1
|
Mohammadbagherlou S, Samari E, Sagharyan M, Zargar M, Chen M, Ghorbani A. Hydrogen sulfide mechanism of action in plants; from interaction with regulatory molecules to persulfidation of proteins. Nitric Oxide 2025; 156:27-41. [PMID: 40024432 DOI: 10.1016/j.niox.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Hydrogen sulfide (H2S), previously known as a toxic gas, is currently considered one of the most important gaseous transmitters in plants. This novel signaling molecule has been determined to play notable roles in plant growth, development, and maturation. In addition, pharmacological and genetic evidence indicated that this regulatory molecule effectively ameliorates various plant stress conditions. H2S is involved in these processes by changing gene expression, enzyme activities, and metabolite concentrations. During its regulatory function, H2S interacts with other signaling pathways such as hydrogen peroxide (H2O2), nitric oxide (NO), Ca2+, carbon monoxide (CO), phosphatidic acid (PA), phytohormones, etc. The H2S mechanism of action may depend on the persulfidation post-translational modification (PTM), which attacks the cysteine (Cys) residues on the target proteins and changes their structure and activities. This review summarized H2S biosynthesis pathways, its role in sulfide state, and its donors in plant biology. We also discuss recent progress in the research on the interactions of H2S with other signaling molecules, as well as the role of persulfidation in modulating various plant reactions.
Collapse
Affiliation(s)
- Shirin Mohammadbagherlou
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Samari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Sagharyan
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Xiao L, Hu Y, Wang Y, Lv C, Zhan N, Duan H, Su J. Hydrogen gas enhances Arabidopsis salt tolerance by modulating hydrogen peroxide-mediated redox and ion homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112356. [PMID: 39653253 DOI: 10.1016/j.plantsci.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Hydrogen gas (H2) plays a crucial role in mitigating salt stress in plants, but the underlying mechanisms is largely unknown. Herein, we employed the pharmacological, molecular, and genetic approaches to investigate the positive roles of hydrogen peroxide (H2O2) in endogenous H2-induced salt tolerance of Arabidopsis thaliana. H2-induecd salt tolerance of CrHYD1 (hydrogenase 1 gene from Chlamydomonas reinhardtii) transgenic Arabidopsis was blocked by H2O2 scavenger or NADPH oxidase inhibitor. When RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) genes (AtrbohD or AtrbohF) were mutated, salt sensitivity of CrHYD1/atrboh (especially CrHYD1/atrbohD) hybrids was increased, but diminished by exogenous H2O2 administration. Salt-stimulated endogenous H2 enrichment consequently resulted in the rapid reactive oxygen species (ROS) accumulation under early salt stress, and the expression of AtrbohD (especially) and AtrbohF in CrHYD1 plants was higher than those in the wild-type (WT), suggesting that endogenous H2 could induce Atrboh-dependent ROS burst to respond salt stress. Further, H2-induced less 3,3'-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) stain in CrHYD1 plants was reversed under salt stress when either H2O2 was removed or Atrbohs were mutated, which could be explained by higher H2O2 and thiobarbituric acid reactive substances (TBARS) levels, as well as lower antioxidant enzyme activity. Additionally, H2-induced Na+ discharge and K+ accumulation in CrHYD1 plants under salt stress were blocked by either H2O2 removal or Atrboh knockout, which was validated by higher Na+/K+ ratios and lower ion transport-related gene expression. Our findings not only elucidate that endogenous H2 enhanced Arabidopsis salt tolerance by reestablishing H2O2-dependent ion and redox homeostasis, but provide new insights into the mechanisms of plant salinity responses.
Collapse
Affiliation(s)
- Linlin Xiao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| | - Yueran Hu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yiting Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chengsi Lv
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Na Zhan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| | - Jiuchang Su
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China.
| |
Collapse
|
3
|
Wang X, Liu C, Li T, Zhou F, Sun H, Li F, Ma Y, Jia H, Zhang X, Shi W, Gong C, Li J. Hydrogen sulfide antagonizes cytokinin to change root system architecture through persulfidation of CKX2 in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:1377-1390. [PMID: 39279035 DOI: 10.1111/nph.20122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule, which has been shown to play an important role in plant growth and development by coupling with various phytohormones. However, the relationship between H2S and cytokinin (CTK) and the mechanisms by which H2S and CTK affect root growth remain poorly understood. Endogenous CTK was analyzed by UHPLC-ESI-MS/MS. Persulfidation of cytokinin oxidase/dehydrogenases (CKXs) was analyzed by mass spectrometry (MS). ckx2/CKX2wild-type (WT), OE CKX2 and ckx2/CKX2Cys(C)62alanine(A) transgenic lines were isolated with the ckx2 background. H2S is linked to CTK content by CKX2, which regulates root system architecture (RSA). Persulfidation at cysteine (Cys)62 residue of CKX2 enhances CKX2 activity, resulting in reduced CTK content. We utilized 35S-LCD/oasa1 transgenic lines to investigate the effect of endogenous H2S on RSA, indicating that H2S reduces the gravitropic set-point angle (GSA), shortens root hairs, and increases the number of lateral roots (LRs). The persulfidation of CKX2Cys62 changes the elongation of cells on the upper and lower flanks of LR elongation zone, confirming that Cys62 of CKX2 is the specificity target of H2S to regulate RSA in vivo. In conclusion, this study demonstrated that H2S negatively regulates CTK content and affects RSA by persulfidation of CKX2Cys62 in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiuyu Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cuixia Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangyu Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haotian Sun
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fali Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Song XP, Cao BY, Xu ZP, Liang L, Xiao J, Tang W, Xie MH, Wang D, Zhu L, Huang Z, Lai YS, Sun B, Tang Y, Li HX. Molecular regulation by H 2S of antioxidant and glucose metabolism in cold-sensitive Capsicum. BMC PLANT BIOLOGY 2024; 24:931. [PMID: 39375603 PMCID: PMC11457385 DOI: 10.1186/s12870-024-05635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cold is an important environmental limiting factor affecting plant yield and quality. Capsicum (chili pepper), a tropical and subtropical vegetable crop, is extremely sensitive to cold. Although H2S is an important signaling regulator in the responses of plant growth and development to abiotic stress, few studies have examined its effects on cold-sensitive capsicum varieties. Through biotechnology methods to enhance the cold resistance of peppers, to provide some reference for pepper breeding, investigated molecular regulation by H2S of responses to cold stress in cold-sensitive capsicum plants, via physiological and transcriptomic analyses. RESULTS In capsicum seedlings, exogenous H2S enhanced relative electrical conductivity (REC) and levels of malondialdehyde (MDA) under cold stress, maintained membrane integrity, increased the activity of enzymatic and non-enzymatic antioxidants, balanced reactive oxygen species levels (O2·- and H2O2), and improved photosynthesis, mitigating the damage caused by cold. In addition, 416 differentially expressed genes (DEGs) were involved in the response to cold stress after H2S treatment. These DEGs were mainly enriched in the ascorbate-glutathione and starch-sucrose metabolic pathways and plant hormone signal-transduction pathways. Exogenous H2S altered the expression of key enzyme-encoding genes such as GST, APX, and MDHAR in the ascorbate-glutathione metabolism pathway, as well as that of regulatory genes for stimulatory hormones (auxin, cytokinins, and gibberellins) and inhibitory hormones (including jasmonate and salicylic acid) in the plant hormone signal-transduction pathway, helping to maintain the energy supply and intracellular metabolic stability under cold stress. CONCLUSIONS These findings reveal that exogenous H2S improves cold tolerance in cold-sensitive capsicum plants, elucidating the molecular mechanisms underlying its responses to cold stress. This study provides a theoretical basis for exploring and improving cold tolerance in capsicum plants.
Collapse
Affiliation(s)
- Xue Ping Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bi Yan Cao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ze Ping Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - JiaChang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wen Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ming Hui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Zhu
- Sichuan Academy of Agricultural Characteristic Plants, No.14 Yongxing Road, Chonglong Town, Zizhong County, Neijiang City, Sichuan Province, 641200, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yun Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huan Xiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
5
|
Zhang J, Aroca A, Hervás M, Navarro JA, Moreno I, Xie Y, Romero LC, Gotor C. Analysis of sulfide signaling in rice highlights specific drought responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5130-5145. [PMID: 38808567 PMCID: PMC11349868 DOI: 10.1093/jxb/erae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 05/30/2024]
Abstract
Hydrogen sulfide regulates essential plant processes, including adaptation responses to stress situations, and the best characterized mechanism of action of sulfide consists of the post-translational modification of persulfidation. In this study, we reveal the first persulfidation proteome described in rice including 3443 different persulfidated proteins that participate in a broad range of biological processes and metabolic pathways. In addition, comparative proteomics revealed specific proteins involved in sulfide signaling during drought responses. Several proteins are involved in the maintenance of cellular redox homeostasis, the tricarboxylic acid cycle and energy-related pathways, and ion transmembrane transport and cellular water homeostasis, with the aquaporin family showing the highest differential levels of persulfidation. We revealed that water transport activity is regulated by sulfide which correlates with an increasing level of persulfidation of aquaporins. Our findings emphasize the impact of persulfidation on total ATP levels, fatty acid composition, levels of reactive oxygen species, antioxidant enzymatic activities, and relative water content. Interestingly, the role of persulfidation in aquaporin transport activity as an adaptation response in rice differs from current knowledge of Arabidopsis, which highlights the distinct role of sulfide in improving rice tolerance to drought.
