1
|
Ikram M, Raja NI, Mohamed AH, Mashwani ZUR, Omar AA, Gharibi H, Zubarev RA. Differential impact of plant-based selenium nanoparticles on physio-biochemical properties, antioxidant defense system and protein regulation in fruits of huanglongbing-infected 'Kinnow' mandarin plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1476497. [PMID: 39574450 PMCID: PMC11578725 DOI: 10.3389/fpls.2024.1476497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Huanglongbing disease (HLB) is the most severe citrus disease destroying Citrus reticulata L. 'Kinnow', the most commonly grown mandarin in Pakistan. It is caused by Candidatus Liberibacter bacterial species and it spreads through the sucking Asian citrus psyllid insect. The current study was designed to investigate the potential impact of plant extract mediated selenium nanoparticles (SeNPs) on antioxidant defense system, fruit quality and protein regulation in the fruits of HLB-infected 'Kinnow' mandarin plants. Garlic cloves extract was used as reducing and capping agent for the synthesis of SeNPs. Various concentrations of SeNPs (25, 50, 75, and 100 mg L-1) were exogeneously applied to HLB-positive citrus plants. SeNPs at the concentration of 75 mg L-1 affected positively fruit physio-biochemical parameters, e.g., peel thickness, peel weight, fruit weight, fruit diameter, total soluble solids, juice volume, ascorbic acid content and reduced total acidity. Furthermore, SeNPs also enhanced the amounts of total protein and total sugar as well as elevated antioxidant enzymes, e.g., superoxide dismutase, peroxidases, and catalases. Non-enzymatic antioxidant content, e.g., total phenolic and total flavonoids, was also elevated. Proteomics analysis revealed that exposure to SeNPs at the concentration of 75 mg·L-1 significantly altered in HLB infected mandarin fruting plants the expression of proteins associated with transcription, protection, cell wall biogenesis, cell wall organization, reproduction, stamen formation, embryo development, inflorescence development, as well as translation and response to oxidative stress. Our results revealed that foliar application of SeNPs influences the protein contents positively, therefore ameliorating fruit physio-biochemical quality by boosting antioxidant defense systems of HLB-infected 'Kinnow' mandarin plants.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Azza H. Mohamed
- Department of Agricultural Chemistry, College of Agriculture, Mansoura University, Mansoura, Egypt
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Ahmad A. Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Hassan Gharibi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, Moscow, Russia
| |
Collapse
|
2
|
Lombardi R, Ramsey JS, Mahoney JE, MacCoss MJ, Heck ML, Slupsky CM. Longitudinal Transcriptomic, Proteomic, and Metabolomic Response of Citrus sinensis to Diaphorina citri Inoculation of Candidatus Liberibacter asiaticus. J Proteome Res 2024; 23:2857-2869. [PMID: 38373055 PMCID: PMC11301674 DOI: 10.1021/acs.jproteome.3c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Huanglongbing (HLB) is a fatal citrus disease that is currently threatening citrus varieties worldwide. One putative causative agent, Candidatus Liberibacter asiaticus (CLas), is vectored by Diaphorina citri, known as the Asian citrus psyllid (ACP). Understanding the details of CLas infection in HLB disease has been hindered by its Candidatus nature and the inability to confidently detect it in diseased trees during the asymptomatic stage. To identify early changes in citrus metabolism in response to inoculation of CLas using its natural psyllid vector, leaves from Madam Vinous sweet orange (Citrus sinensis (L.) Osbeck) trees were exposed to CLas-positive ACP or CLas-negative ACP and longitudinally analyzed using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry; data available in Dryad: 10.25338/B83H1Z), and metabolomics (proton nuclear magnetic resonance). At 4 weeks postexposure (wpe) to psyllids, the initial HLB plant response was primarily to the ACP and, to a lesser extent, the presence or absence of CLas. Additionally, analysis of 4, 8, 12, and 16 wpe identified 17 genes and one protein as consistently differentially expressed between leaves exposed to CLas-positive ACP versus CLas-negative ACP. This study informs identification of early detection molecular targets and contributes to a broader understanding of vector-transmitted plant pathogen interactions.
Collapse
Affiliation(s)
- Rachel
L. Lombardi
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - John S. Ramsey
- Agricultural
Research Service, Emerging Pests and Pathogens
Research Unit, Ithaca, New York 14853, United
States
| | - Jaclyn E. Mahoney
- Boyce
Thompson Institute for Plant Research, Ithaca, New York 14853, United States
| | - Michael J. MacCoss
- Department
of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michelle L. Heck
- Agricultural
Research Service, Emerging Pests and Pathogens
Research Unit, Ithaca, New York 14853, United
States
- Plant
Pathology and Plant Microbe Biology Section, School of Integrative
Plant Science, Cornell University, Ithaca, New York 14853, United States
| | - Carolyn M. Slupsky
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
- Department
of Nutrition, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
3
|
Robledo J, Welker S, Shtein I, Bernardini C, Vincent C, Levy A. Phloem and Xylem Responses Are Both Implicated in Huanglongbing Tolerance of Sugar Belle. PHYTOPATHOLOGY 2024; 114:441-453. [PMID: 37551959 DOI: 10.1094/phyto-05-23-0148-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Although huanglongbing (HLB) is a devastating citrus disease, improved tolerant cultivars, such as Sugar Belle (SB) mandarin, have been identified. To understand the responses that HLB-affected SB undergoes, we compared 14CO2 fixation, carbohydrate export, phloem callose accumulation, relative expression of plant defense activators, and anatomical changes between healthy and infected SB trees versus susceptible Pineapple (PA) sweet orange. Eight- to ten-week-old leaves of infected SB showed a 2.5-fold increase in 14CO2 fixation and a 13% decrease in 14C-carbohydrate export, whereas HLB-affected PA presented a decrease of 33 and 50%, respectively. The mean distance of a callose deposit to its closest neighbor was 36% smaller in infected SB versus healthy, whereas in HLB-affected PA, it was 33% higher. Expression of papain-like cysteine proteases (PLCPs) was upregulated in SB but downregulated in PA. Infected SB showed minor alterations in the number of xylem vessels, a 16% larger xylem vessel lumen area, and a 14% increase in the proportional area of the xylem. In contrast, PA showed a 2.4-fold increase in the xylem vessel number and a 2% increase in the proportional xylem area. Three complementary mechanisms of tolerance in SB are hypothesized: (i) increased carbohydrate availability induced by greater CO2 fixation, mild effect in carbohydrate export, and local accumulation of callose in the phloem; (ii) activation of defense response via upregulation of PLCPs, and (iii) increased investment in the xylem structure. Thus, phloem and xylem modifications seem to be involved in SB tolerance.
Collapse
Affiliation(s)
- Jacobo Robledo
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Stacy Welker
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Ilana Shtein
- Eastern Region Research and Development Center, Ariel, Israel
| | - Chiara Bernardini
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Christopher Vincent
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
4
|
Nehela Y, Killiny N. Gamma-Aminobutyric Acid Accumulation Contributes to Citrus sinensis Response against ' Candidatus Liberibacter Asiaticus' via Modulation of Multiple Metabolic Pathways and Redox Status. PLANTS (BASEL, SWITZERLAND) 2023; 12:3753. [PMID: 37960112 PMCID: PMC10650511 DOI: 10.3390/plants12213753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Huanglongbing (HLB; also known as citrus greening) is the most destructive bacterial disease of citrus worldwide with no known sustainable cure yet. Herein, we used non-targeted metabolomics and transcriptomics to prove that γ-aminobutyric acid (GABA) accumulation might influence the homeostasis of several metabolic pathways, as well as antioxidant defense machinery, and their metabolism-related genes. Overall, 41 metabolites were detected in 'Valencia' sweet orange (Citrus sinensis) leaf extract including 19 proteinogenic amino acids (PAA), 10 organic acids, 5 fatty acids, and 9 other amines (four phenolic amines and three non-PAA). Exogenous GABA application increased most PAA in healthy (except L-threonine, L-glutamine, L-glutamic acid, and L-methionine) and 'Candidatus L. asiaticus'-infected citrus plants (with no exception). Moreover, GABA accumulation significantly induced L-tryptophan, L-phenylalanine, and α-linolenic acid, the main precursors of auxins, salicylic acid (SA), and jasmonic acid (JA), respectively. Furthermore, GABA supplementation upregulated most, if not all, of amino acids, phenolic amines, phytohormone metabolism-related, and GABA shunt-associated genes in both healthy and 'Ca. L. asiaticus'-infected leaves. Moreover, although 'Ca. L. asiaticus' induced the accumulation of H2O2 and O2•- and generated strong oxidative stress in infected leaves, GABA possibly stimulates the activation of a multilayered antioxidative system to neutralize the deleterious effect of reactive oxygen species (ROS) and maintain redox status within infected leaves. This complex system comprises two major components: (i) the enzymatic antioxidant defense machinery (six POXs, four SODs, and CAT) that serves as the front line in antioxidant defenses, and (ii) the non-enzymatic antioxidant defense machinery (phenolic acids and phenolic amines) that works as a second defense line against 'Ca. L. asiaticus'-induced ROS in citrus infected leaves. Collectively, our findings suggest that GABA might be a promising alternative eco-friendly strategy that helps citrus trees battle HLB particularly, and other diseases in general.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
5
|
Yousefi S, Marchese A, Salami SA, Benny J, Giovino A, Perrone A, Caruso T, Gholami M, Sarikhani H, Buti M, Martinelli F. Identifying conserved genes involved in crop tolerance to cold stress. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:861-873. [PMID: 35785800 DOI: 10.1071/fp21290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is a limiting factor for crop productivity in tropical and subtropical climates. Cold stress response in plants involves perceiving and relaying the signal through a transcriptional cascade composed of different transduction components, resulting in altered gene activity. We performed a meta-analysis of four previously published datasets of cold-tolerant and cold-sensitive crops to better understand the gene regulatory networks and identify key genes involved in cold stress tolerance conserved across phylogenetically distant species. Re-analysing the raw data with the same bioinformatics pipeline, we identified common cold tolerance-related genes. We found 236 and 242 commonly regulated genes in sensitive and tolerant genotypes, respectively. Gene enrichment analysis showed that protein modifications, hormone metabolism, cell wall, and secondary metabolism are the most conserved pathways involved in cold tolerance. Upregulation of the abiotic stress (heat and drought/salt) related genes [heat shock N -terminal domain-containing protein, 15.7kDa class I-related small heat shock protein-like, DNAJ heat shock N -terminal domain-containing protein, and HYP1 (HYPOTHETICAL PROTEIN 1)] in sensitive genotypes and downregulation of the abiotic stress (heat and drought/salt) related genes (zinc ion binding and pollen Ole e 1 allergen and extensin family protein) in tolerant genotypes was observed across the species. Almost all development-related genes were upregulated in tolerant and downregulated in sensitive genotypes. Moreover, protein-protein network analysis identified highly interacting proteins linked to cold tolerance. Mapping of abiotic stress-related genes on analysed species genomes provided information that could be essential to developing molecular markers for breeding and building up genetic improvement strategies using CRISPR/Cas9 technologies.
