pakistan
| | - Ishtiaq Hussain
- Department of Agriculture Research, Biotechnological Research and Development Section, Tissue Culture Lab, Gilgit-Baltistan, Pakistan
| | - Faizan Ullah
- Department of Botany, University of Science and Technology, Bannu, KPK Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University, Park Road, Chak Shahzad, Islamabad, 44000 Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS University, Park Road, Chak Shahzad, Islamabad, 44000 Pakistan
| | - Ayesha T. Tahir
- Department of Biosciences, COMSATS University, Park Road, Chak Shahzad, Islamabad, 44000 Pakistan
| |
Collapse
|
17
|
Mayer E, Dörr de Quadros P, Fulthorpe R. Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants. Appl Environ Microbiol 2019; 85:e00383-19. [PMID: 31350315 PMCID: PMC6752021 DOI: 10.1128/aem.00383-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022] Open
Abstract
A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavusIMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.
Collapse
Affiliation(s)
- Evan Mayer
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | |
Collapse
|
18
|
Ameztoy K, Baslam M, Sánchez-López ÁM, Muñoz FJ, Bahaji A, Almagro G, García-Gómez P, Baroja-Fernández E, De Diego N, Humplík JF, Ugena L, Spíchal L, Doležal K, Kaneko K, Mitsui T, Cejudo FJ, Pozueta-Romero J. Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. PLANT, CELL & ENVIRONMENT 2019; 42:2627-2644. [PMID: 31222760 DOI: 10.1111/pce.13601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 05/22/2023]
Abstract
Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.
Collapse
Affiliation(s)
- Kinia Ameztoy
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Pablo García-Gómez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Jan F Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Kentaro Kaneko
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| |
Collapse
|
19
|
Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications. ADVANCES IN ENDOPHYTIC FUNGAL RESEARCH 2019. [DOI: 10.1007/978-3-030-03589-1_6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Wang W, Wu Z, He Y, Huang Y, Li X, Ye BC. Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:520-529. [PMID: 30149350 DOI: 10.1016/j.ecoenv.2018.08.070] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/10/2018] [Accepted: 08/19/2018] [Indexed: 05/25/2023]
Abstract
To maintain the growth and development of pepper in saline condition, candidates of plant growth promoting rhizobacteria (PGPR) were isolated, and detected to plant growth promoting (PGP) potential under salt stress was investigated. Thirteen bacterial strains with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, WU-1-13, were isolated from saline soil in Xinjiang, China. The isolates were shown to belong to the genera Bacillus by partial sequencing analysis of their respective 16 S rRNA genes. Seven isolates had the ability to solubilize phosphate. Moreover, the amount of solubilized phosphate was significantly high (P < 0.05), which ranged from 157.33 μg/mL to 922.41 μg/mL. All tested bacterial strains were shown to produce a large amount of ACC deaminase and NH3. Furthermore, nine strains were detected for siderophore production. On the aspect of extracellular enzyme, all bacterial isolates produced lipase, amylase and cellulose, whereas only a minority produced chitinase (15.4%) and 10 isolates produced β-glucanase or protease. In growth room experiments, the results showed that the strain WU-5 exhibited better growth promotion of pepper seedlings in terms of fresh weight (75.60%), dry weight (86.68%), shoot length (12.12%) and root length (146.52%) over the control under saline stress followed by WU-13. Furthermore, seedlings accumulated high amounts of proline induced by the different PGPR inoculation treatments to alleviate the negative effects of salt stress. Further growth-promoting assays under different salt stress were set up to confirm that the fresh and dry weight, shoot and root length of pepper plants inoculated by three strains all were significantly higher than non-inoculated control under different saline stress. In summary, the results demonstrated that WU-9, which induced high levels of proline production and antioxidant enzyme activities, and three strains (WU-5, WU-9 and WU-13) can be of great value in maintaining the growth and development of seedlings on saline lands.