Collapse
Affiliation(s)
- Jing Zhang
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
6
|
Mardani-Korrani F, Amooaghaie R, Ahadi A, Ghanadian M. RBOH-dependent signaling is involved in He-Ne laser-induced salt tolerance and production of rosmarinic acid and carnosol in Salvia officinalis. BMC PLANT BIOLOGY 2024; 24:798. [PMID: 39179969 PMCID: PMC11344448 DOI: 10.1186/s12870-024-05502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND In the past two decades, the impacts of Helium-Neon (He-Ne) laser on stress resistance and secondary metabolism in plants have been studied, but the signaling pathway which by laser regulates this process remains unclear. Therefore, the current study sought to explore the role of RBOH-dependent signaling in He-Ne laser-induced salt tolerance and elicitation of secondary metabolism in Salvia officinalis. Seeds were primed with He-Ne laser (6 J cm- 2) and peroxide hydrogen (H2O2, 5 mM) and 15-old-day plants were exposed to two salinity levels (0, 75 mM NaCl). RESULTS Salt stress reduced growth parameters, chlorophyll content and relative water content (RWC) and increased malodialdehyde (MDA) and H2O2 contents in leaves of 45-old-day plants. After 48 h of salt exposure, higher transcription levels of RBOH (encoding NADPH oxidase), PAL (phenylalanine ammonia-lyase), and RAS (rosmarinic acid synthase) were recorded in leaves of plants grown from seeds primed with He-Ne laser and/or H2O2. Despite laser up-regulated RBOH gene in the early hours of exposing to salinity, H2O2 and MDA contents were lower in leaves of these plants after 30 days. Seed pretreatment with He-Ne laser and/or H2O2 augmented the accumulation of anthocyanins, total phenol, carnasol, and rosmarinic acid and increased total antioxidant capacity under non-saline and more extensively at saline conditions. Indeed, these treatments improved RWC, and K+/Na+ ratio, enhanced the activities of superoxide dismutase and ascorbate peroxidase and proline accumulation, and significantly decreased membrane injury and H2O2 content in leaves of 45-old-day plants under salt stress. However, applying diphenylene iodonium (DPI as an inhibitor of NADPH oxidase) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) after laser priming reversed the aforementioned effects which in turn resulted in the loss of laser-induced salt tolerance and secondary metabolism. CONCLUSIONS These findings for the first time deciphered that laser can induce a transient RBOH-dependent H2O2 burst, which might act as a downstream signal to promote secondary metabolism and salt stress alleviation in S. officinalis plants.
Collapse
Affiliation(s)
| | - Rayhaneh Amooaghaie
- Plant Science Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Alimohammad Ahadi
- Genetic Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| | - Mustafa Ghanadian
- Pharmacognosy Department, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Yang W, Wen D, Yang Y, Li H, Yang C, Yu J, Xiang H. Metabolomics and transcriptomics combined with physiology reveal key metabolic pathway responses in tobacco roots exposed to NaHS. BMC PLANT BIOLOGY 2024; 24:680. [PMID: 39020266 PMCID: PMC11256483 DOI: 10.1186/s12870-024-05402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Hydrogen sulfide (H2S) has emerged as a novel endogenous gas signaling molecule, joining the ranks of nitric oxide (NO) and carbon monoxide (CO). Recent research has highlighted its involvement in various physiological processes, such as promoting root organogenesis, regulating stomatal movement and photosynthesis, and enhancing plant growth, development, and stress resistance. Tobacco, a significant cash crop crucial for farmers' economic income, relies heavily on root development to affect leaf growth, disease resistance, chemical composition, and yield. Despite its importance, there remains a scarcity of studies investigating the role of H2S in promoting tobacco growth. This study exposed tobacco seedlings to different concentrations of NaHS (an exogenous H2S donor) - 0, 200, 400, 600, and 800 mg/L. Results indicated a positive correlation between NaHS concentration and root length, wet weight, root activity, and antioxidant enzymatic activities (CAT, SOD, and POD) in tobacco roots. Transcriptomic and metabolomic analyses revealed that treatment with 600 mg/L NaHS significantly effected 162 key genes, 44 key enzymes, and two metabolic pathways (brassinosteroid synthesis and aspartate biosynthesis) in tobacco seedlings. The addition of exogenous NaHS not only promoted tobacco root development but also potentially reduced pesticide usage, contributing to a more sustainable ecological environment. Overall, this study sheds light on the primary metabolic pathways involved in tobacco root response to NaHS, offering new genetic insights for future investigations into plant root development.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Dingxin Wen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Hao Li
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China.
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
8
|
Wang Y, Jin S, Liu Z, Chen G, Cheng P, Li L, Xu S, Shen W. H2 supplied via ammonia borane stimulates lateral root branching via phytomelatonin signaling. PLANT PHYSIOLOGY 2024; 194:884-901. [PMID: 37944026 DOI: 10.1093/plphys/kiad595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
A reliable and stable hydrogen gas (H2) supply will benefit agricultural laboratory and field trials. Here, we assessed ammonia borane (AB), an efficient hydrogen storage material used in the energy industry, and determined its effect on plant physiology and the corresponding mechanism. Through hydroponics and pot experiments, we discovered that AB increases tomato (Solanum lycopersicum) lateral root (LR) branching and this function depended on the increased endogenous H2 level caused by the sustainable H2 supply. In particular, AB might trigger LR primordia initiation. Transgenic tomato and Arabidopsis (Arabidopsis thaliana) expressing hydrogenase1 (CrHYD1) from Chlamydomonas reinhardtii not only accumulated higher endogenous H2 and phytomelatonin levels but also displayed pronounced LR branching. These endogenous H2 responses achieved by AB or genetic manipulation were sensitive to the pharmacological removal of phytomelatonin, indicating the downstream role of phytomelatonin in endogenous H2 control of LR formation. Consistently, extra H2 supply failed to influence the LR defective phenotypes in phytomelatonin synthetic mutants. Molecular evidence showed that the phytomelatonin-regulated auxin signaling network and cell-cycle regulation were associated with the AB/H2 control of LR branching. Also, AB and melatonin had little effect on LR branching in the presence of auxin synthetic inhibitors. Collectively, our integrated approaches show that supplying H2 via AB increases LR branching via phytomelatonin signaling. This finding might open the way for applying hydrogen storage materials to horticultural production.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shanshan Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ziyu Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Genmei Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
9
|
Wang J, Zhang C, Li H, Xu Y, Zhang B, Zheng F, Zhao B, Zhang H, Zhao H, Liu B, Xiao M, Zhang Z. OsJAB1 Positively Regulates Ascorbate Biosynthesis and Negatively Regulates Salt Tolerance Due to Inhibiting Early-Stage Salt-Induced ROS Accumulation in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3859. [PMID: 38005759 PMCID: PMC10675544 DOI: 10.3390/plants12223859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Reactive oxygen species (ROS) play dual roles in plant stress response, but how plants modulate the dual roles of ROS in stress response is still obscure. OsJAB1 (JUN-activation-domain-binding protein 1) encodes the rice CSN5 (COP9 signalsome subunit 5). This study showed that, similar to the Arabidopsis homolog gene CSN5B, OsJAB1-overexpressing (driven by a CaMV 35S promoter) plants (OEs) impaired rice salt stress tolerance; in contrast, OsJAB1-inhibited-expression (using RNA-interfering technology) plants (RIs) enhanced rice salt stress tolerance. Differing from CSN5B that negatively regulated ascorbate (Asc) biosynthesis, Asc content increased in OEs and decreased in RIs. ROS analysis showed that RIs clearly increased, but OEs inhibited ROS accumulation at the early stage of salt treatment; in contrast, RIs clearly decreased, but OEs promoted ROS accumulation at the late stage of salt treatment. The qPCR revealed that OEs decreased but RIs enhanced the expressions of ROS-scavenging genes. This indicated that OsJAB1 negatively regulated rice salt stress tolerance by suppressing the expression of ROS-scavenging genes. This study provided new insights into the CSN5 homologous protein named OsJAB1 in rice, which developed different functions during long-term evolution. How OsJAB1 regulates the Asc biosynthesis that coordinates the balance between cell redox signaling and ROS scavenging needs to be investigated in the future.
Collapse
Affiliation(s)
- Jiayi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (C.Z.); (H.L.); (Y.X.); (H.Z.)
| | - Chuanyu Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (C.Z.); (H.L.); (Y.X.); (H.Z.)
| | - Hua Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (C.Z.); (H.L.); (Y.X.); (H.Z.)
| | - Yuejun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (C.Z.); (H.L.); (Y.X.); (H.Z.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Sanya 571763, China
| | - Bo Zhang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China; (B.Z.); (F.Z.); (B.Z.); (B.L.)
| | - Fuyu Zheng
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China; (B.Z.); (F.Z.); (B.Z.); (B.L.)
| | - Beiping Zhao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China; (B.Z.); (F.Z.); (B.Z.); (B.L.)
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (C.Z.); (H.L.); (Y.X.); (H.Z.)
| | - Hui Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Baohai Liu
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China; (B.Z.); (F.Z.); (B.Z.); (B.L.)
| | - Minggang Xiao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China; (B.Z.); (F.Z.); (B.Z.); (B.L.)
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (C.Z.); (H.L.); (Y.X.); (H.Z.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Sanya 571763, China
| |
Collapse
|
10
|
Zboińska M, Romero LC, Gotor C, Kabała K. Regulation of V-ATPase by Jasmonic Acid: Possible Role of Persulfidation. Int J Mol Sci 2023; 24:13896. [PMID: 37762199 PMCID: PMC10531226 DOI: 10.3390/ijms241813896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Vacuolar H+-translocating ATPase (V-ATPase) is a proton pump crucial for plant growth and survival. For this reason, its activity is tightly regulated, and various factors, such as signaling molecules and phytohormones, may be involved in this process. The aim of this study was to explain the role of jasmonic acid (JA) in the signaling pathways responsible for the regulation of V-ATPase in cucumber roots and its relationship with other regulators of this pump, i.e., H2S and H2O2. We analyzed several aspects of the JA action on the enzyme, including transcriptional regulation, modulation of protein levels, and persulfidation of selected V-ATPase subunits as an oxidative posttranslational modification induced by H2S. Our results indicated that JA functions as a repressor of V-ATPase, and its action is related to a decrease in the protein amount of the A and B subunits, the induction of oxidative stress, and the downregulation of the E subunit persulfidation. We suggest that both H2S and H2O2 may be downstream components of JA-dependent negative proton pump regulation. The comparison of signaling pathways induced by two negative regulators of the pump, JA and cadmium, revealed that multiple pathways are involved in the V-ATPase downregulation in cucumber roots.