Collapse
Affiliation(s)
- Sanaz Yousefi
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze - Ed. 4, 90128 Palermo, Italy
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Jubina Benny
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze - Ed. 4, 90128 Palermo, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), 90011 Bagheria, Italy
| | - Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze - Ed. 4, 90128 Palermo, Italy
| | - Mansour Gholami
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Hassan Sarikhani
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Firenze, Italy; and Istituto di Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
6
|
Chen Q, Min A, Luo S, He J, Wu R, Lin X, Wang Y, He W, Zhang Y, Lin Y, Li M, Zhang Y, Luo Y, Tang H, Wang X. Metabolomic Analysis Revealed Distinct Physiological Responses of Leaves and Roots to Huanglongbing in a Citrus Rootstock. Int J Mol Sci 2022; 23:ijms23169242. [PMID: 36012507 PMCID: PMC9409271 DOI: 10.3390/ijms23169242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) is an obstinate disease in the citrus industry. No resistant citrus resources were currently available, but various degrees of Huanglongbing tolerance exist in different germplasm. Citrus junos is emerging as one of the popular rootstocks widely used in the citrus production. However, its responses to the HLB causal agent, Candidatus Liberibacter asiaticus (CLas), were still elusive. In the current study, we investigated the physiological, anatomical, and metabolomic responses of a C. junos rootstock ‘Pujiang Xiangcheng’ by a controlled CLas grafting inoculation. The summer flushes and roots were impaired at 15 weeks after inoculation, although typical leaf symptomatic phenotypes were not obvious. The chlorophyll pigments and the photosynthetic rate were compromised. The phloem sieve tubes were still working, despite the fact that the callose was deposited and the starch granules were accumulated in the phloem cells. A wide, targeted metabolomic analysis was carried out to explore the systematic alterations of the metabolites at this early stage of infection in the leaves and root system. The differentially accumulated metabolites in the CLas-affected leaves and roots compared with the mock-inoculation control tissues revealed that distinct responses were obvious. Besides the commonly observed alteration of sugar and amino acids, the active break down of starch in the roots was discovered. The different types of fatty acids were altered in the two tissues, with a more pronounced content decline in the roots. Our results not only provided fundamental knowledge about the response of the C. junos rootstock to the HLB disease, but also presented new insights into the host–pathogen interaction in the early stages.
Collapse
Affiliation(s)
- Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ailing Min
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinwei He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Runqin Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ximeng Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Wen He
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yunting Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yuanxiu Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| | - Xiaorong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| |
Collapse
|
7
|
Yang B, Li X, Wu L, Chen Y, Zhong F, Liu Y, Zhao F, Ye D, Weng H. Citrus Huanglongbing detection and semi-quantification of the carbohydrate concentration based on micro-FTIR spectroscopy. Anal Bioanal Chem 2022; 414:6881-6897. [PMID: 35947156 DOI: 10.1007/s00216-022-04254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Abstract
Citrus Huanglongbing (HLB) is nowadays one of the most fatal citrus diseases worldwide. Once the citrus tree is infected by the HLB disease, the biochemistry of the phloem region in midribs would change. In order to investigate the carbohydrate changes in phloem region of citrus midrib, the semi-quantification models were established to predict the carbohydrate concentration in it based on Fourier transform infrared microscopy (micro-FTIR) spectroscopy coupled with chemometrics. Healthy, asymptomatic-HLB, symptomatic-HLB, and nutrient-deficient citrus midribs were collected in this study. The results showed that the intensity of the characteristic peak varied with the carbohydrate (starch and soluble sugar) concentration in citrus midrib, especially at the fingerprint regions of 1175-900 cm-1, 1500-1175 cm-1, and 1800-1500 cm-1. Furthermore, semi-quantitative prediction models of starch and soluble sugar were established using the full micro-FTIR spectra and selected characteristic wavebands. The least squares support vector machine regression (LS-SVR) model combined with the random frog (RF) algorithm achieved the best prediction result with the determination coefficient of prediction ([Formula: see text]) of 0.85, the root mean square error of prediction (RMSEP) of 0.36%, residual predictive deviation (RPD) of 2.54, and [Formula: see text] of 0.87, RMSEP of 0.37%, RPD of 2.76, for starch and soluble sugar concentration prediction, respectively. In addition, multi-layer perceptron (MLP) classification models were established to identify HLB disease, achieving the overall classification accuracy of 94% and 87%, based on the full-range spectra and the optimal wavenumbers selected by the random frog (RF) algorithm, respectively. The results demonstrated that micro-FTIR spectroscopy can be a valuable tool for the prediction of carbohydrate concentration in citrus midribs and the detection of HLB disease, which would provide useful guidelines to detect citrus HLB disease.
Collapse
Affiliation(s)
- Biyun Yang
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China
| | - Xiaobin Li
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China
| | - Lianwei Wu
- Fujian Institute of Testing Technology, Fuzhou, 350003, China
| | - Yayong Chen
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunshi Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fei Zhao
- Fujian Institute of Testing Technology, Fuzhou, 350003, China
| | - Dapeng Ye
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China.
| | - Haiyong Weng
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Key Laboratory of Agricultural Information Sensing Technology, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Xiong H, Ma H, Zhao H, Yang L, Hu B, Wang J, Shi X, Zhang Y, Rennenberg H. Integrated physiological, proteome and gene expression analyses provide new insights into nitrogen remobilization in citrus trees. TREE PHYSIOLOGY 2022; 42:1628-1645. [PMID: 35225347 DOI: 10.1093/treephys/tpac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) remobilization is an important physiological process that supports the growth and development of trees. However, in evergreen broad-leaved tree species, such as citrus, the mechanisms of N remobilization are not completely understood. Therefore, we quantified the potential of N remobilization from senescing leaves of spring shoots to mature leaves of autumn shoots of citrus trees under different soil N availabilities and further explored the underlying N metabolism characteristics by physiological, proteome and gene expression analyses. Citrus exposed to low N had an approximately 38% N remobilization efficiency (NRE), whereas citrus exposed to high N had an NRE efficiency of only 4.8%. Integrated physiological, proteomic and gene expression analyses showed that photosynthesis, N and carbohydrate metabolism interact with N remobilization. The improvement of N metabolism and photosynthesis, the accumulation of proline and arginine, and delayed degradation of storage protein in senescing leaves are the result of sufficient N supply and low N remobilization. Proteome further showed that energy generation proteins and glutamate synthase were hub proteins affecting N remobilization. In addition, N requirement of mature leaves is likely met by soil supply at high N nutrition, thereby resulting in low N remobilization. These results provide insight into N remobilization mechanisms of citrus that are of significance for N fertilizer management in orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Haotian Ma
- Health Science Center, Xi' an Jiaotong University, Xi'an 710061, China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Linsheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
9
|
Xie J, Ding Y, Gao T, He S, Zhao K, Yang X, Zhang J, Yang Z. Transcriptomic and proteomic analyses of Cucurbita ficifolia Bouché (Cucurbitaceae) response to Fusarium oxysporum f.sp. cucumerium. BMC Genomics 2022; 23:436. [PMID: 35698057 PMCID: PMC9190096 DOI: 10.1186/s12864-022-08674-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Fusarium oxysporum f. sp. cucumerinum (FOC) is the causal agent of cucumber Fusarium wilt, which can cause extensive damages and productivity losses. Cucurbita ficifolia Bouché (Cucurbitaceae) is usually used as rootstock for cucumber because of its excellent resistance to Fusarium wilt. Our previous study found that C.ficifolia has high FOC resistance, the underlying mechanism of which is unclear. Results Transcriptome and proteome profiling was performed on the basis of RNA-Seq and isobaric tag for relative and absolute quantitation technology to explore the molecular mechanisms of the response of Cucurbita ficifolia Bouché to Fusarium oxysporum f. sp. cucumerium infection. Comparative analyses revealed that 1850 genes and 356 protein species were differentially regulated at 2d and 4d after FOC inoculation. However, correlation analysis revealed that only 11 and 39 genes were differentially regulated at both the transcriptome and proteome levels after FOC inoculation at 2d and 4d, respectively. After FOC inoculation, plant hormones signal transduction, transcription factors were stimulated, whereas wax biosynthesis and photosynthesis were suppressed. Increased synthesis of oxidative-redox proteins is involved in resistance to FOC. Conclusions This study is the first to reveal the response of C. ficifolia leaf to FOC infection at the transcriptome and proteome levels, and to show that FOC infection activates plant hormone signaling and transcription factors while suppressing wax biosynthesis and photosynthesis. The accumulation of oxidative-redox proteins also plays an important role in the resistance of C. ficifolia to FOC. Results provide new information regarding the processes of C. ficifolia leaf resistance to FOC and will contribute to the breeding of cucumber rootstock with FOC resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08674-7.