Collapse
Affiliation(s)
- Wenfei Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Zhansheng Wu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Yanhui He
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Yuanyuan Huang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xuan Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Bang-Ce Ye
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| |
Collapse
|
21
|
Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2018; 9:1473. [PMID: 30405652 PMCID: PMC6206271 DOI: 10.3389/fpls.2018.01473] [Citation(s) in RCA: 658] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/20/2018] [Indexed: 05/02/2023]
Abstract
Microbes of the phytomicrobiome are associated with every plant tissue and, in combination with the plant form the holobiont. Plants regulate the composition and activity of their associated bacterial community carefully. These microbes provide a wide range of services and benefits to the plant; in return, the plant provides the microbial community with reduced carbon and other metabolites. Soils are generally a moist environment, rich in reduced carbon which supports extensive soil microbial communities. The rhizomicrobiome is of great importance to agriculture owing to the rich diversity of root exudates and plant cell debris that attract diverse and unique patterns of microbial colonization. Microbes of the rhizomicrobiome play key roles in nutrient acquisition and assimilation, improved soil texture, secreting, and modulating extracellular molecules such as hormones, secondary metabolites, antibiotics, and various signal compounds, all leading to enhancement of plant growth. The microbes and compounds they secrete constitute valuable biostimulants and play pivotal roles in modulating plant stress responses. Research has demonstrated that inoculating plants with plant-growth promoting rhizobacteria (PGPR) or treating plants with microbe-to-plant signal compounds can be an effective strategy to stimulate crop growth. Furthermore, these strategies can improve crop tolerance for the abiotic stresses (e.g., drought, heat, and salinity) likely to become more frequent as climate change conditions continue to develop. This discovery has resulted in multifunctional PGPR-based formulations for commercial agriculture, to minimize the use of synthetic fertilizers and agrochemicals. This review is an update about the role of PGPR in agriculture, from their collection to commercialization as low-cost commercial agricultural inputs. First, we introduce the concept and role of the phytomicrobiome and the agricultural context underlying food security in the 21st century. Next, mechanisms of plant growth promotion by PGPR are discussed, including signal exchange between plant roots and PGPR and how these relationships modulate plant abiotic stress responses via induced systemic resistance. On the application side, strategies are discussed to improve rhizosphere colonization by PGPR inoculants. The final sections of the paper describe the applications of PGPR in 21st century agriculture and the roadmap to commercialization of a PGPR-based technology.
Collapse
Affiliation(s)
- Rachel Backer
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - J. Stefan Rokem
- School of Medicine, Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - John Lamont
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Dana Praslickova
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Emily Ricci
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29953-29970. [PMID: 29313197 DOI: 10.1007/s11356-017-1152-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/26/2017] [Indexed: 05/23/2023]
Abstract
The rhizosphere hosts a considerable microbial community. Among that community, bacteria called plant growth-promoting rhizobacteria (PGPR) can promote plant growth and defense against diseases using diverse distinct plant-beneficial functions. Crop inoculation with PGPR could allow to reduce the use of pesticides and fertilizers in agrosystems. However, microbial crop protection and growth stimulation would be more efficient if cooperation between rhizosphere bacterial populations was taken into account when developing biocontrol agents and biostimulants. Rhizospheric bacteria live in multi-species biofilms formed all along the root surface or sometimes inside the plants (i.e., endophyte). PGPR cooperate with their host plants and also with other microbial populations inside biofilms. These interactions are mediated by a large diversity of microbial metabolites and physical signals that trigger cell-cell communication and appropriate responses. A better understanding of bacterial behavior and microbial cooperation in the rhizosphere could allow for a more successful use of bacteria in sustainable agriculture. This review presents an ecological view of microbial cooperation in agrosystems and lays the emphasis on the main microbial metabolites involved in microbial cooperation, plant health protection, and plant growth stimulation. Eco-friendly inoculant consortia that will foster microbe-microbe and microbe-plant cooperation can be developed to promote crop growth and restore biodiversity and functions lost in agrosystems.
Collapse
Affiliation(s)
- Yoann Besset-Manzoni
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne cedex, France
- Biovitis, 15 400, Saint Etienne-de-Chomeil, France
| | - Laura Rieusset
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne cedex, France
| | - Pierre Joly
- Biovitis, 15 400, Saint Etienne-de-Chomeil, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne cedex, France
| | - Claire Prigent-Combaret
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne cedex, France.
| |
Collapse
|
23
|
Scholthof KBG, Irigoyen S, Catalan P, Mandadi KK. Brachypodium: A Monocot Grass Model Genus for Plant Biology. THE PLANT CELL 2018; 30:1673-1694. [PMID: 29997238 PMCID: PMC6139682 DOI: 10.1105/tpc.18.00083] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 07/11/2018] [Indexed: 05/21/2023]
Abstract
The genus Brachypodium represents a model system that is advancing our knowledge of the biology of grasses, including small grains, in the postgenomics era. The most widely used species, Brachypodium distachyon, is a C3 plant that is distributed worldwide. B. distachyon has a small genome, short life cycle, and small stature and is amenable to genetic transformation. Due to the intensive and thoughtful development of this grass as a model organism, it is well-suited for laboratory and field experimentation. The intent of this review is to introduce this model system genus and describe some key outcomes of nearly a decade of research since the first draft genome sequence of the flagship species, B. distachyon, was completed. We discuss characteristics and features of B. distachyon and its congeners that make the genus a valuable model system for studies in ecology, evolution, genetics, and genomics in the grasses, review current hot topics in Brachypodium research, and highlight the potential for future analysis using this system in the coming years.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| | - Pilar Catalan
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071 Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza E-50059, Spain
- Institute of Biology, Tomsk State University, Tomsk 634050, Russia
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| |
Collapse
|
24
|
Tyagi S, Mulla SI, Lee KJ, Chae JC, Shukla P. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 2018; 38:1277-1296. [PMID: 29862848 DOI: 10.1080/07388551.2018.1472551] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented.