Collapse
Affiliation(s)
- Magdalena Zboińska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
11
|
Zboińska M, Janeczko A, Kabała K. Involvement of NO in V-ATPase Regulation in Cucumber Roots under Control and Cadmium Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2884. [PMID: 37571036 PMCID: PMC10420687 DOI: 10.3390/plants12152884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Nitric oxide (NO) is a signaling molecule that participates in plant adaptation to adverse environmental factors. This study aimed to clarify the role of NO in the regulation of vacuolar H+-ATPase (V-ATPase) in the roots of cucumber seedlings grown under control and Cd stress conditions. In addition, the relationship between NO and salicylic acid (SA), as well as their interrelations with hydrogen sulfide (H2S) and hydrogen peroxide (H2O2), have been verified. The effect of NO on V-ATPase was studied by analyzing two enzyme activities, the expression level of selected VHA genes and the protein level of selected VHA subunits in plants treated with a NO donor (sodium nitroprusside, SNP) and NO biosynthesis inhibitors (tungstate, WO42- and N-nitro-L-arginine methyl ester, L-NAME). Our results indicate that NO functions as a positive regulator of V-ATPase and that this regulation depends on NO generated by nitrate reductase and NOS-like activity. It was found that the mechanism of NO action is not related to changes in the gene expression or protein level of the V-ATPase subunits. The results suggest that in cucumber roots, NO signaling interacts with the SA pathway and, to a lesser extent, with two other known V-ATPase regulators, H2O2 and H2S.
Collapse
Affiliation(s)
- Magdalena Zboińska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| | - Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland;
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
12
|
Zhang NN, Suo BY, Yao LL, Ding YX, Zhang JH, Wei GH, Shangguan ZP, Chen J. H 2 S works synergistically with rhizobia to modify photosynthetic carbon assimilation and metabolism in nitrogen-deficient soybeans. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37303272 DOI: 10.1111/pce.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2 S) performs a crucial role in plant development and abiotic stress responses by interacting with other signalling molecules. However, the synergistic involvement of H2 S and rhizobia in photosynthetic carbon (C) metabolism in soybean (Glycine max) under nitrogen (N) deficiency has been largely overlooked. Therefore, we scrutinised how H2 S drives photosynthetic C fixation, utilisation, and accumulation in soybean-rhizobia symbiotic systems. When soybeans encountered N deficiency, organ growth, grain output, and nodule N-fixation performance were considerably improved owing to H2 S and rhizobia. Furthermore, H2 S collaborated with rhizobia to actively govern assimilation product generation and transport, modulating C allocation, utilisation, and accumulation. Additionally, H2 S and rhizobia profoundly affected critical enzyme activities and coding gene expressions implicated in C fixation, transport, and metabolism. Furthermore, we observed substantial effects of H2 S and rhizobia on primary metabolism and C-N coupled metabolic networks in essential organs via C metabolic regulation. Consequently, H2 S synergy with rhizobia inspired complex primary metabolism and C-N coupled metabolic pathways by directing the expression of key enzymes and related coding genes involved in C metabolism, stimulating effective C fixation, transport, and distribution, and ultimately improving N fixation, growth, and grain yield in soybeans.
Collapse
Affiliation(s)
- Ni-Na Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Bing-Yu Suo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Lin-Lin Yao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Xin Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ge-Hong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhou-Ping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Alfaro-Quezada JF, Martínez JP, Molinett S, Valenzuela M, Montenegro I, Ramírez I, Dorta F, Ávila-Valdés A, Gharbi E, Zhou M, Dailly H, Quinet M, Lutts S, Seeger M. Rootstock increases the physiological defence of tomato plants against Pseudomonas syringae pv. tomato infection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2891-2911. [PMID: 36723875 DOI: 10.1093/jxb/erad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/30/2023] [Indexed: 06/06/2023]
Abstract
Climate change has intensified the infection of tomato plants by pathogens such as Pseudomonas syringae pv. tomato (Pst). Rootstocks may increase plant tolerance to leaf phytopathogens. The aim of this study was to evaluate the effects of the tolerant Poncho Negro (R) tomato rootstock on physiological defence and the role of hydrogen sulfide (H2S) in susceptible Limachino (L) tomato plant responses to Pst attack. Ungrafted (L), self-grafted (L/L), and grafted (L/R) plants were infected with Pst. Rootstock increased the concentration of antioxidant compounds including ascorbate in the scion. Tolerant rootstock induced an increase of H2S in the scion, which correlated with enhanced expression of the SlAPX2 gene. A high accumulation of salicylic acid was observed in Pst-inoculated grafted L/L and L/R plants, but this was higher in L/R plants. The increase of H2S during Pst infection was associated with a reduction of ethylene in L/R plants. Our study indicates that the Poncho Negro rootstock reduced the symptoms of bacterial speck disease in the Limachino tomato plants, conferring tolerance to Pst infection. This study provides new knowledge about the impact of rootstock in the defence of tomato plants against leaf pathogens that could be used in sustainable management of tomato cultivation.
Collapse
Affiliation(s)
- Juan Felipe Alfaro-Quezada
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
- Laboratorio de Fitopatología de Frutales, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional Quilamapu, Avenida Vicente Méndez 515, Chillán, Chile
| | - Juan Pablo Martínez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
| | - Sebastian Molinett
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
| | - Miryam Valenzuela
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Ivan Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar, Chile
| | - Ingrid Ramírez
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Fernando Dorta
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Andrea Ávila-Valdés
- Graduate School, Faculty of Agricultural Sciences & Centro de Investigación en Suelos Volcánicos, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Emna Gharbi
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mingxi Zhou
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, 37005, Czech Republic
| | - Hélène Dailly
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| |
Collapse
|
14
|
Hilal B, Khan TA, Fariduddin Q. Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1065-1083. [PMID: 36921557 DOI: 10.1016/j.plaphy.2023.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Adverse environmental constraints such as drought, heat, cold, salinity, and heavy metal toxicity are the primary concerns of the agricultural industry across the globe, as these stresses negatively affect yield and quality of crop production and therefore can be a major threat to world food security. Recently, it has been demonstrated that hydrogen sulfide (H2S), which is well-known as a gasotransmitter in animals, also plays a potent role in various growth and developmental processes in plants. H2S, as a potent signaling molecule, is involved in several plant processes such as in the regulation of stomatal pore movements, seed germination, photosynthesis and plant adaptation to environmental stress through gene regulation, post-translation modification of proteins and redox homeostasis. Moreover, a number of experimental studies have revealed that H2S could improve the adaptation capabilities of plants against diverse environmental constraints by mitigating the toxic and damaging effects triggered by stressful environments. An attempt has been made to uncover recent development in the biosynthetic and metabolic pathways of H2S and various physiological functions modulated in plants, H2S donors, their functional mechanism, and application in plants. Specifically, our focus has been on how H2S is involved in combating the destructive effects of abiotic stresses and its role in persulfidation. Furthermore, we have comprehensively elucidated the crosstalk of H2S with plant growth regulators.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
15
|
Kacziba B, Szierer Á, Mészáros E, Rónavári A, Kónya Z, Feigl G. Exploration the homeostasis of signaling molecules in monocotyledonous crops with different CuO nanoparticle tolerance. PLANT STRESS 2023; 7:100145. [DOI: 10.1016/j.stress.2023.100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
16
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
17
|
Ekinci M, Turan M, Ors S, Dursun A, Yildirim E. Improving salt tolerance of bean ( Phaseolus vulgaris L.) with hydrogen sulfide. PHOTOSYNTHETICA 2023; 61:25-36. [PMID: 39650122 PMCID: PMC11515852 DOI: 10.32615/ps.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/23/2023] [Indexed: 12/11/2024]
Abstract
The current study examined the H2S applications on growth, biochemical and physiological parameters of bean seedlings under saline conditions. The findings of the study indicated that salt stress decreased plant growth and development, photosynthetic activity, and mineral and hormone content [excluding abscisic acid (ABA)] in bean seedlings. Plant and root fresh mass and dry mass with H2S applications increased as compared to the control treatment at the same salinity level. Both salinity and H2S treatments significantly affected the net assimilation rate, stomatal conductance, transpiration rate, and intercellular CO2 content of bean seedlings. Significant increases occurred in H2O2, malondialdehyde (MDA), proline, sucrose content, enzyme activity, and ABA content with salt stress. However, H2S applications inhibited the effects of salinity on plant growth, photosynthetic activity, and mineral content in beans. H2S applications reduced H2O2, MDA, proline, sucrose content, enzyme activity, and ABA content in beans. As a result, exogenous H2S applications could mitigate the negative impacts of salinity in beans.
Collapse
Affiliation(s)
- M. Ekinci
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - M. Turan
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, Istanbul, Turkey
| | - S. Ors
- Department of Agricultural Structures and Irrigation, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - A. Dursun
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
- Department of Horticulture and Agronomy, Faculty of Agriculture, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic
| | - E. Yildirim
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| |
Collapse
|
18
|
Liu F, Wang Y, Zhang G, Li L, Shen W. Molecular hydrogen positively influences lateral root formation by regulating hydrogen peroxide signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111500. [PMID: 36257409 DOI: 10.1016/j.plantsci.2022.111500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Although a previous study discovered that exogenous molecular hydrogen (H2) supplied with hydrogen-rich water (HRW) can mediate lateral root (LR) development, whether or how endogenous H2 influences LR formation is still elusive. In this report, mimicking the induction responses in tomato seedlings achieved by HRW or exogenous hydrogen peroxide (H2O2; a positive control), transgenic Arabidopsis that overexpressed the hydrogenase1 gene (CrHYD1) from Chlamydomonas reinhardtii not only stimulated endogenous hydrogen peroxide (H2O2) production, but also markedly promoted LR formation. Above H2 and H2O2 responses were abolished by the removal of endogenous H2O2. Moreover, the changes in transcriptional patterns of representative cell cycle genes and auxin signaling-related genes during LR development in both tomato and transgenic Arabidopsis thaliana matched with above phenotypes. The alternations in the levels of GUS transcripts driven by the CYCB1 promoter and expression of PIN1 protein further indicated that H2O2 synthesis was tightly linked to LR formation achieved by endogenous H2, and cell cycle regulation and auxin-dependent pathway might be their targets. There results might provide a reference for molecular mechanism underlying the regulation of root morphogenesis by H2.