Collapse
Affiliation(s)
- Junjun Xie
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yumei Ding
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.,Biotechnology and Germplasm Resources Institute Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, People's Republic of China
| | - Ting Gao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Shuilian He
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Kai Zhao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xuehu Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jie Zhang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhengan Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Srivastava AK, Das AK, Jagannadham PTK, Bora P, Ansari FA, Bhate R. Bioprospecting Microbiome for Soil and Plant Health Management Amidst Huanglongbing Threat in Citrus: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:858842. [PMID: 35557712 PMCID: PMC9088001 DOI: 10.3389/fpls.2022.858842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms have dynamic and complex interactions with their hosts. Diverse microbial communities residing near, on, and within the plants, called phytobiome, are an essential part of plant health and productivity. Exploiting citrus-associated microbiomes represents a scientific approach toward sustained and environment-friendly module of citrus production, though periodically exposed to several threats, with Huanglongbing (HLB) predominantly being most influential. Exploring the composition and function of the citrus microbiome, and possible microbial redesigning under HLB disease pressure has sparked renewed interest in recent times. A concise account of various achievements in understanding the citrus-associated microbiome, in various niche environments viz., rhizosphere, phyllosphere, endosphere, and core microbiota alongside their functional attributes has been thoroughly reviewed and presented. Efforts were also made to analyze the actual role of the citrus microbiome in soil fertility and resilience, interaction with and suppression of invading pathogens along with native microbial communities and their consequences thereupon. Despite the desired potential of the citrus microbiota to counter different pathogenic diseases, utilizing the citrus microbiome for beneficial applications at the field level is yet to be translated as a commercial product. We anticipate that advancement in multiomics technologies, high-throughput sequencing and culturing, genome editing tools, artificial intelligence, and microbial consortia will provide some exciting avenues for citrus microbiome research and microbial manipulation to improve the health and productivity of citrus plants.
Collapse
Affiliation(s)
- Anoop Kumar Srivastava
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| | - Ashis Kumar Das
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| | | | - Popy Bora
- Department of Plant Pathology, Assam Agricultural University, Jorhat, India
| | - Firoz Ahmad Ansari
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| | - Ruchi Bhate
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| |
Collapse
|
11
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|
12
|
Sivager G, Calvez L, Bruyere S, Boisne-Noc R, Hufnagel B, Cebrian-Torrejon G, Doménech-Carbó A, Gros O, Ollitrault P, Morillon R. Better tolerance to Huanglongbing is conferred by tetraploid Swingle citrumelo rootstock and is influenced by the ploidy of the scion. FRONTIERS IN PLANT SCIENCE 2022; 13:1030862. [PMID: 36407590 PMCID: PMC9669798 DOI: 10.3389/fpls.2022.1030862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 05/14/2023]
Abstract
Huanglongbing (HLB) is a disease that is responsible for the death of millions of trees worldwide. The bacterial causal agent belongs to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacterium lead most of the time to a reaction of the tree associated with callose synthesis at the phloem sieve plate. Thus, the obstruction of pores providing connections between adjacent sieve elements will limit the symplastic transport of the sugars and starches synthesized through photosynthesis. In the present article, we investigated the impact of the use of tetraploid Swingle citrumelo (Citrus paradisi Macfrad × Poncirus trifoliata [L.] Raf) rootstock on HLB tolerance, compared to its respective diploid. HLB-infected diploid and tetraploid rootstocks were investigated when grafted with Mexican and Persian limes. Secondary roots were anatomically studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to observe callose deposition at the phloem sieve plate and to evaluate the impact of the bacterium's presence at the cellular level. Voltammetry of immobilized microparticles (VIMP) in roots was applied to determine the oxidative stress status of root samples. In the field, Mexican and Persian lime leaves of trees grafted onto tetraploid rootstock presented less symptoms of HLB. Anatomical analysis showed much stronger secondary root degradation in diploid rootstock, compared to tetraploid rootstock. Analysis of the root sieve plate in control root samples showed that pores were approximately 1.8-fold larger in tetraploid Swingle citrumelo than in its respective diploid. SEM analyses of root samples did not reveal any callose deposition into pores of diploid and tetraploid genotypes. VIMP showed limited oxidative stress in tetraploid samples, compared to diploid ones. These results were even strongly enhanced when rootstocks were grafted with Persian limes, compared to Mexican limes, which was corroborated by stronger polyphenol contents. TEM analysis showed that the bacteria was present in both ploidy root samples with no major impacts detected on cell walls or cell structures. These results reveal that tetraploid Swingle citrumelo rootstock confers better tolerance to HLB than diploid. Additionally, an even stronger tolerance is achieved when the triploid Persian lime scion is associated.
Collapse
Affiliation(s)
- Gary Sivager
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Leny Calvez
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Saturnin Bruyere
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Rosiane Boisne-Noc
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Barbara Hufnagel
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Gerardo Cebrian-Torrejon
- Connaissance et Valorisation: Chimie des Matériaux, Environnement, Energie (COVACHIM-M2E) Laboratory Equipe Associée (EA) 3592, Unité de Formations et de Recherche (UFR) des Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, Guadeloupe
| | - Antonio Doménech-Carbó
- Departament de Química Ananlítica, Facultat de Química, Universitat de València, Valencia, Spain
| | - Olivier Gros
- Centre commun de caractérisation des matériaux des Antilles et de la Guyane (C3MAG), Unité de Formations et de Recherche (UFR) des Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, Guadeloupe
- Institut de Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Pratique des Hautes Etudes (EPHE), Université des Antilles, Campus de Fouillole, Pointe-à-Pitre, France
| | - Patrick Ollitrault
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Raphaël Morillon
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Equipe Structure Evolutive des Agrumes, Polyploïdie et Amélioration Génétique (SEAPAG), F-97170 Petit-Bourg, Guadeloupe, French West Indies—Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Montpellier, France
- *Correspondence: Raphaël Morillon,
| |
Collapse
|
13
|
Pandey SS, Hendrich C, Andrade MO, Wang N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. PHYTOPATHOLOGY 2022; 112:55-68. [PMID: 34609203 DOI: 10.1094/phyto-08-21-0354-fi] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plant hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic, and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Maxuel O Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
14
|
Hu B, Rao MJ, Deng X, Pandey SS, Hendrich C, Ding F, Wang N, Xu Q. Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathog 2021; 17:e1010071. [PMID: 34882744 PMCID: PMC8659345 DOI: 10.1371/journal.ppat.1010071] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Citrus Huanglongbing (HLB), also known as citrus greening, is one of the most devastating citrus diseases worldwide. Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain associated with HLB, which is yet to be cultured in vitro. None of the commercial citrus cultivars are resistant to HLB. The pathosystem of Ca. Liberibacter is complex and remains a mystery. In this review, we focus on the recent progress in genomic research on the pathogen, the interaction of host and CLas, and the influence of CLas infection on the transcripts, proteins, and metabolism of the host. We have also focused on the identification of candidate genes for CLas pathogenicity or the improvements of HLB tolerance in citrus. In the end, we propose potentially promising areas for mechanistic studies of CLas pathogenicity, defense regulators, and genetic improvement for HLB tolerance/resistance in the future.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Munir S, Ahmed A, Li Y, He P, Singh BK, He P, Li X, Asad S, Wu Y, He Y. The hidden treasures of citrus: finding Huanglongbing cure where it was lost. Crit Rev Biotechnol 2021; 42:634-649. [PMID: 34325576 DOI: 10.1080/07388551.2021.1942780] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Huanglongbing (HLB), a deadly citrus disease which has significantly downsized the entire industry worldwide. The intractable and incurable disease has brought the citriculture an enormous loss of productivity. With no resistant varieties available, failure of chemical treatments despite repeated applications, and hazardous consequences to environmental health, have led to large-scale research to find a sustainable cure. Inside plants, the key determinants of health and safety, live the endophytic microbes. Endophytes possess unrivaled plant benefiting properties. The progression of HLB is known to cause disturbance in endophytic bacterial communities. Given the importance of the plant endophytic microbiome in disease progression, the notion of engineering microbiomes through indigenous endophytes is attracting scientific attention which is considered revolutionary as it precludes the incompatibility concerns associated with the use of alien (microbes from other plant species) endophytes. In this review, we briefly discuss the transformation of the plant-pathogen-environment to the plant-pathogen-microbial system in a disease triangle. We also argue the employment of indigenous endophytes isolated from a healthy state to engineer the diseased citrus endophytic microbiomes that can provide sustainable solution for vascular pathogens. We evaluated the plethora of microbiomes responses to the re-introduction of endophytes which leads to disease resistance in the citrus host. The idea is not merely confined to citrus-HLB, but it is globally applicable for tailoring a customized cure for general plant-pathogen systems particularly for the diseases caused by the vascular system-restricted pathogens.