Collapse
Affiliation(s)
- Swati Tyagi
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Sikandar I Mulla
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Kui-Jae Lee
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Jong-Chan Chae
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , India
| |
Collapse
|
25
|
Delory BM, Li M, Topp CN, Lobet G. archiDART v3.0: A new data analysis pipeline allowing the topological analysis of plant root systems. F1000Res 2018; 7:22. [PMID: 29636899 PMCID: PMC5871803 DOI: 10.12688/f1000research.13541.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2017] [Indexed: 01/03/2023] Open
Abstract
Quantifying plant morphology is a very challenging task that requires methods able to capture the geometry and topology of plant organs at various spatial scales. Recently, the use of persistent homology as a mathematical framework to quantify plant morphology has been successfully demonstrated for leaves, shoots, and root systems. In this paper, we present a new data analysis pipeline implemented in the R package archiDART to analyse root system architectures using persistent homology. In addition, we also show that both geometric and topological descriptors are necessary to accurately compare root systems and assess their natural complexity.
Collapse
Affiliation(s)
- Benjamin M Delory
- Ecosystem Functioning and Services, Institute of Ecology, Leuphana University, Lüneburg, 21335, Germany
| | - Mao Li
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | - Guillaume Lobet
- Agrosphäre (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52428, Germany.,Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
26
|
Martínez-Medina A, Van Wees SCM, Pieterse CMJ. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. PLANT, CELL & ENVIRONMENT 2017; 40:2691-2705. [PMID: 28667819 DOI: 10.1111/pce.13016] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 05/05/2023]
Abstract
Root colonization by Trichoderma fungi can trigger induced systemic resistance (ISR). In Arabidopsis, Trichoderma-ISR relies on the transcription factor MYB72, which plays a dual role in the onset of ISR and the activation of Fe uptake responses. Volatile compounds (VCs) from rhizobacteria are important elicitors of MYB72 in Arabidopsis roots. Here, we investigated the mode of action of VCs from Trichoderma fungi in the onset of ISR and Fe uptake responses. VCs from Trichoderma asperellum and Trichoderma harzianum were applied in an in vitro split-plate system with Arabidopsis or tomato seedlings. Locally, Trichoderma-VCs triggered MYB72 expression and molecular, physiological and morphological Fe uptake mechanisms in Arabidopsis roots. In leaves, Trichoderma-VCs primed jasmonic acid-dependent defences, leading to an enhanced resistance against Botrytis cinerea. By using Arabidopsis micrografts of VCs-exposed rootstocks and non-exposed scions, we demonstrated that perception of Trichoderma-VCs by the roots leads to a systemic signal that primes shoots for enhanced defences. Trichoderma-VCs also elicited Fe deficiency responses and shoot immunity in tomato, suggesting that this phenomenon is expressed in different plant species. Our results indicate that Trichoderma-VCs trigger locally a readjustment of Fe homeostasis in roots, which links to systemic elicitation of ISR by priming of jasmonic acid-dependent defences.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Institute of Ecology, Friedrich Schiller University, Leipzig, 04103, Germany
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
27
|
Massalha H, Korenblum E, Tholl D, Aharoni A. Small molecules below-ground: the role of specialized metabolites in the rhizosphere. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:788-807. [PMID: 28333395 DOI: 10.1111/tpj.13543] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 05/18/2023]
Abstract
Soil communities are diverse taxonomically and functionally. This ecosystem experiences highly complex networks of interactions, but may also present functionally independent entities. Plant roots, a metabolically active hotspot in the soil, take an essential part in below-ground interactions. While plants are known to release an extremely high portion of the fixated carbon to the soil, less information is known about the composition and role of C-containing compounds in the rhizosphere, in particular those involved in chemical communication. Specialized metabolites (or secondary metabolites) produced by plants and their associated microbes have a critical role in various biological activities that modulate the behavior of neighboring organisms. Thus, elucidating the chemical composition and function of specialized metabolites in the rhizosphere is a key element in understanding interactions in this below-ground environment. Here, we review key classes of specialized metabolites that occur as mostly non-volatile compounds in root exudates or are emitted as volatile organic compounds (VOCs). The role of these metabolites in below-ground interactions and response to nutrient deficiency, as well as their tissue and cell type-specific biosynthesis and release are discussed in detail.
Collapse
Affiliation(s)
- Hassan Massalha
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Elisa Korenblum
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|