Collapse
Affiliation(s)
- Feijie Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guhua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
19
|
Javad S, Shah AA, Ramzan M, Sardar R, Javed T, Al-Huqail AA, Ali HM, Chaudhry O, Yasin NA, Ahmed S, Hussain RA, Hussain I. Hydrogen sulphide alleviates cadmium stress in Trigonella foenum-graecum by modulating antioxidant enzymes and polyamine content. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:618-626. [PMID: 35114051 DOI: 10.1111/plb.13393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/06/2022] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) toxicity reduces growth and yield of crops grown in metal-polluted sites. Research was conducted to estimate the potential of hydrogen sulphide (H2 S) to mitigate toxicity caused by Cd in fenugreek seedlings (Trigonella foenum-graecum L.). Different concentrations of CdCl2 (Cd1-1 mM, Cd2-1.5 mM, Cd3-2mM) and H2 S (HS1-100 µM, HS2-150 µM, HS3-200 µM) were assessed. Seeds of fenugreek were primed with sodium hydrosulphide (NaHS), as H2 S donor. Seedlings growing in Cd-spiked media treated with H2 S were harvested after 2 weeks. Cd stress affected growth of fenugreek seedlings. Cd toxicity decreased leaf relative water content (LRWC), intercellular CO2 concentration, net photosynthesis, stomatal conductance and transpiration. However, application of H2 S significantly improved seedling morphological attributes by increasing the activity of antioxidant enzymes, i.e. APX, CAT and SOD, in Cd-contaminated soil. H2 S treatment also regulated phenolic and flavonoid content. H2 S-induced biosynthesis of spermidine (Spd) and putrescine (Put) could account for the enhancement of growth and physiological performance of fenugreek seedlings under Cd stress. H2 S treatment also reduced H2 O2 production (38%) and electrolyte leakage (EL, 51%) in seedlings grown in different concentrations of Cd. It is recommended to evaluate the efficacy of H2 S in alleviating Cd toxicity in other crop plants.
Collapse
Affiliation(s)
- S Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - A A Shah
- Department of Botany, Division of Science and Technology., University of Education, Lahore, Pakistan., Lahore, Pakistan
| | - M Ramzan
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - R Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - T Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - A A Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - H M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - O Chaudhry
- Ontario Institute of Agrology, Biology and Environmental Sciences, Albert Campbell Collegiate Institute (NS), Scarborough, Ontario, Canada
| | - N A Yasin
- Senior Superintendent Garden, RO-II Office, University of the Punjab, Lahore, Pakistan
| | - S Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - R A Hussain
- Department of Botany, Division of Science and Technology., University of Education, Lahore, Pakistan., Lahore, Pakistan
| | - I Hussain
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, Pakistan
| |
Collapse
|
20
|
The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022; 23:ijms23084272. [PMID: 35457090 PMCID: PMC9032328 DOI: 10.3390/ijms23084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.
Collapse
|
21
|
de Bont L, Mu X, Wei B, Han Y. Abiotic stress-triggered oxidative challenges: Where does H 2S act? J Genet Genomics 2022; 49:748-755. [PMID: 35276389 DOI: 10.1016/j.jgg.2022.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/08/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adaptation, such as defense by phytohormone activation, stomatal movement, gene reprogramming, and plant growth modulation. Reactive oxygen species (ROS)-dependent oxidative stress is involved in these responses. Remarkably, an ever-growing body of evidence indicates that H2S can directly interact with ROS processing systems in a redox-dependent manner, while it has been gradually recognized that H2S-based posttranslational modifications of key protein cysteine residues determine stress responses. Furthermore, the reciprocal interplay between H2S and nitric oxide (NO) in regulating oxidative stress has significant importance. The interaction of H2S with NO and ROS during acclimation to abiotic stress may vary from synergism to antagonism. However, the molecular pathways and factors involved remain to be identified. This review not only aims to provide updated information on H2S action in regulating ROS-dependent redox homeostasis and signaling, but also discusses the mechanisms of H2S-dependent regulation in the context of oxidative stress elicited by environmental cues.
Collapse
Affiliation(s)
- Linda de Bont
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Xiujie Mu
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Bo Wei
- School of Biology, Food and Environment, Hefei University, 230601, Hefei, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China.
| |
Collapse
|
22
|
Zhang T, Wang Y, Zhao Z, Xu S, Shen W. Degradation of Carbendazim by Molecular Hydrogen on Leaf Models. PLANTS (BASEL, SWITZERLAND) 2022; 11:621. [PMID: 35270091 PMCID: PMC8912477 DOI: 10.3390/plants11050621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022]
Abstract
Although molecular hydrogen can alleviate herbicide paraquat and Fusarium mycotoxins toxicity in plants and animals, whether or how molecular hydrogen influences pesticide residues in plants is not clear. Here, pot experiments in greenhouse revealed that degradation of carbendazim (a benzimidazole pesticide) in leaves could be positively stimulated by molecular hydrogen, either exogenously applied or with genetic manipulation. Pharmacological and genetic increased hydrogen gas could increase glutathione metabolism and thereafter carbendazim degradation, both of which were abolished by the removal of endogenous glutathione with its synthetic inhibitor, in both tomato and in transgenic Arabidopsis when overexpressing the hydrogenase 1 gene from Chlamydomonas reinhardtii. Importantly, the antifungal effect of carbendazim in tomato plants was not obviously altered regardless of molecular hydrogen addition. The contribution of glutathione-related detoxification mechanism achieved by molecular hydrogen was confirmed. Our results might not only illustrate a previously undescribed function of molecular hydrogen in plants, but also provide an environmental-friendly approach for the effective elimination or reduction of pesticides residues in crops when grown in pesticides-overused environmental conditions.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (T.Z.); (Y.W.); (Z.Z.)
| | - Yueqiao Wang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (T.Z.); (Y.W.); (Z.Z.)
| | - Zhushan Zhao
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (T.Z.); (Y.W.); (Z.Z.)
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (T.Z.); (Y.W.); (Z.Z.)
| |
Collapse
|
23
|
Wang Y, Zhang T, Wang J, Xu S, Shen W. Regulation of chlorothalonil degradation by molecular hydrogen. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127291. [PMID: 34583156 DOI: 10.1016/j.jhazmat.2021.127291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Pesticides can accumulate throughout the food chain to potentially endanger human health. Although molecular hydrogen (H2) is widely used in industry and medicine, its application in agriculture is just beginning. This study showed that H2 enhances the degradation of the fungicide chlorothalonil (CHT) in plants, but does not reduce its antifungal efficacy. Pharmacological evidence confirmed the contribution of H2-stimulated brassinosteroids (BRs) in the above responses. The genetic increased endogenous H2 with overexpression of hydrogenase 1 gene (CrHYD1) from Chlamydomonas reinhardtii in Arabidopsis not only increased BRs levels, but also eventually intensified the degradation of CHT. Expression of genes encoding some enzymes responsible for detoxification in tomato and Arabidopsis were also stimulated. Contrasting responses were observed after the pharmacological removal of endogenous BR. We further proved that H2 control of CHT degradation was relatively universal, with at least since its degradation in Chinese cabbage, cucumber, radish, alfalfa, rice, and rapeseed were differentially enhanced by H2. Collectively, above results clearly indicated that both exogenously and endogenously applied with H2 could stimulate degradation of CHT partially via BR-dependent detoxification. These results may open a new window for environmental-friendly hydrogen-based agriculture.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Liu H, Wang C, Li C, Zhao Z, Wei L, Liu Z, Hu D, Liao W. Nitric oxide is involved in hydrogen sulfide-induced adventitious rooting in tomato ( Solanum lycopersicum). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:245-258. [PMID: 34991782 DOI: 10.1071/fp21288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2 S) are signalling molecules that regulate adventitious rooting in plants. However, little is known about the cross-talk between NO and H2 S during adventitious rooting. Tomato (Solanum lycopersicum L.) explants were used to investigate the roles of and relationships between NO and H2 S during rooting. Effects of the NO donor sodium nitroprusside (SNP) and the H2 S donor sodium hydrosulfide (NaHS) on adventitious rooting were dose-dependent, and the greatest biological responses were observed under 25μM SNP and 50μM NaHS. The positive effect of NaHS was reversed by the NO scavenger 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), indicating that the H2 S-induced response was partially NO-dependent. Peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD) activities significantly increased by SNP and NaHS treatment, and indoleacetic acid oxidase (IAAO) activity and the O2 - and H2 O2 content significantly decreased by SNP and NaHS treatment. SNP and NaHS treatment also increased the content of soluble sugar and protein and indole-3-acetic acid (IAA). cPTIO significantly mitigated the increases in POD, PPO and SOD activity and soluble sugar, protein and IAA content induced by NaHS. SNP and NaHS upregulated the expression of auxin-related genes (ARF4 and ARF16 ), cell cycle-related genes (CYCD3 , CYCA3 and CDKA1 ), and antioxidant-related genes (TPX2 , SOD and POD ); whereas cPTIO significantly inhibited the increase in the expression of these genes induced by NaHS. Overall, these results show that NO may be involved in H2 S-induced adventitious rooting by regulating the activity of rooting-related enzymes, the expression of related genes, and the content of various nutrients.