Collapse
Affiliation(s)
- Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, Australia.,Global Centre for Land Based Innovation, Western Sydney University, Penrith South, Australia
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Suhail Asad
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, P. R. China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| |
Collapse
|
16
|
Li B, Zhang Y, Qiu D, Francis F, Wang S. Comparative Proteomic Analysis of Sweet Orange Petiole Provides Insights Into the Development of Huanglongbing Symptoms. FRONTIERS IN PLANT SCIENCE 2021; 12:656997. [PMID: 33953735 PMCID: PMC8092123 DOI: 10.3389/fpls.2021.656997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Huanglongbing (HLB) is the most destructive citrus disease worldwide. This is associated with the phloem-limited bacterium Candidatus Liberibacter, and the typical symptom is leaf blotchy mottle. To better understand the biological processes involved in the establishment of HLB disease symptoms, the comparative proteomic analysis was performed to reveal the global protein accumulation profiles in leaf petiole, where there are massive HLB pathogens of Ca. L. asiaticus-infected Newhall sweet orange (Citrus sinensis) plants at the asymptomatic and symptomatic stages compared to their healthy counterpart. Photosynthesis, especially the pathway involved in the photosystem I and II light reactions, was shown to be suppressed throughout the whole Ca. L. asiaticus infection cycle. Also, starch biosynthesis was induced after the symptom-free prodromal period. Many defense-associated proteins were more extensively regulated in the petiole with the symptoms than the ones from healthy plants. The change of salicylic and jasmonic acid levels in different disease stages had a positive correlation with the abundance of phytohormone biosynthesis-related proteins. Moreover, the protein-protein interaction network analysis indicated that an F-type ATPase and an alpha-1,4 glucan phosphorylase were the core nodes in the interactions of differentially accumulated proteins. Our study indicated that the infected citrus plants probably activated the non-unified and lagging enhancement of defense responses against Ca. L. asiaticus at the expense of photosynthesis and contribute to find out the key Ca. L. asiaticus-responsive genes for tolerance and resistance breeding.
Collapse
Affiliation(s)
- Bo Li
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yi Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuangchao Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Sivager G, Calvez L, Bruyere S, Boisne-Noc R, Brat P, Gros O, Ollitrault P, Morillon R. Specific Physiological and Anatomical Traits Associated With Polyploidy and Better Detoxification Processes Contribute to Improved Huanglongbing Tolerance of the Persian Lime Compared With the Mexican Lime. FRONTIERS IN PLANT SCIENCE 2021; 12:685679. [PMID: 34512684 PMCID: PMC8427660 DOI: 10.3389/fpls.2021.685679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 05/13/2023]
Abstract
Huanglongbing (HLB) is presently a major threat to the citrus industry. Because of this disease, millions of trees are currently dying worldwide. The putative causal agent is a motile bacteria belonging to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacteria is responsible for the synthesis of callose at the phloem sieve plate, leading to the obstruction of the pores that provide connections between adjacent sieve elements, thus limiting the symplastic transport of the sugars and starches synthesized in leaves to the other plant organs. The Persian triploid lime (Citrus latifolia) is one of the most HLB-tolerant citrus varieties, but the determinants associated with the tolerance are still unknown. HLB-infected diploid Mexican lime (Citrus aurantiifolia) and Persian lime were investigated. The leaf petiole was analyzed using scanning electron microscopy (SEM) to observe callose deposition at the phloem sieve plate. Leaf starch contents and detoxification enzyme activities were investigated. In the field, Persian lime leaves present more limited symptoms due to HLB than the Mexican lime leaves do. Photosynthesis, stomatal conductance, and transpiration decreased compared with control plants, but values remained greater in the Persian than in the Mexican lime. Analysis of the petiole sieve plate in control petiole samples showed that pores were approximately 1.8-fold larger in the Persian than in the Mexican lime. SEM analyses of petiole samples of symptomatic leaves showed the important deposition of callose into pores of Mexican and Persian limes, whereas biochemical analyses revealed better detoxification in Persian limes than in Mexican limes. Moreover, SEM analyses of infected petiole samples of asymptomatic leaves showed much larger callose depositions into the Mexican lime pores than in the Persian lime pores, whereas biochemical traits revealed much better behavior in Persian limes than in Mexican limes. Our results reveal that polyploids present specific behaviors associated with important physiological and biochemical determinants that may explain the better tolerance of the Persian lime against HLB compared with the Mexican lime.
Collapse
Affiliation(s)
- Gary Sivager
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Leny Calvez
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Saturnin Bruyere
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Rosiane Boisne-Noc
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre Brat
- CIRAD UMR Qualisud Dpt PERSYST-Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Olivier Gros
- C3MAG, UFR des Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, Guadeloupe
| | - Patrick Ollitrault
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Raphaël Morillon
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Raphaël Morillon,
| |
Collapse
|
18
|
Franco JY, Thapa SP, Pang Z, Gurung FB, Liebrand TWH, Stevens DM, Ancona V, Wang N, Coaker G. Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression. Mol Cell Proteomics 2020; 19:1936-1952. [PMID: 32883801 PMCID: PMC7710146 DOI: 10.1074/mcp.ra120.002075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.
Collapse
Affiliation(s)
- Jessica Y Franco
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Shree P Thapa
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Fatta B Gurung
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Thomas W H Liebrand
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Veronica Ancona
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California, USA.
| |
Collapse
|
19
|
Coates LC, Mahoney J, Ramsey JS, Warwick E, Johnson R, MacCoss MJ, Krasnoff SB, Howe KJ, Moulton K, Saha S, Mueller LA, Hall DG, Shatters RG, Heck ML, Slupsky CM. Development on Citrus medica infected with 'Candidatus Liberibacter asiaticus' has sex-specific and -nonspecific impacts on adult Diaphorina citri and its endosymbionts. PLoS One 2020; 15:e0239771. [PMID: 33022020 PMCID: PMC7537882 DOI: 10.1371/journal.pone.0239771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) is a deadly, incurable citrus disease putatively caused by the unculturable bacterium, 'Candidatus Liberibacter asiaticus' (CLas), and transmitted by Diaphorina citri. Prior studies suggest D. citri transmits CLas in a circulative and propagative manner; however, the precise interactions necessary for CLas transmission remain unknown, and the impact of insect sex on D. citri-CLas interactions is poorly understood despite reports of sex-dependent susceptibilities to CLas. We analyzed the transcriptome, proteome, metabolome, and microbiome of male and female adult D. citri reared on healthy or CLas-infected Citrus medica to determine shared and sex-specific responses of D. citri and its endosymbionts to CLas exposure. More sex-specific than shared D. citri responses to CLas were observed, despite there being no difference between males and females in CLas density or relative abundance. CLas exposure altered the abundance of proteins involved in immunity and cellular and oxidative stress in a sex-dependent manner. CLas exposure impacted cuticular proteins and enzymes involved in chitin degradation, as well as energy metabolism and abundance of the endosymbiont 'Candidatus Profftella armatura' in both sexes similarly. Notably, diaphorin, a toxic Profftella-derived metabolite, was more abundant in both sexes with CLas exposure. The responses reported here resulted from a combination of CLas colonization of D. citri as well as the effect of CLas infection on C. medica. Elucidating these impacts on D. citri and their endosymbionts contributes to our understanding of the HLB pathosystem and identifies the responses potentially critical to limiting or promoting CLas acquisition and propagation in both sexes.
Collapse
Affiliation(s)
- Laurynne C. Coates
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - John S. Ramsey
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - EricaRose Warwick
- Plant Pathology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, United States of America
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Stuart B. Krasnoff
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - Kevin J. Howe
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - Kathy Moulton
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Surya Saha
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Lukas A. Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - David G. Hall
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Robert G. Shatters
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Michelle L. Heck
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Carolyn M. Slupsky
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| |
Collapse
|
20
|
Martinelli F, Perrone A, Della Noce I, Colombo L, Lo Priore S, Romano S. Application of a portable instrument for rapid and reliable detection of SARS-CoV-2 infection in any environment. Immunol Rev 2020; 295 Suppl s1:4-10. [PMID: 32329102 PMCID: PMC7264512 DOI: 10.1111/imr.12857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
The ongoing outbreak of the novel coronavirus (SARS‐CoV‐2) infection is creating serious challenges for health laboratories that seek to identify viral infections as early as possible, optimally at the earliest appearance of symptom. Indeed, there is urgent need to develop and deploy robust diagnostic methodologies not only to use in health laboratory environments but also directly in places where humans circulate and spread the virus such as airports, trains, boats, and any public aggregation places. The success of a reliable and sensitive asymptomatic diagnosis relies on the identification and measurement of informative biomarkers from human host and virus in a rapid, sensitive, and inexpensive manner. The objective of this article is to describe an innovative multidisciplinary approach to develop an efficient, inexpensive, and easy‐to‐use portable instrument (bCUBE® by Hyris Ltd) that can be employed as a surveillance system for the emergency caused by SARS‐CoV‐2. A solution for Coronavirus testing, compliant with CDC guidelines, is scheduled to be released in the next weeks. In addition, we will describe a workflow and path of an integrated multi‐omic approach that will lead to host and pathogen biomarker discovery in order to train the instrument to provide reliable results based on a specific biomarker's fingerprint of SARS‐CoV‐2 infection.