Collapse
Affiliation(s)
- Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Dongliang Hu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
25
|
Metallothionein1A Regulates Rhizobial Infection and Nodulation in Phaseolus vulgaris. Int J Mol Sci 2022; 23:ijms23031491. [PMID: 35163415 PMCID: PMC8836284 DOI: 10.3390/ijms23031491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Metallothioneins (MTs) constitute a heterogeneous family of ubiquitous metal ion-binding proteins. In plants, MTs participate in the regulation of cell growth and proliferation, protection against heavy metal stress, oxidative stress responses, and responses to pathogen attack. Despite their wide variety of functions, the role of MTs in symbiotic associations, specifically nodule-fabacean symbiosis, is poorly understood. Here, we analyzed the role of the PvMT1A gene in Phaseolus vulgaris-Rhizobium tropici symbiosis using bioinformatics and reverse genetics approaches. Using in silico analysis, we identified six genes encoding MTs in P. vulgaris, which were clustered into three of the four classes described in plants. PvMT1A transcript levels were significantly higher in roots inoculated with R. tropici at 7 and 30 days post inoculation (dpi) than in non-inoculated roots. Functional analysis showed that downregulating PvMT1A by RNA interference (RNAi) reduced the number of infection events at 7 and 10 dpi and the number of nodules at 14 and 21 dpi. In addition, nodule development was negatively affected in PvMT1A:RNAi transgenic roots, and these nodules displayed a reduced nitrogen fixation rate at 21 dpi. These results strongly suggest that PvMT1A plays an important role in the infection process and nodule development in P. vulgaris during rhizobial symbiosis.
Collapse
|
26
|
Li H, Chen H, Chen L, Wang C. The Role of Hydrogen Sulfide in Plant Roots during Development and in Response to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23031024. [PMID: 35162947 PMCID: PMC8835357 DOI: 10.3390/ijms23031024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogen sulfide (H2S) is regarded as a “New Warrior” for managing plant stress. It also plays an important role in plant growth and development. The regulation of root system architecture (RSA) by H2S has been widely recognized. Plants are dependent on the RSA to meet their water and nutritional requirements. They are also partially dependent on the RSA for adapting to environment change. Therefore, a good understanding of how H2S affects the RSA could lead to improvements in both crop function and resistance to environmental change. In this review, we summarized the regulating effects of H2S on the RSA in terms of primary root growth, lateral and adventitious root formation, root hair development, and the formation of nodules. We also discussed the genes involved in the regulation of the RSA by H2S, and the relationships with other signal pathways. In addition, we discussed how H2S regulates root growth in response to abiotic stress. This review could provide a comprehensive understanding of the role of H2S in roots during development and under abiotic stress.
Collapse
Affiliation(s)
- Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
- Correspondence: (H.L.); (C.W.)
| | - Hongyu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Lulu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Chenyang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University,
Zhengzhou 450002, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
27
|
Gámez-Arcas S, Baroja-Fernández E, García-Gómez P, Muñoz FJ, Almagro G, Bahaji A, Sánchez-López ÁM, Pozueta-Romero J. Action mechanisms of small microbial volatile compounds in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:498-510. [PMID: 34687197 DOI: 10.1093/jxb/erab463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/21/2021] [Indexed: 05/22/2023]
Abstract
Microorganisms communicate with plants by exchanging chemical signals throughout the phytosphere. Before direct contact with plants occurs, beneficial microorganisms emit a plethora of volatile compounds that promote plant growth and photosynthesis as well as developmental, metabolic, transcriptional, and proteomic changes in plants. These compounds can also induce systemic drought tolerance and improve water and nutrient acquisition. Recent studies have shown that this capacity is not restricted to beneficial microbes; it also extends to phytopathogens. Plant responses to microbial volatile compounds have frequently been associated with volatile organic compounds with molecular masses ranging between ~ 45Da and 300Da. However, microorganisms also release a limited number of volatile compounds with molecular masses of less than ~45Da that react with proteins and/or act as signaling molecules. Some of these compounds promote photosynthesis and growth when exogenously applied in low concentrations. Recently, evidence has shown that small volatile compounds are important determinants of plant responses to microbial volatile emissions. However, the regulatory mechanisms involved in these responses remain poorly understood. This review summarizes current knowledge of biochemical and molecular mechanisms involved in plant growth, development, and metabolic responses to small microbial volatile compounds.
Collapse
Affiliation(s)
- Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Pablo García-Gómez
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada (CEBAS-CSIC), Campus Universitario de Espinardo, Espinardo, 30100 Murcia, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' (IHSM-UMA-CSIC), Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| |
Collapse
|
28
|
Liu B, Zhang X, You X, Li Y, Long S, Wen S, Liu Q, Liu T, Guo H, Xu Y. Hydrogen sulfide improves tall fescue photosynthesis response to low-light stress by regulating chlorophyll and carotenoid metabolisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:133-145. [PMID: 34883320 DOI: 10.1016/j.plaphy.2021.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S), as a gaseous messenger molecule, plays critical roles in signal transduction and biological modulation. In the present study, the roles of H2S in regulating chlorophyll (Chl) and carotenoid (Car) contents to improve photosynthesis in tall fescue were investigated under low-light (LL) stress. Compared to control conditions, LL stress significantly reduced total biomass, net photosynthetic rate (Pn), maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), and the contents of Chl and Car. Under exogenous sodium hydrosulfide (NaHS, H2S donor) application, these parameters were enhanced, ultimately increasing photosynthesis. Moreover, exogenous H2S up-regulated the expression of chlorophyll biosynthesis genes while down-regulated chlorophyll degradation genes, resulting in increases in chlorophyll precursors. Components of carotenoids and expression of genes encoding biosynthesis and degradation enzymes varied similarly. Additionally, application exogenous H2S up-regulated expression of FaDES1 and FaDCD. Thus, it enhanced L-cysteine desulfhydrase 1 (DES1, EC 4.4.1.1) and D-cysteine desulfhydrase (DCD, EC 4.4.1.15) activities leading to elevated endogenous H2S. However, these responses were reversed by treatment with hypotaurine (HT, H2S scavenger). These results suggested that H2S is involved in regulating photosynthesis to improve LL tolerance via modulating Chl and Car metabolisms in tall fescue.
Collapse
Affiliation(s)
- Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xuhu Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xiangkai You
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Youyue Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Suyun Wen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Qian Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
29
|
Mishra V, Singh VP. Implication of nitric oxide and hydrogen sulfide signalling in alleviating arsenate stress in rice seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:117958. [PMID: 34547656 DOI: 10.1016/j.envpol.2021.117958] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) since their discovery have proven to be game changing molecules in alleviating abiotic stress. They individually play role in plant stress management while the pathways of stress regulation through their crosstalk remain elusive. The current study focuses on investigating the interplay of NO and H2S signalling in the amelioration of arsenate As(V) toxicity in rice seedlings and managing its growth, photosynthesis, sucrose and proline metabolism. Results show that As(V) exposure declined fresh weight (biomass) due to induced cell death in root tips. Moreover, a diminished RuBisCO activity, decline in starch content with high proline dehydrogenase activity and increased total soluble sugars content was observed which further intensified in the presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, an inhibitor of nitric oxide synthase-like activity), and DL-propargylglycine (PAG, an inhibitor of cysteine desulfhydrase activity). These results correlate with lower endogenous level of NO and H2S. Addition of L-NAME increased As(V) toxicity. Interestingly, addition of SNP reverses effect of L-NAME suggesting that endogenous NO has a role in mitigating As(V) toxicity. Similarly, exogenous H2S also significantly alleviated As(V) stress, while PAG further stimulated As(V) toxicity. Furthermore, application of H2S in the presence of L - NAME and NO in the presence of PAG could still mitigate As(V) toxicity, suggesting that endogenous NO and H2S could independently mitigate As(V) stress.
Collapse
Affiliation(s)
- Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
30
|
Wang P, Fang H, Gao R, Liao W. Protein Persulfidation in Plants: Function and Mechanism. Antioxidants (Basel) 2021; 10:1631. [PMID: 34679765 PMCID: PMC8533255 DOI: 10.3390/antiox10101631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
As an endogenous gaseous transmitter, the function of hydrogen sulfide (H2S) has been extensively studied in plants. Once synthesized, H2S may be involved in almost all life processes of plants. Among them, a key route for H2S bioactivity occurs via protein persulfidation, in which process oxidizes cysteine thiol (R-SH) groups into persulfide (R-SSH) groups. This process is thought to underpin a myriad of cellular processes in plants linked to growth, development, stress responses, and phytohormone signaling. Multiple lines of emerging evidence suggest that this redox-based reversible post-translational modification can not only serve as a protective mechanism for H2S in oxidative stress, but also control a variety of biochemical processes through the allosteric effect of proteins. Here, we collate emerging evidence showing that H2S-mediated persulfidation modification involves some important biochemical processes such as growth and development, oxidative stress, phytohormone and autophagy. Additionally, the interaction between persulfidation and S-nitrosylation is also discussed. In this work, we provide beneficial clues for further exploration of the molecular mechanism and function of protein persulfidation in plants in the future.