Collapse
Affiliation(s)
| | - Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
21
|
Direct identification and metabolomic analysis of Huanglongbing associated with Candidatus Liberibacter spp. in navel orange by MALDI-TOF-MS. Anal Bioanal Chem 2020; 412:3091-3101. [DOI: 10.1007/s00216-020-02555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023]
|
22
|
Li H, Ying X, Shang L, Redfern B, Kypraios N, Xie X, Xu F, Wang S, Zhang J, Jian H, Yu H, Lv D. Heterologous Expression of CLIBASIA_03915/CLIBASIA_04250 by Tobacco Mosaic Virus Resulted in Phloem Necrosis in the Senescent Leaves of Nicotiana benthamiana. Int J Mol Sci 2020; 21:E1414. [PMID: 32093101 PMCID: PMC7073121 DOI: 10.3390/ijms21041414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/02/2022] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is the most notorious citrus disease worldwide. Candidatus Liberibacter asiaticus (CaLas) is a phloem-restricted bacterium associated with HLB. Because there is no mutant library available, the pathogenesis of CaLas is obscure. In this study, we employed tobacco mosaic virus (TMV) to express two mature secretion proteins CLIBASIA_03915 (m03915) and CLIBASIA_04250 (m04250) in Nicotiana benthamiana (N. benthamiana). Phloem necrosis was observed in the senescent leaves of N. benthamiana that expressed the two low molecular weight proteins, while no phloem necrosis was observed in the plants that expressed the control, green fluorescent protein (GFP). Additionally, no phloem necrosis was observed in the senescent leaves of N. benthamiana that expressed the null mutation of m03915 and frameshifting m04250. The subcellular localizations of m03915 and m04250 were determined by fusion with GFP using confocal microscopy. The subcellular localization of m03915 was found to be as free GFP without a nuclear localization sequence (NLS). However, m04250 did have an NLS. Yeast two-hybrid (Y2H) was carried out to probe the citrus proteins interacting with m03915 and m04250. Six citrus proteins were found to interact with m03915. The identified proteins were involved in the metabolism of compounds, transcription, response to abiotic stress, ubiquitin-mediated protein degradation, etc. The prey of m04250 was involved in the processing of specific pre-mRNAs. Identification of new virulence factors of CaLas will give insight into the pathogenesis of CaLas, and therefore, it will eventually help develop the HLB-resistant citrus.
Collapse
Affiliation(s)
- Hui Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (H.L.); (L.S.); (H.J.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| | - Xiaobao Ying
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA; (X.Y.); (B.R.); (N.K.)
| | - Lina Shang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (H.L.); (L.S.); (H.J.)
| | - Bryce Redfern
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA; (X.Y.); (B.R.); (N.K.)
| | - Nicholas Kypraios
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA; (X.Y.); (B.R.); (N.K.)
| | - Xuejun Xie
- Changzhou Institute of Technology, Changzhou 213032, China;
| | - FeiFei Xu
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China (S.W.); (J.Z.); (H.Y.)
| | - Shaopeng Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China (S.W.); (J.Z.); (H.Y.)
| | - Jinghua Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China (S.W.); (J.Z.); (H.Y.)
| | - Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (H.L.); (L.S.); (H.J.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| | - Hongtao Yu
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China (S.W.); (J.Z.); (H.Y.)
| | - Dianqiu Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (H.L.); (L.S.); (H.J.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Yao L, Yu Q, Huang M, Song Z, Grosser J, Chen S, Wang Y, Gmitter FG. Comparative iTRAQ proteomic profiling of sweet orange fruit on sensitive and tolerant rootstocks infected by 'Candidatus Liberibacter asiaticus'. PLoS One 2020; 15:e0228876. [PMID: 32059041 PMCID: PMC7021301 DOI: 10.1371/journal.pone.0228876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/12/2023] Open
Abstract
Citrus Huanglongbing (HLB), which is also known as citrus greening, is a destructive disease continuing to devastate citrus production worldwide. Although all citrus varieties can be infected with 'Candidatus Liberibacter asiaticus' (CaLas), a certain level of HLB tolerance of scion varieties can be conferred by some rootstocks. To understand the effects of rootstock varieties on orange fruit under CaLas stress, comparative iTRAQ proteomic profilings were conducted, using fruit from 'Valencia' sweet orange grafted on the sensitive ('Swingle') and tolerant rootstocks (a new selection called '46x20-04-48') infected by CaLas as experimental groups, and the same plant materials without CaLas infection as controls. The symptomatic fruit on 'Swingle' had 573 differentially-expressed (DE) proteins in comparison with their healthy fruit on the same rootstock, whereas the symptomatic fruit on '46x20-04-48' had 263 DE proteins. Many defense-associated proteins were down-regulated in the symptomatic fruit on 'Swingle' rootstock that were seldom detected in the symptomatic fruit on the '46x20-04-48' rootstock, especially the proteins involved in the jasmonate biosynthesis (AOC4), jasmonate signaling (ASK2, RUB1, SKP1, HSP70T-2, and HSP90.1), protein hydrolysis (RPN8A and RPT2a), and vesicle trafficking (SNAREs and Clathrin) pathways. Therefore, we predict that the down-regulated proteins involved in the jasmonate signaling pathway and vesicle trafficking are likely to be related to citrus sensitivity to the CaLas pathogen.
Collapse
Affiliation(s)
- Lixiao Yao
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Ming Huang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Zhen Song
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ying X, Wan M, Hu L, Zhang J, Li H, Lv D. Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus. Int J Mol Sci 2019; 20:E5575. [PMID: 31717281 PMCID: PMC6888081 DOI: 10.3390/ijms20225575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. HLB is associated with the non-culturable bacterium, Candidatus Liberibacter asiaticus (CaLas) in the United States. The virulence mechanism of CaLas is largely unknown, partly because of the lack of a mutant library. In this study, Tobacco mosaic virus (TMV) and Nicotiana benthamiana (N. benthamiana) were used for large-scale screening of the virulence factors of CaLas. Agroinfiltration of 60 putative virulence factors in N. benthamiana led to the identification of four candidates that caused severe symptoms in N. benthamiana, such as growth inhibition and cell death. CLIBASIA_05150 and CLIBASIA_04065C (C-terminal of CLIBASIA_04065) could cause cell death in the infiltrated leaves at five days post infiltration. Two low-molecular-weight candidates, CLIBASIA_00470 and CLIBASIA_04025, could inhibit plant growth. By converting start codon to stop codon or frameshifting, the four genes lost their harmful effects to N. benthamiana. It indicated that the four virulence factors functioned at the protein level rather than at the RNA level. The subcellular localization of the four candidates was determined by confocal laser scanning microscope. CLIBASIA_05150 located in the Golgi apparatus; CLIBASIA_04065 located in the mitochondrion; CLIBASIA_00470 and CLIBASIA_04025 distributed in cells as free GFP. The host proteins interacting with the four virulence factors were identified by yeast two-hybrid. The host proteins interacting with CLIBASIA_00470 and CLIBASIA_04025 were overlapping. Based on the phenotypes, the subcellular localization and the host proteins identified by yeast two-hybrid, CLIBASIA_00470 and CLIBASIA_04025, functioned redundantly. The hypothesis of CaLas virulence was proposed. CaLas affects citrus development and suppresses citrus disease resistance, comprehensively, in a complicated manner. Ubiquitin-mediated protein degradation might play a vital role in CaLas virulence. Deep characterization of the interactions between the identified virulence factors and their prey will shed light on HLB. Eventually, it will help in developing HLB-resistant citrus and save the endangered citrus industry worldwide.
Collapse
Affiliation(s)
- Xiaobao Ying
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA;
| | - Mengyuan Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Linshuang Hu
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Jinghua Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Hui Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
| | - Dianqiu Lv
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
25
|
Santos Dória M, Silva Guedes M, de Andrade Silva EM, Magalhães de Oliveira T, Pirovani CP, Kupper KC, Bastianel M, Micheli F. Comparative proteomics of two citrus varieties in response to infection by the fungus Alternaria alternata. Int J Biol Macromol 2019; 136:410-423. [PMID: 31199975 DOI: 10.1016/j.ijbiomac.2019.06.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023]
Abstract
Alternaria brown spot (ABS) is a disease caused by the necrotrophic fungus Alternaria alternata, which induces necrotic lesions on fruits and young leaves due to the production of the host-specific ACT toxin by the fungus. To better understand the citrus-A. alternata interaction and to identify putative resistance proteins, as well as the receptor of the ACT toxin, citrus plants susceptible ('Minneola' mandarin) and resistant ('Clemenules' tangor) to A. alternata, infected or not (control) with the pathogen were analyzed by proteomics. Protein changes were observed between citrus genotypes after infection, and 150 candidate proteins were obtained. A general scheme of the metabolic processes involved in susceptible and resistant citrus-A. alternata interactions was designed. Susceptible plants presented a high level of proteins involved in stress response at the final stages of the infection, whereas resistant plants presented high level of ROS proteins, metabolic proteins, and proteins involved in the immune system process. Proteins like ferredoxin and cyclophilin are specific to the susceptible variety and may be good candidates as fungal effector-interacting proteins. This is the first citrus-A. alternata proteomics analysis, which has allowed a better understanding of the molecular bases of the citrus response to ABS disease.