Collapse
Affiliation(s)
| | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (P.W.); (H.F.); (R.G.)
| |
Collapse
|
31
|
Sun Y, Ma C, Kang X, Zhang L, Wang J, Zheng S, Zhang T. Hydrogen sulfide and nitric oxide are involved in melatonin-induced salt tolerance in cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:101-112. [PMID: 34340024 DOI: 10.1016/j.plaphy.2021.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 05/07/2023]
Abstract
Hydrogen sulfide (H2S) is a novel gaseous signaling molecule in response to adversity stress. Melatonin (MT) is a multifunctional molecule that plays an important role in regulating plant stress resistance. However, the interactions between H2S and MT are still unknown. Therefore, the role of H2S in MT-induced salt tolerance was elucidated in this study by measuring the antioxidant defense system and photosynthetic characteristics of cucumber. In addition, the crosstalk among H2S, NO, and mitogen-activated protein kinase (MAPK) was investigated. Results showed that MT induced the production of H2S by significantly increasing the activity of L-/D-cysteine desulfhydrase, thereby regulating photosynthetic efficiency, antioxidant enzyme activity, and antioxidant enzyme gene expression in cucumber, thus alleviating reactive oxygen species burst by salt stress. In this process, the H2S and NO induced by MT were inhibited by NO scavenger (cPTIO) and H2S scavenger (HT) but not affected by MAPK inhibitor (U0126). Intriguingly, the expression of MAPK3/4/6/9 was inhibited by HT and cPTIO. These results suggested that H2S may act as downstream of MT, interact with NO and MAPK cascades, and jointly participate in the process of MT mitigating salt stress in cucumber. In addition, H2S and NO are upstream signaling molecules of the MAPK cascades.
Collapse
Affiliation(s)
- Yuanpei Sun
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Cheng Ma
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xin Kang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lu Zhang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Sheng Zheng
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Tengguo Zhang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
32
|
Hydrogen Sulfide Enhances Plant Tolerance to Waterlogging Stress. PLANTS 2021; 10:plants10091928. [PMID: 34579462 PMCID: PMC8468677 DOI: 10.3390/plants10091928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide (H2S) is considered the third gas signal molecule in recent years. A large number of studies have shown that H2S not only played an important role in animals but also participated in the regulation of plant growth and development and responses to various environmental stresses. Waterlogging, as a kind of abiotic stress, poses a serious threat to land-based waterlogging-sensitive plants, and which H2S plays an indispensable role in response to. In this review, we summarized that H2S improves resistance to waterlogging stress by affecting lateral root development, photosynthetic efficiency, and cell fates. Here, we reviewed the roles of H2S in plant resistance to waterlogging stress, focusing on the mechanism of its promotion to gained hypoxia tolerance. Finally, we raised relevant issues that needed to be addressed.
Collapse
|
33
|
Abstract
Hydrogen sulfide (H2S) is predominantly considered as a gaseous transmitter or signaling molecule in plants. It has been known as a crucial player during various plant cellular and physiological processes and has been gaining unprecedented attention from researchers since decades. They regulate growth and plethora of plant developmental processes such as germination, senescence, defense, and maturation in plants. Owing to its gaseous state, they are effectively diffused towards different parts of the cell to counterbalance the antioxidant pools as well as providing sulfur to cells. H2S participates actively during abiotic stresses and enhances plant tolerance towards adverse conditions by regulation of the antioxidative defense system, oxidative stress signaling, metal transport, Na+/K+ homeostasis, etc. They also maintain H2S-Cys-cycle during abiotic stressed conditions followed by post-translational modifications of cysteine residues. Besides their role during abiotic stresses, crosstalk of H2S with other biomolecules such as NO and phytohormones (abscisic acid, salicylic acid, melatonin, ethylene, etc.) have also been explored in plant signaling. These processes also mediate protein post-translational modifications of cysteine residues. We have mainly highlighted all these biological functions along with proposing novel relevant issues that are required to be addressed further in the near future. Moreover, we have also proposed the possible mechanisms of H2S actions in mediating redox-dependent mechanisms in plant physiology.
Collapse
|
34
|
Qiu S, Chen X, Zhai Y, Cui W, Ai X, Rao S, Chen J, Yan F. Downregulation of Light-Harvesting Complex II Induces ROS-Mediated Defense Against Turnip Mosaic Virus Infection in Nicotiana benthamiana. Front Microbiol 2021; 12:690988. [PMID: 34290685 PMCID: PMC8287655 DOI: 10.3389/fmicb.2021.690988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/14/2021] [Indexed: 12/05/2022] Open
Abstract
The light-harvesting chlorophyll a/b complex protein 3 (LHCB3) of photosystem II plays important roles distributing the excitation energy and modulating the rate of state transition and stomatal response to abscisic acid. However, the functions of LHCB3 in plant immunity have not been well investigated. Here, we show that the expression of LHCB3 in Nicotiana benthamiana (NbLHCB3) was down-regulated by turnip mosaic virus (TuMV) infection. When NbLHCB3 was silenced by tobacco rattle virus-induced gene silencing, systemic infection of TuMV was inhibited. H2O2 was over-accumulated in NbLHCB3-silenced plants. Chemical treatment to inhibit or eliminate reactive oxygen species (ROS) impaired the resistance of the NbLHCB3-silenced plants to TuMV infection. Co-silencing of NbLHCB3 with genes involved in ROS production compromised the resistance of plants to TuMV but co-silencing of NbLHCB3 with genes in the ROS scavenging pathway increased resistance to the virus. Transgenic plants overexpressing NbLHCB3 were more susceptible to TuMV. These results indicate that downregulation of NbLHCB3 is involved in defense against TuMV by inducing ROS production.
Collapse
Affiliation(s)
- Shiyou Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuwei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yushan Zhai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuhong Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
35
|
Huang X, Chen S, Li W, Tang L, Zhang Y, Yang N, Zou Y, Zhai X, Xiao N, Liu W, Li P, Xu C. ROS regulated reversible protein phase separation synchronizes plant flowering. Nat Chem Biol 2021; 17:549-557. [PMID: 33633378 DOI: 10.1038/s41589-021-00739-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced H2O2 in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene ANANTHA to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shudong Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weiping Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingli Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqin Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Ning Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yupan Zou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiawan Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
36
|
Goyal V, Jhanghel D, Mehrotra S. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. PHYSIOLOGIA PLANTARUM 2021; 171:896-908. [PMID: 33665834 DOI: 10.1111/ppl.13380] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The agriculture sector is vulnerable to various environmental stresses, which significantly affect plant growth, performance, and development. Abiotic stresses, such as salinity and drought, cause severe losses in crop productivity worldwide. Soil salinity is a major stress suppressing plant development through osmotic stress accompanied by ion toxicity, nutritional imbalance, and oxidative stress. Various defense mechanisms like osmolytes accumulations, activation of stress-induced genes, and transcription factors, production of plant growth hormones, accumulation of antioxidants, and redox defense system in plants are responsible for combating salt stress. Nitric oxide (NO) and hydrogen sulphide (H2 S) have emerged as novel bioactive gaseous signaling molecules that positively impact seed germination, homeostasis, plant metabolism, growth, and development, and are involved in several plant acclimation responses to impart stress tolerance in plants. NO and H2 S trigger cell signaling by activating a cascade of biochemical events that result in plant tolerance to environmental stresses. NO- and H2 S-mediated signaling networks, interactions, and crosstalks facilitate stress tolerance in plants. Research on the roles and mechanisms of NO and H2 S as challengers of salinity is entering an exponential exploration era. The present review focuses on the current knowledge of the mechanisms of stress tolerance in plants and the role of NO and H2 S in adaptive plant responses to salt stress and provides an overview of the signaling mechanisms and interplay of NO and H2 S in the regulation of growth and development as well as modulation of defense responses in plants and their long term priming effects for imparting salinity tolerance in plants.
Collapse
Affiliation(s)
- Vinod Goyal
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Dharmendra Jhanghel
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shweta Mehrotra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
37
|
Du X, Jin Z, Liu Z, Liu D, Zhang L, Ma X, Yang G, Liu S, Guo Y, Pei Y. H 2S Persulfidated and Increased Kinase Activity of MPK4 to Response Cold Stress in Arabidopsis. Front Mol Biosci 2021; 8:635470. [PMID: 33778005 PMCID: PMC7991836 DOI: 10.3389/fmolb.2021.635470] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 01/22/2023] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter along with nitric oxide and carbon oxide, which is involved in plant growth and development as well as biotic and abiotic stress resistance. In a previous study, we reported that mitogen-activated protein kinases, especially MPK4, are important downstream components of H2S involved in alleviating cold stress; however the underlying mechanism is unclear. In this study, we determined that the ability of H2S to alleviate cold stress is impaired in mpk4 mutants, but not in the upstream mek2 and crlk1 mutants. MPK4 was basically persulfidated, and NaHS (H2S donor) further increased the persulfidation level of MPK4. MEK2 was not persulfidated by H2S. NaHS treatments increased the MPK4 activity level nearly tenfold. The persulfidation signal of MPK4 did not disappear after eight cystein residues in MPK4 were site-mutated, respectively. Above all, our results suggested that H2S alleviates cold stress directly by persulfidating MPK4 and increasing the MPK4 kinase activity.
Collapse
Affiliation(s)
- Xinzhe Du
- Department of Psychiatry, Firtst Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,School of Life Science, Shanxi University, Taiyuan, China
| | - Zhuping Jin
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zhiqiang Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Danmei Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Liping Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Xiaoli Ma
- School of Life Science, Shanxi University, Taiyuan, China
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Sha Liu
- Department of Psychiatry, Firtst Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yarong Guo
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
38
|
Wu X, Du A, Zhang S, Wang W, Liang J, Peng F, Xiao Y. Regulation of growth in peach roots by exogenous hydrogen sulfide based on RNA-Seq. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:179-192. [PMID: 33383385 DOI: 10.1016/j.plaphy.2020.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) has been shown to regulate many physiological processes of plants. In this study, we observed that 0.2 mM sodium hydrosulfide (NaHS), a donor of H2S, can regulate the root architecture of peach seedlings, increasing the number of lateral roots by 40.63%. To investigate the specific mechanisms by which H2S regulates root growth in peach, we used RNA sequencing and heterologous expression technology. Our results showed that exogenous H2S led to a 44.50% increase in the concentration of endogenous auxin. Analyses of differentially expressed genes (DEGs) revealed that 963 and 1113 genes responded to H2S on days one and five of treatment, respectively. Among the DEGs, 26 genes were involved in auxin biosynthesis, transport, and signal transduction. Using weighted correlation network analysis, we found that the auxin-related genes in the H2S-specific gene module were disproportionately involved in polar transport, which may play an important role in H2S-induced root growth. In addition, we observed that the expression of LATERAL ORGAN BOUNDARIES DOMAIN 16 (PpLBD16) was significantly up-regulated by exogenous application of H2S in peach. Overexpression of PpLBD16 in an Arabidopsis system yielded a 66.83% increase in the number of lateral roots. Under exposure to exogenous H2S, there was also increased expression of genes related to cell proliferation, indicating that H2S regulates the growth of peach roots. Our work represents the first comprehensive transcriptomic analysis of the effects of exogenous application of H2S on the roots of peach, and provides new insights into the mechanisms underlying H2S-induced root growth.