Collapse
Affiliation(s)
- Milena Santos Dória
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil
| | - Meg Silva Guedes
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil
| | | | | | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil
| | - Katia Cristina Kupper
- Centro de Citricultura "Sylvio Moreira", Instituto Agronômico de Campinas (IAC), SP, Brazil
| | - Marinês Bastianel
- Centro de Citricultura "Sylvio Moreira", Instituto Agronômico de Campinas (IAC), SP, Brazil
| | - Fabienne Micheli
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil; CIRAD, UMR AGAP, F-34398 Montpellier, France.
| |
Collapse
|
26
|
The Early, Rapid, and Non-Destructive Detection of Citrus Huanglongbing (HLB) Based on Microscopic Confocal Raman. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01598-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Yao L, Yu Q, Huang M, Hung W, Grosser J, Chen S, Wang Y, Gmitter FG. Proteomic and metabolomic analyses provide insight into the off-flavour of fruits from citrus trees infected with ' Candidatus Liberibacter asiaticus'. HORTICULTURE RESEARCH 2019; 6:31. [PMID: 30792870 PMCID: PMC6375920 DOI: 10.1038/s41438-018-0109-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 05/18/2023]
Abstract
Orange fruit from trees infected by 'Candidatus Liberibacter asiaticus' (CaLas) often do not look fully mature and exhibit off-flavours described as bitter, harsh, and metallic rather than juicy and fruity. Although previous studies have been carried out to understand the effect of CaLas on the flavour of orange juice using metabolomic methods, the mechanisms leading to the off-flavour that occurs in Huanglongbing (HLB)-symptomatic fruit are not well understood. In this study, fruits were collected from symptomatic and healthy Valencia sweet orange (Citrus sinensis) trees grafted on Swingle (C. paradisi X Poncirus trifoliata) rootstock. Isobaric tags for relative and absolute quantification (iTRAQ) and gas chromatography-mass spectrometry (GC-MS) were used to measure the proteins, sugars, organic acids, amino acids, and volatile terpenoids. The results showed that most of the differentially expressed proteins involved in glycolysis, the tricarboxylic acid (TCA) cycle and amino-acid biosynthesis were degraded, and terpenoid metabolism was significantly downregulated in the symptomatic fruit. Valencene, limonene, 3-carene, linalool, myrcene, and α-terpineol levels were significantly lower in fruit from CaLas-infected trees than from healthy trees. Similar phenomena were observed for sucrose and glucose. Our study indicated that off-flavour of symptomatic fruit was associated with a reduction in the levels of terpenoid products and the downregulation of proteins in glycolysis, the TCA cycle, and the terpenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Lixiao Yao
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Ming Huang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Weilun Hung
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| |
Collapse
|
28
|
Tahir J, Hoyte S, Bassett H, Brendolise C, Chatterjee A, Templeton K, Deng C, Crowhurst R, Montefiori M, Morgan E, Wotton A, Funnell K, Wiedow C, Knaebel M, Hedderley D, Vanneste J, McCallum J, Hoeata K, Nath A, Chagné D, Gea L, Gardiner SE. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit ( Actinidia chinensis). HORTICULTURE RESEARCH 2019; 6:101. [PMID: 31645956 PMCID: PMC6804790 DOI: 10.1038/s41438-019-0184-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 05/10/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) biovar 3, a virulent, canker-inducing pathogen is an economic threat to the kiwifruit (Actinidia spp.) industry worldwide. The commercially grown diploid (2×) A. chinensis var. chinensis is more susceptible to Psa than tetraploid and hexaploid kiwifruit. However information on the genetic loci modulating Psa resistance in kiwifruit is not available. Here we report mapping of quantitative trait loci (QTLs) regulating resistance to Psa in a diploid kiwifruit population, derived from a cross between an elite Psa-susceptible 'Hort16A' and a resistant male breeding parent P1. Using high-density genetic maps and intensive phenotyping, we identified a single QTL for Psa resistance on Linkage Group (LG) 27 of 'Hort16A' revealing 16-19% phenotypic variance and candidate alleles for susceptibility and resistance at this loci. In addition, six minor QTLs were identified in P1 on distinct LGs, exerting 4-9% variance. Resistance in the F1 population is improved by additive effects from 'Hort16A' and P1 QTLs providing evidence that divergent genetic pathways interact to combat the virulent Psa strain. Two different bioassays further identified new QTLs for tissue-specific responses to Psa. The genetic marker at LG27 QTL was further verified for association with Psa resistance in diploid Actinidia chinensis populations. Transcriptome analysis of Psa-resistant and susceptible genotypes in field revealed hallmarks of basal defense and provided candidate RNA-biomarkers for screening for Psa resistance in greenhouse conditions.
Collapse
Affiliation(s)
- Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Stephen Hoyte
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - Heather Bassett
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Abhishek Chatterjee
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Kerry Templeton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | | | - Ed Morgan
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Andrew Wotton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Keith Funnell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Claudia Wiedow
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Mareike Knaebel
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Joel Vanneste
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - John McCallum
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Kirsten Hoeata
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Amardeep Nath
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Luis Gea
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| |
Collapse
|
29
|
Dai F, Wang Z, Li Z, Luo G, Wang Y, Tang C. Transcriptomic and proteomic analyses of mulberry (Morus atropurpurea) fruit response to Ciboria carunculoides. J Proteomics 2018; 193:142-153. [PMID: 30315889 DOI: 10.1016/j.jprot.2018.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/09/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023]
Abstract
The aim of this work was to gain insights into the molecular mechanisms and dynamics of the mulberry (Morus atropurpurea) fruit response to Ciboria carunculoides infection. A transcriptomic and proteomic study was carried out based on RNA sequencing and isobaric tags for relative and absolute quantification analysis, respectively. These data were then validated using quantitative real-time PCR and multiple reaction monitoring assays. Comparative analyses revealed that 9.0% of the transcriptome and 20.8% of the proteome were differentially regulated after C. carunculoides infection at the early stage (stage 1) and middle stage (stage 2), but correlation analysis revealed that only 145 genes were differentially regulated at both the transcriptome and proteome levels. The combined transcriptome and proteome analysis showed that plant hormone signal transduction, calcium-mediated defense signaling, transcription factors, and secondary metabolites were stimulated, whereas photosynthesis and cellular growth-related metabolism were suppressed after C. carunculoides infection. These finding provide theoretical foundation for disease resistance breeding of C. carunculoides. BIOLOGICAL SIGNIFICANCE: Ciboria carunculoides is a major fungal pathogen that infects mulberry fruit, leading to extensive damage and productivity loss. Despite this major impact, the mulberry fruit response to C. carunculoides infection has yet to be characterized. This study provides the first system-wide datasets with which to examine changes in the transcriptome and proteome after C. carunculoides infection in mulberry fruit. The results showed that plant hormone signal transduction, calcium-mediated defense signaling, and other pathways were stimulated, whereas photosynthesis and cellular growth-related metabolism were suppressed by C. carunculoides. These results will lead to a better understanding of the molecular mechanisms triggered in mulberry fruit in response to C. carunculoides infection and will provide new molecular targets for regulating defense responses to fungal pathogens in berry fruits.
Collapse
Affiliation(s)
- Fanwei Dai
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Zhiyi Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoqing Luo
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Yi Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cuiming Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
30
|
Tang J, Ding Y, Nan J, Yang X, Sun L, Zhao X, Jiang L. Transcriptome sequencing and ITRAQ reveal the detoxification mechanism of Bacillus GJ1, a potential biocontrol agent for Huanglongbing. PLoS One 2018; 13:e0200427. [PMID: 30091977 PMCID: PMC6084860 DOI: 10.1371/journal.pone.0200427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/26/2018] [Indexed: 11/18/2022] Open
Abstract
Huanglongbing (HLB) is the most serious disease affecting citrus production worldwide. No HLB-resistant citrus varieties exist. The HLB pathogen Candidatus Liberibacter asiaticus is nonculturable, increasing the difficulty of preventing and curing the disease. We successfully screened the biocontrol agent Bacillus GJ1 for the control of HLB in nursery-grown citrus plants. RNA sequencing (RNA-seq) of the transcriptome and isobaric tags for relative and absolute quantification of the proteome revealed differences in the detoxification responses of Bacillus GJ1-treated and -untreated Ca. L. asiaticus-infected citrus. Phylogenetic tree alignment showed that GJ1 was classified as B. amyloliquefaciens. The effect of eliminating the HLB pathogen was measured using real-time quantitative polymerase chain reaction (qPCR) and PCR. The results indicate that the rate of detoxification reached 50% after seven irrigations, of plants with an OD600nm≈1 Bacillus GJ1 suspension. Most importantly, photosynthesis-antenna proteins, photosynthesis, plant-pathogen interactions, and protein processing in the endoplasmic reticulum were significantly upregulated (padj < 0.05), as shown by the KEGG enrichment analysis of the transcriptomes; nine of the upregulated genes were validated by qPCR. Transcription factor analysis of the transcriptomes was performed, and 10 TFs were validated by qPCR. Cyanoamino acid metabolism, regulation of autophagy, isoflavonoid biosynthesis, starch and sucrose metabolism, protein export, porphyrin and chlorophyll metabolism, and carotenoid biosynthesis were investigated by KEGG enrichment analysis of the proteome, and significant differences were found in the expression of the genes involved in those pathways. Correlation analysis of the proteome and transcriptome showed common entries for the significantly different expression of proteins and the significantly different expression of genes in the GO and KEGG pathways, respectively. The above results reveal important information about the detoxification pathways.