Collapse
Affiliation(s)
- Xuelian Wu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Anqi Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Wenru Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Jiahui Liang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| |
Collapse
|
39
|
Pan DY, Fu X, Zhang XW, Liu FJ, Bi HG, Ai XZ. Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings. PROTOPLASMA 2020; 257:1543-1557. [PMID: 32621044 DOI: 10.1007/s00709-020-01531-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) and hydrogen sulfide (H2S) have been proved to be multifunctional signal molecules to participate in the response of plants to abiotic stresses. However, it is still unclear whether there is interaction between SA and H2S in response to chilling intensity of cucumber seedlings. Here, we found SA was sensitive to chilling intensity. Under normal condition, NaHS (H2S donor) or removing endogenous H2S with hypotaurine (HT, a specific scavenger of H2S) and DL-propargylglycine (PAG, a specific inhibitor of H2S) has no effect on endogenous SA level; however, SA induced endogenous H2S content and activated the activities and mRNA level of L-/D-cysteine desulfhydrase (L-/D-CD), and inhibiting endogenous SA with paclobutrazol (PAC) or 2-aminoindan-2-phosphonic acid (AIP) blocked this effect, implying H2S may play a role after SA signal. Further studies showed that both SA and NaHS notably alleviated chilling injury, which was evidenced by lower electrolyte leakage (EL), MDA content, and ROS accumulation, compared with H2O treatment. Of note, SA and H2S improved the activities and mRNA level of antioxidant enzymes (SOD, POD, CAT, APX, and GR) as well as the contents of AsA and GSH. Additionally, the chilling-response genes (ICE, CBF1, and COR) were obviously upregulated by exogenous SA and NaHS. However, the positive effect of SA on chilling tolerance was inhibited by HT, whereas PAC or AIP did not affect NaHS-induced chilling tolerance. Taken together, the data reveals that H2S acts as a downstream signal of SA-induced chilling tolerance of cucumber via modulating antioxidant system and chilling-response genes.
Collapse
Affiliation(s)
- Dong-Yun Pan
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin Fu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Feng-Jiao Liu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan-Gai Bi
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xi-Zhen Ai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
40
|
Rabbi F, Renzaglia KS, Ashton NW, Suh DY. Reactive oxygen species are required for spore wall formation in Physcomitrella patens. BOTANY 2020; 98:575-587. [PMID: 34149972 PMCID: PMC8211148 DOI: 10.1139/cjb-2020-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A robust spore wall was a key requirement of terrestrialization by early plants. Sporopollenin in spore and pollen grain walls is thought to be polymerized and cross-linked to other macromolecular components partly through oxidative processes involving H2O2. Therefore, we investigated effects of scavengers of reactive oxygen species (ROS) on formation of spore walls in the moss, Physcomitrella patens. Exposure of sporophytes, containing spores in the process of forming walls, to ascorbate, dimethylthiourea or 4-hydroxy-TEMPO prevented normal wall development in a dose, chemical and stage-dependent manner. Mature spores, exposed while developing to a ROS scavenger, burst when mounted in water on a flat slide under a coverslip (a phenomenon we named "augmented osmolysis" since they did not burst in phosphate-buffered saline or in water on a depression slide). Additionally, walls of exposed spores were more susceptible to alkaline hydrolysis than those of control spores and some were characterized by discontinuities in the exine, anomalies in perine spine structure, abnormal intine and aperture and occasionally wall shedding. Our data support involvement of oxidative cross-linking in spore wall development, including sporopollenin polymerization or deposition, as well as a role for ROS in intine/aperture development.
Collapse
Affiliation(s)
- Fazle Rabbi
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Neil W Ashton
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
41
|
García-Gómez P, Bahaji A, Gámez-Arcas S, Muñoz FJ, Sánchez-López ÁM, Almagro G, Baroja-Fernández E, Ameztoy K, De Diego N, Ugena L, Spíchal L, Doležal K, Hajirezaei MR, Romero LC, García I, Pozueta-Romero J. Volatiles from the fungal phytopathogen Penicillium aurantiogriseum modulate root metabolism and architecture through proteome resetting. PLANT, CELL & ENVIRONMENT 2020; 43:2551-2570. [PMID: 32515071 DOI: 10.1111/pce.13817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 05/19/2023]
Abstract
Volatile compounds (VCs) emitted by the fungal phytopathogen Penicillium aurantiogriseum promote root growth and developmental changes in Arabidopsis. Here we characterised the metabolic and molecular responses of roots to fungal volatiles. Proteomic analyses revealed that these compounds reduce the levels of aquaporins, the iron carrier IRT1 and apoplastic peroxidases. Fungal VCs also increased the levels of enzymes involved in the production of mevalonate (MVA)-derived isoprenoids, nitrogen assimilation and conversion of methionine to ethylene and cyanide. Consistently, fungal VC-treated roots accumulated high levels of hydrogen peroxide (H2 O2 ), MVA-derived cytokinins, ethylene, cyanide and long-distance nitrogen transport amino acids. qRT-PCR analyses showed that many proteins differentially expressed by fungal VCs are encoded by VC non-responsive genes. Expression patterns of hormone reporters and developmental characterisation of mutants provided evidence for the involvement of cyanide scavenging and enhanced auxin, ethylene, cytokinin and H2 O2 signalling in the root architecture changes promoted by fungal VCs. Our findings show that VCs from P. aurantiogriseum modify root metabolism and architecture, and improve nutrient and water use efficiencies through transcriptionally and non-transcriptionally regulated proteome resetting mechanisms. Some of these mechanisms are subject to long-distance regulation by photosynthesis and differ from those triggered by VCs emitted by beneficial microorganisms.
Collapse
Affiliation(s)
- Pablo García-Gómez
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Kinia Ameztoy
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | | | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, 41092, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, 41092, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| |
Collapse
|
42
|
Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020; 9:E621. [PMID: 32679888 PMCID: PMC7402122 DOI: 10.3390/antiox9070621] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.
Collapse
Affiliation(s)
- Angeles Aroca
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Luis C. Romero
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| |
Collapse
|
43
|
Crosstalk between Hydrogen Sulfide and Other Signal Molecules Regulates Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21134593. [PMID: 32605208 PMCID: PMC7370202 DOI: 10.3390/ijms21134593] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S), once recognized only as a poisonous gas, is now considered the third endogenous gaseous transmitter, along with nitric oxide (NO) and carbon monoxide (CO). Multiple lines of emerging evidence suggest that H2S plays positive roles in plant growth and development when at appropriate concentrations, including seed germination, root development, photosynthesis, stomatal movement, and organ abscission under both normal and stress conditions. H2S influences these processes by altering gene expression and enzyme activities, as well as regulating the contents of some secondary metabolites. In its regulatory roles, H2S always interacts with either plant hormones, other gasotransmitters, or ionic signals, such as abscisic acid (ABA), ethylene, auxin, CO, NO, and Ca2+. Remarkably, H2S also contributes to the post-translational modification of proteins to affect protein activities, structures, and sub-cellular localization. Here, we review the functions of H2S at different stages of plant development, focusing on the S-sulfhydration of proteins mediated by H2S and the crosstalk between H2S and other signaling molecules.
Collapse
|
44
|
Chen T, Tian M, Han Y. Hydrogen sulfide: a multi-tasking signal molecule in the regulation of oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2862-2869. [PMID: 32076713 DOI: 10.1093/jxb/eraa093] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/15/2020] [Indexed: 05/24/2023]
Abstract
Accumulating evidence suggests that hydrogen sulfide (H2S) is an important signaling molecule in plant environmental interactions. The consensus view amongst plant scientists is that environmental stress leads to enhanced production and accumulation of reactive oxygen species (ROS). H2S interacts with the ROS-mediated oxidative stress response network at multiple levels, including the regulation of ROS-processing systems by transcriptional or post-translational modifications. H2S-ROS crosstalk also involves other interacting factors, including nitric oxide, and can affect key cellular processes like autophagy. While H2S often functions to prevent ROS accumulation, it can also act synergistically with ROS signals in processes such as stomatal closure. In this review, we summarize the mechanisms of H2S action and the multifaceted roles of this molecule in plant stress responses. Emphasis is placed on the interactions between H2S, ROS, and the redox signaling network that is crucial for plant defense against environmental threats.
Collapse
Affiliation(s)
- Tao Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Mimi Tian
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Yi Han
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
45
|
Zhou H, Zhang J, Shen J, Zhou M, Yuan X, Xie Y. Redox-based protein persulfidation in guard cell ABA signaling. PLANT SIGNALING & BEHAVIOR 2020; 15:1741987. [PMID: 32178559 PMCID: PMC7238880 DOI: 10.1080/15592324.2020.1741987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
Hydrogen sulfide (H2S) is a versatile signaling molecule that regulates multiple physiological processes in plants, including growth and development, immunity, and stress response as well. Signaling triggered by H2S is proposed to occur via persulfidation, an oxidative post-translational modification (PTM) of cysteine residues (-SH) to persulfides (-SSH). Notwithstanding the growing body of information for the plant persulfidation proteome, the gap between the molecular mechanism of H2S and physiological functions of protein persulfidation remains large. In this mini-review, we discussed the specific regulatory mechanism of persulfidation on guard cell abscisic acid (ABA) signaling and the possible link of persulfidation, sulfenylation, and S-nitrosylation within the framework of redox-based regulation.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Jie Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Mingjian Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Xingxing Yuan Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
- CONTACT Yanjie Xie Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
46
|
Zhang XW, Liu FJ, Zhai J, Li FD, Bi HG, Ai XZ. Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. PLANTA 2020; 251:69. [PMID: 32076872 DOI: 10.1007/s00425-020-03362-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/08/2020] [Indexed: 05/27/2023]
Abstract
This report proves a cross talk between H2S and IAA in cold stress response, which has presented strong evidence that IAA acts as a downstream signal mediating the H2S-induced stress tolerance in cucumber seedlings. We evaluated changes in endogenous hydrogen sulfide (H2S) and indole-3-acetic acid (IAA) emission systems, and the interactive effect of exogenous H2S and IAA on chilling tolerance in cucumber seedlings. The results showed that chilling stress increased the activity and relative mRNA expression of L-/D-cysteine desulfhydrase (L-/D-CD), which in turn induced the accumulation of endogenous H2S. Similarly, the endogenous IAA system was triggered by chilling stress. We found that 1.0 mM sodium hydrosulfide (NaHS, an H2S donor) significantly enhanced the activity of flavin monooxygenase (FMO) and relative expression of FMO-like proteins (YUCCA2), which in turn elevated endogenous IAA levels in cucumber seedlings. However, IAA had little effects on activities of L-/D-CD and endogenous H2S levels. H2S-induced IAA production accompanied by increase in chilling tolerance, as shown by the decrease in stress-induced electrolyte leakage (EL) and reactive oxygen species (ROS) accumulation, and increase in gene expressions and enzyme activities of photosynthesis. 1-naphthylphthalamic acid (NPA, an IAA polar transport inhibitor) declined H2S-induced chilling tolerance and defense genes' expression. However, scavenging of H2S had a little effect on IAA-induced chilling tolerance. These results suggest that IAA acting as a downstream signaling molecule is involved in the H2S-induced chilling tolerance in cucumber seedlings.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Feng-Jiao Liu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiang Zhai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fu-De Li
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan-Gai Bi
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xi-Zhen Ai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
47
|
Liu F, Zhang X, Cai B, Pan D, Fu X, Bi H, Ai X. Physiological response and transcription profiling analysis reveal the role of glutathione in H 2S-induced chilling stress tolerance of cucumber seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110363. [PMID: 31928658 DOI: 10.1016/j.plantsci.2019.110363] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 05/07/2023]
Abstract
Recent reports have uncovered the multifunctional role of H2S in the physiological response of plants to biotic and abiotic stresses. Here, we studied whether NaHS (an H2S donor) pretreatment could provoke the tolerance of cucumber (Cucumis sativus L.) seedlings subsequently exposed to chilling stress and whether glutathione was involved in this process. Results showed that cucumber seedlings sprayed with NaHS exhibited remarkably increased chilling tolerance, as evidenced by the observed plant tolerant phenotype, as well as the lower levels of electrolyte leakage (EL), malondialdehyde (MDA) content, hydrogen peroxide (H2O2) content and RBOH mRNA abundance, compared with the control plants. In addition, NaHS treatment increased the endogenous content of the reduced glutathione (GSH) and the ratio of reduced/oxidized glutathione (GSH/GSSG), meanwhile, the higher net photosynthetic rate (Anet), the light-saturated CO2 assimilation rate (Asat), the photochemical efficiency (Fv/Fm) and the maximum photochemical efficiency of PSII in darkness (ФPSII) as well as the mRNA levels and activities of the key photosynthetic enzymes (Rubisco, TK, SBPase and FBA) were observed in NaHS-treated seedlings under chilling stress, whereas this effect of NaHS was weakened by buthionine sulfoximine (BSO, an inhibitor of glutathione) or 6-Aminonicotinamide (6-AN, a specific pentose inhibitor and thus inhibits the NADPH production), which preliminarily proved the interaction between H2S and GSH. Moreover, transcription profiling analysis revealed that the GSH-associated genes (GST Tau, MAAI, APX, GR, GS and MDHAR) were significantly up-regulated in NaHS-treated cucumber seedlings, compared to the H2O-treated seedlings under chilling stress. Thus, novel results highlight the importance of glutathione as a downstream signal of H2S-induced plant tolerance to chilling stress.
Collapse
Affiliation(s)
- Fengjiao Liu
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xiaowei Zhang
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Bingbing Cai
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Dongyun Pan
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xin Fu
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Huangai Bi
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xizhen Ai
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
48
|
Paul S, Roychoudhury A. Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment. PHYSIOLOGIA PLANTARUM 2020; 168:374-393. [PMID: 31479515 DOI: 10.1111/ppl.13021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 08/28/2019] [Indexed: 05/15/2023]
Abstract
Plants are exposed to a plethora of abiotic stresses such as drought, salinity, heavy metal and temperature stresses at different stages of their life cycle, from germination to seedling till the reproductive phase. As protective mechanisms, plants release signaling molecules that initiate a cascade of stress-signaling events, leading either to programmed cell death or plant acclimation. Hydrogen sulfide (H2 S) and nitric oxide (NO) are considered as new 'gasotransmitter' molecules that play key roles in regulating gene expression, posttranslational modification (PTM), as well as cross-talk with other hormones. Although the exact role of NO in plants remains unclear and is species dependent, various studies have suggested a positive correlation between NO accumulation and environmental stress in plants. These molecules are also involved in a large array of stress responses and act synergistically or antagonistically as signaling components, depending on their respective concentration. This study provides a comprehensive update on the signaling interplay between H2 S and NO in the regulation of various physiological processes under multiple abiotic stresses, modes of action and effects of exogenous application of these two molecules under drought, salt, heat and heavy metal stresses. However, the complete picture of the signaling cascades mediated by H2 S and NO is still elusive. Recent researches indicate that during certain plant processes, such as stomatal closure, H2 S could act upstream of NO signaling or downstream of NO in response to abiotic stresses by improving antioxidant activity in most plant species. In addition, PTMs of antioxidative pathways by these two molecules are also discussed.
Collapse
Affiliation(s)
- Saikat Paul
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India
| |
Collapse
|
49
|
Qiu XM, Sun YY, Ye XY, Li ZG. Signaling Role of Glutamate in Plants. FRONTIERS IN PLANT SCIENCE 2020; 10:1743. [PMID: 32063909 PMCID: PMC6999156 DOI: 10.3389/fpls.2019.01743] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/11/2019] [Indexed: 05/11/2023]
Abstract
It is well known that glutamate (Glu), a neurotransmitter in human body, is a protein amino acid. It plays a very important role in plant growth and development. Nowadays, Glu has been found to emerge as signaling role. Under normal conditions, Glu takes part in seed germination, root architecture, pollen germination, and pollen tube growth. Under stress conditions, Glu participates in wound response, pathogen resistance, response and adaptation to abiotic stress (such as salt, cold, heat, and drought), and local stimulation (abiotic or biotic stress)-triggered long distance signaling transduction. In this review, in the light of the current opinion on Glu signaling in plants, the following knowledge was updated and discussed. 1) Glu metabolism; 2) signaling role of Glu in plant growth, development, and response and adaptation to environmental stress; as well as 3) the underlying research directions in the future. The purpose of this review was to look forward to inspiring the rapid development of Glu signaling research in plant biology, particularly in the field of stress biology of plants.
Collapse
Affiliation(s)
- Xue-Mei Qiu
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| | - Yu-Ying Sun
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| | - Xin-Yu Ye
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| |
Collapse
|
50
|
Li L, Liu Y, Wang S, Zou J, Ding W, Shen W. Magnesium Hydride-Mediated Sustainable Hydrogen Supply Prolongs the Vase Life of Cut Carnation Flowers via Hydrogen Sulfide. FRONTIERS IN PLANT SCIENCE 2020; 11:595376. [PMID: 33362825 PMCID: PMC7755932 DOI: 10.3389/fpls.2020.595376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 05/08/2023]
Abstract
Magnesium hydride (MgH2) is a promising solid-state hydrogen source with high storage capacity (7.6 wt%). Although it is recently established that MgH2 has potential applications in medicine because it sustainably supplies hydrogen gas (H2), the biological functions of MgH2 in plants have not been observed yet. Also, the slow reaction kinetics restricts its practical applications. In this report, MgH2 (98% purity; 0.5-25 μm size) was firstly used as a hydrogen generation source for postharvest preservation of flowers. Compared with the direct hydrolysis of MgH2 in water, the efficiency of hydrogen production from MgH2 hydrolysis could be greatly improved when the citrate buffer solution is introduced. These results were further confirmed in the flower vase experiment by showing higher efficiency in increasing the production and the residence time of H2 in solution, compared with hydrogen-rich water. Mimicking the response of hydrogen-rich water and sodium hydrosulfide (a hydrogen sulfide donor), subsequent experiments discovered that MgH2-citrate buffer solution not only stimulated hydrogen sulfide (H2S) synthesis but also significantly prolonged the vase life of cut carnation flowers. Meanwhile, redox homeostasis was reestablished, and the increased transcripts of representative senescence-associated genes, including DcbGal and DcGST1, were partly abolished. By contrast, the discussed responses were obviously blocked by the inhibition of endogenous H2S with hypotaurine, an H2S scavenger. These results clearly revealed that MgH2-supplying H2 could prolong the vase life of cut carnation flowers via H2S signaling, and our results, therefore, open a new window for the possible application of hydrogen-releasing materials in agriculture.
Collapse
Affiliation(s)
- Longna Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Liu
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shu Wang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianxin Zou
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjiang Ding
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wenbiao Shen,
| |
Collapse
|