Collapse
Affiliation(s)
- Jizhou Tang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuanxi Ding
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Nan
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangyu Yang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liang Sun
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuyun Zhao
- College of life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ling Jiang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China.,National Indoor Conservation Center of Virus-free Germplasm of Fruit Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
31
|
Meng Q, Gupta R, Min CW, Kim J, Kramer K, Wang Y, Park SR, Finkemeier I, Kim ST. A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves. J Proteomics 2018; 196:120-130. [PMID: 29970347 DOI: 10.1016/j.jprot.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022]
Abstract
Previously, we reported a novel Magnaporthe oryzae- secreted protein MSP1, which triggers cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. To investigate the MSP1 induced defense response in rice at the protein level, we employed a label-free quantitative proteomic approach, in parallel with flg22 treatment, which is a well-known elicitor. Exogenous application of MSP1 to rice leaves induced an oxidative burst, MAPK3/6 activation, and activation of pathogenesis-related genes (DUF26, PBZ, and PR-10). MaxQuant based label free proteome analysis led to the identification of 4167 protein groups of which 433 showed significant differences in response to MSP1 and/or flg22 treatment. Functional annotation of the differential proteins showed that majority of the proteins related to primary, secondary, and lipid metabolism were decreased, while proteins associated mainly with the stress response, post-translational modification and signaling were increased in abundance. Moreover, several peroxidases and receptor kinases were induced by both the elicitors, highlighting their involvement in MSP1 and flg22 induced signaling in rice. Taken together, the results reported here contribute to our understanding of MSP1 and flg22 triggered immune responses at the proteome level, thereby increasing our overall understanding of PTI signaling in rice. BIOLOGICAL SIGNIFICANCE: MSP1 is a M. oryzae secreted protein, which triggers defense responses in rice. Previous reports have shown that MSP1 is required for the pathogenicity of rice blast fungus, however, the exact mechanism of its action and its downstream targets in rice are currently unknown. Identification of the downstream targets is required in order to understand the MSP1 induced signaling in rice. Moreover, key proteins identified could also serve as potential candidates for the generation of disease resistance crops by modulating stress signaling pathways. Therefore, here we employed, for the first time, a label-free quantitative proteomic approach to investigate the MSP1 induced signaling in rice together with flg22. Functional annotation of the differential proteins showed that majority of the proteins related to primary, secondary, and lipid metabolism were decreased, while proteins related to the defense response, signaling and ROS detoxification were majorly increased. Thus, as an elicitor, recombinant MSP1 proteins could be utilized to inducing broad pathogen resistance in crops by priming the local immune responses.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea.
| | - Chul Woo Min
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Jongyun Kim
- Division of Biotechnology, Korea University, Seoul 02841, South Korea
| | - Katharina Kramer
- Plant Proteomics Group, Max Planck Institute for Plant Breeding Research, Germany
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Sang-Ryeol Park
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, South Korea
| | - Iris Finkemeier
- Plant Proteomics Group, Max Planck Institute for Plant Breeding Research, Germany; Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149 Muenster, Germany
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea.
| |
Collapse
|
32
|
Reis GSM, de Almeida AAF, Mangabeira PAO, dos Santos IC, Pirovani CP, Ahnert D. Mechanical stress caused by wind on leaves of Theobroma cacao: Photosynthetic, molecular, antioxidative and ultrastructural responses. PLoS One 2018; 13:e0198274. [PMID: 29949591 PMCID: PMC6021058 DOI: 10.1371/journal.pone.0198274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/16/2018] [Indexed: 12/03/2022] Open
Abstract
Theobroma cacao is cultivated in the shade, in a so-called 'Cabruca' system, in intercropped with Erithryna or other tree species of economic value, and in full sun as a monoculture in irrigated or chemically-irrigated systems. Since it is a species quite intolerant to wind, it is practically impossible to implant cacao crops under full exposure to the sun, or in areas of frequent winds, without the protection of windbreaks, using arboreal species around the area of culture in the form of box. Wind can cause mechanical stimuli in plants, affecting their growth and development. The objective of this work was to evaluate the photosynthetic changes in mature leaves and the molecular, biochemical and ultrastructural changes in young and mature leaves of the CCN 51 cloned genotype of T. cacao subjected to intermittent (IW) and constant (CW) wind, with velocities of 2.5, 3.5 and 4.5 m s-1, during 3, 6 and 12 h of exposure. It was verified that CW and IW, considering different exposure times, interfered directly in stomatal conductance (gs), transpiration (E) and water use efficiency (WUE), causing a reduction of the photosynthetic rate (A) in mature leaves. In addition, the pulvinus and blade of young and mature leaves, exposed to IW and CW with different exposure times (3 and 12 h), showed marked macroscopic and microscopic mechanical injuries resulting from the constant leaf movement. At both speeds, there was rupture of the cell nuclear membrane in pulvinus and the mesophyll tissues, mainly in the young leaves. On the other hand, in young and mature leaves exposed to CW and IW at different speeds and exposure times, there was lipid peroxidation, increased activity of guaiacol (GPX) and ascorbate (APX) peroxidases in most treatments; and altered expression of transcripts of psba and psbo genes related to the phothosynthetic apparatus and Cu-Zn-sod and per genes related to antioxidative enzymes at the rate of 4.5 m s-1. Younger leaves were more intolerant to mechanical stress caused by the wind, since presented greater macro and microscopic damages and, consequently, greater molecular, biochemical and ultrastructural changes. High wind speeds can seriously compromise the development of young leaves of T. cacao plants and affect their productivity.
Collapse
Affiliation(s)
- Graciele Santos Monteiro Reis
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
- * E-mail:
| | - Pedro Antônio Oliveira Mangabeira
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| | - Ivanildes Conceição dos Santos
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| | - Dário Ahnert
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| |
Collapse
|
33
|
Martinelli F, Marchese A, Giovino A, Marra FP, Della Noce I, Caruso T, Dandekar AM. In-Field and Early Detection of Xylella fastidiosa Infections in Olive Using a Portable Instrument. FRONTIERS IN PLANT SCIENCE 2018; 9:2007. [PMID: 30713547 PMCID: PMC6345699 DOI: 10.3389/fpls.2018.02007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/31/2018] [Indexed: 05/04/2023]
Affiliation(s)
- Federico Martinelli
- Department of Agricultural Food Forest Sciences, University of Palermo, Palermo, Italy
- *Correspondence: Federico Martinelli
| | - Annalisa Marchese
- Department of Agricultural Food Forest Sciences, University of Palermo, Palermo, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Bagheria, Italy
| | - Francesco Paolo Marra
- Department of Agricultural Food Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Tiziano Caruso
- Department of Agricultural Food Forest Sciences, University of Palermo, Palermo, Italy
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Balan B, Ibáñez AM, Dandekar AM, Caruso T, Martinelli F. Identifying Host Molecular Features Strongly Linked With Responses to Huanglongbing Disease in Citrus Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:277. [PMID: 29541089 PMCID: PMC5836289 DOI: 10.3389/fpls.2018.00277] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A bioinformatic analysis of previously published RNA-Seq studies on Huanglongbing (HLB) response and tolerance in leaf tissues was performed. The aim was to identify genes commonly modulated between studies and genes, pathways and gene set categories strongly associated with this devastating Citrus disease. Bioinformatic analysis of expression data of four datasets present in NCBI provided 46-68 million reads with an alignment percentage of 72.95-86.76%. Only 16 HLB-regulated genes were commonly identified between the three leaf datasets. Among them were key genes encoding proteins involved in cell wall modification such as CESA8, pectinesterase, expansin8, expansin beta 3.1, and a pectate lyase. Fourteen HLB-regulated genes were in common between all four datasets. Gene set enrichment analysis showed some different gene categories affected by HLB disease. Although sucrose and starch metabolism was highly linked with disease symptoms, different genes were significantly regulated depending on leaf growth and infection stages and experimental conditions. Histone-related transcription factors were highly affected by HLB in the analyzed RNA-Seq datasets. HLB tolerance was linked with induction of proteins involved in detoxification. Protein-protein interaction (PPI) network analysis confirmed a possible role for heat shock proteins in curbing disease progression.
Collapse
Affiliation(s)
- Bipin Balan
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Ana M. Ibáñez
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Tiziano Caruso
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
- *Correspondence: Federico Martinelli,
| |
Collapse
|
35
|
Hu Y, Zhong X, Liu X, Lou B, Zhou C, Wang X. Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to 'Candidatus Liberibacter asiaticus' infection. PLoS One 2017; 12:e0189229. [PMID: 29232716 PMCID: PMC5726760 DOI: 10.1371/journal.pone.0189229] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
Citrus Huanglongbing (HLB), a highly devastating citrus disease, is associated with 'Candidatus Liberibacter asiacitus' (CLas), a member of phloem-inhabiting α-proteobacteria. HLB can affect all cultivated citrus and no cure is currently available. Previous studies showed that Kaffir lime (Citrus hystrix), primarily grown in South Asia and Southeast Asia, was tolerant to HLB but the molecular mechanism remains unknown. In this study, gene expression profiling experiments were performed on HLB-tolerant C. hystrix and HLB-susceptible C. sinensis three months after inoculation with CLas using RNA-seq data. Differentially expressed genes (DEGs) in the two citrus cultivars were mainly involved in diverse cellular functions including carbohydrate metabolism, photosynthesis, cell wall metabolism, secondary metabolism, hormone metabolism and oxidation/reduction processes. Notably, starch synthesis and photosynthesis process were not disturbed in CLas-infected C. hystrix. Most of the DEGs involved in cell wall metabolism and secondary metabolism were up-regulated in C. hystrix. In addition, the activation of peroxidases, Cu/Zn-SOD and POD4, may also enhance the tolerance of C. hystrix to CLas. This study provides an insight into the host response of HLB-tolerant citrus cultivar to CLas. C. hystrix is potentially useful for HLB-tolerant/resistant citrus breeding in the future.
Collapse
Affiliation(s)
- Yan Hu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
- Ganzhou Bureau of Fruit Industry, Ganzhou, Jiangxi, P. R. China
| | - Xi Zhong
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| | - Xuelu Liu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| | - Binghai Lou
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi, P. R. China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| |
Collapse
|
36
|
Castillo E, Martinelli F, Zakharov-Negre F, Ebeler SE, Buzo TR, McKenry MV, Dandekar AM. Effects of transgenic expression of Brevibacterium linens methionine gamma lyase (MGL) on accumulation of Tylenchulus semipenetrans and key aminoacid contents in Carrizo citrange. PLANT MOLECULAR BIOLOGY 2017; 95:497-505. [PMID: 29058103 PMCID: PMC5688205 DOI: 10.1007/s11103-017-0666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Carrizo transgenic plants overexpressing methionine-gamma-lyase produced dimethyl sulfide. The transgenic plants displayed more resistance to nematode attacks (Tylenculus semipenetrans) and may represent an innovative strategy for nematode control. Tylenchulus semipenetrans is a nematode pest of many citrus varieties that causes extensive damage to commercial crops worldwide. Carrizo citrange vr. (Citrus sinensis L. Usb × Poncirus trifoliate L. Raf) plants overexpressing Brevibacterium linens methionine-gamma-lyase (BlMGL) produced the sulfur volatile compound dimethyl sulfide (DMS). The aim of this work was to determine if transgenic citrus plants expressing BlMGL showed increased tolerance to T. semipenetrans infestation and to determine the effect on the content of key amino acids. While transgenic lines emitted dimethyl sulfide from leaves and roots, no sulfur-containing volatiles were detectable in wild-type Carrizo in the same tissues. Significant changes detected some key amino acids from leaves of transgenic plants such as aspartate, lysine, glycine, leucine and threonine with no changes in the amounts of methionine and α-ketobutyrate. In roots only glycine showed significant changes across all transgenic lines in comparison to wild-type plants. Transgenic plants expressing BlMGL and emitting DMS had less T. semipenetrans aggregation and more biomass than infected WT control plants, indicating that they may represent an innovative management alternative to pesticide/nematicide-based remedies.
Collapse
Affiliation(s)
- Elenor Castillo
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave, Mail Stop 4, Davis, CA, 95616-8683, USA
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Florence Zakharov-Negre
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave, Mail Stop 4, Davis, CA, 95616-8683, USA
| | - Susan E Ebeler
- Department of Viticulture and Enology, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Tom R Buzo
- Department of Nematology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Michael V McKenry
- Department of Nematology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave, Mail Stop 4, Davis, CA, 95616-8683, USA.
| |
Collapse
|
37
|
Pitino M, Armstrong CM, Duan Y. Molecular mechanisms behind the accumulation of ATP and H 2O 2 in citrus plants in response to ' Candidatus Liberibacter asiaticus' infection. HORTICULTURE RESEARCH 2017; 4:17040. [PMID: 35211319 PMCID: PMC7713647 DOI: 10.1038/hortres.2017.40] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 05/22/2023]
Abstract
Candidatus Liberibacter asiaticus (Las) is a fastidious, phloem-restricted pathogen with a significantly reduced genome, and attacks all citrus species with no immune cultivars documented to date. Like other plant bacterial pathogens, Las deploys effector proteins into the organelles of plant cells, such as mitochondria and chloroplasts to manipulate host immunity and physiology. These organelles are responsible for the synthesis of adenosine triphosphate (ATP) and have a critical role in plant immune signaling during hydrogen peroxide (H2O2) production. In this study, we investigated H2O2 and ATP accumulation in relation to citrus huanglongbing (HLB) in addition to revealing the expression profiles of genes critical for the production and detoxification of H2O2 and ATP synthesis. We also found that as ATP and H2O2 concentrations increased in the leaf, so did the severity of the HLB symptoms, a trend that remained consistent among the four different citrus varieties tested. Furthermore, the upregulation of ATP synthase, a key enzyme for energy conversion, may contribute to the accumulation of ATP in infected tissues, whereas downregulation of the H2O2 detoxification system may cause oxidative damage to plant macromolecules and cell structures. This may explain the cause of some of the HLB symptoms such as chlorosis or leaf discoloration. The findings in this study highlight important molecular and physiological mechanisms involved in the host plants' response to Las infection and provide new targets for interrupting the disease cycle.
Collapse
Affiliation(s)
- Marco Pitino
- USDA-ARS, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, 34945 FL USA
| | - Cheryl M Armstrong
- USDA-ARS, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, 34945 FL USA
| | - Yongping Duan
- USDA-ARS, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, 34945 FL USA
| |
Collapse
|
38
|
Martinelli F, Dandekar AM. Genetic Mechanisms of the Devious Intruder Candidatus Liberibacter in Citrus. FRONTIERS IN PLANT SCIENCE 2017; 8:904. [PMID: 28620403 PMCID: PMC5449717 DOI: 10.3389/fpls.2017.00904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/15/2017] [Indexed: 05/22/2023]
Affiliation(s)
- Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di PalermoPalermo, Italy
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, DavisDavis, CA, United States
- *Correspondence: Abhaya M. Dandekar
| |
Collapse
|
39
|
Nwugo CC, Doud MS, Duan YP, Lin H. Proteomics analysis reveals novel host molecular mechanisms associated with thermotherapy of 'Ca. Liberibacter asiaticus'-infected citrus plants. BMC PLANT BIOLOGY 2016; 16:253. [PMID: 27842496 PMCID: PMC5109811 DOI: 10.1186/s12870-016-0942-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/02/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Citrus Huanglongbing (HLB), which is linked to the bacterial pathogen 'Ca. Liberibacter asiaticus' (Las), is the most devastating disease of citrus plants, and longer-term control measures via breeding or genetic engineering have been unwieldy because all cultivated citrus species are susceptible to the disease. However, the degree of susceptibility varies among citrus species, which has prompted efforts to identify potential Las resistance/tolerance-related genes in citrus plants for application in breeding or genetic engineering programs. Plant exposure to one form of stress has been shown to serendipitously induce innate resistance to other forms of stress and a recent study showed that continuous heat treatment (40 to 42 °C) reduced Las titer and HLB-associated symptoms in citrus seedlings. The goal of the present study was to apply comparative proteomics analysis via 2-DE and mass spectrometry to elucidate the molecular processes associated with heat-induced mitigation of HLB in citrus plants. Healthy or Las-infected citrus grapefruit plants were exposed to room temperature or to continuous heat treatment of 40 °C for 6 days. RESULTS An exhaustive total protein extraction process facilitated the identification of 107 differentially-expressed proteins in response to Las and/or heat treatment, which included a strong up-regulation of chaperones including small (23.6, 18.5 and 17.9 kDa) heat shock proteins, a HSP70-like protein and a ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)-binding 60 kDa chaperonin, particularly in response to heat treatment. Other proteins that were generally down-regulated due to Las infection but up-regulated in response to heat treatment include RuBisCO activase, chlorophyll a/b binding protein, glucosidase II beta subunit-like protein, a putative lipoxygenase protein, a ferritin-like protein, and a glutathione S-transferase. CONCLUSIONS The differentially-expressed proteins identified in this study highlights a premier characterization of the molecular mechanisms potentially involved in the reversal of Las-induced pathogenicity processes in citrus plants and are hence proposed targets for application towards the development of cisgenic Las-resistant/tolerant citrus plants.
Collapse
Affiliation(s)
- Chika C. Nwugo
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, 93648 CA USA
| | - Melissa S. Doud
- USDA, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, 34945 FL USA
| | - Yong-ping Duan
- USDA, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, 34945 FL USA
| | - Hong Lin
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, 93648 CA USA
| |
Collapse
|