1
|
Stadnicka-Futoma A, Nobis M. Geographical-Historical Analysis of the Herbarium Specimens Representing the Economically Important Family Amaranthaceae ( Chenopodiaceae-Amaranthaceae Clade) Collected in 1821-2022 and Preserved in the Herbarium of the Jagiellonian University in Krakow. BIOLOGY 2024; 13:435. [PMID: 38927315 PMCID: PMC11201225 DOI: 10.3390/biology13060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Herbaria constitute a form of documentation, store and secure comparative material, as well as constitute an extra original gene bank. They are an invaluable database among others for the biological, ethnobotanical and agricultural sciences. The digitization of herbarium collections significantly facilitates access to archival materials; however, searching them is still time-consuming. Therefore, our work aims to analyze the herbarium collection of 8801 sheets for specimens representing the economically important family Amaranthaceae (Chenopodiaceae-Amaranthaceae clade) deposited the oldest herbarium in Poland, the herbarium of the Jagiellonian University (KRA). These specimens have been collected from almost all the continents in dozens of countries for over 200 years. The analyses conducted, including the taxonomic coverage, geographical characteristics and origin, temporal coverage and utility importance of representative species, present the discussed resources in a more accessible way and may become a more attractive form for scientists potentially interested in more advanced research work.
Collapse
Affiliation(s)
- Agata Stadnicka-Futoma
- Department of Soil Science, Environmental Chemistry and Hydrology, Institute of Agricultural Sciences, Environment Management and Protection, College of Natural Sciences, University of Rzeszów, ul. Zelwerowicza 8b, 35-601 Rzeszów, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland;
| |
Collapse
|
2
|
Wahyuni DK, Indriati DT, Ilham M, Murtadlo AAA, Purnobasuki H, Junairiah, Purnama PR, Ikram NKK, Samian MZ, Subramaniam S. Morpho-anatomical characterization and DNA barcoding of Artemesia vulgaris L. BRAZ J BIOL 2024; 84:e278393. [PMID: 38422290 DOI: 10.1590/1519-6984.278393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/06/2024] [Indexed: 03/02/2024] Open
Abstract
Artemisia vulgaris L. belongs to Asteraceae, is a herbal plant that has various benefits in the medical field, so that its use in the medical field can be explored optimally, the plant must be thoroughly identified. This study aims to identify A. vulgaris both in terms of descriptive morpho-anatomy and DNA barcoding using BLAST and phylogenetic tree reconstruction. The morpho-anatomical character was observed on root, stem, and leaf. DNA barcoding analysis was carried out through amplification and alignment of the rbcL and matK genes. All studies were conducted on three samples from Taman Husada (Medicinal Plant Garden) Graha Famili Surabaya, Indonesia. The anatomical slide was prepared by the paraffin method. Morphological studies revealed that the leaves of A. vulgaris both on the lower-middle part and on the upper part of the stem have differences, especially in the character of the stipules, petioles, and incisions they have. Meanwhile, from the study of anatomy, A. vulgaris has an anomocytic type of stomata and its distribution is mostly on the ventral part of the leaves. Through the BLAST process and phylogenetic tree reconstruction, the plant sequences being studied are closely related to several species of the genus Artemisia as indicated by a percentage identity above 98% and branch proximity between taxa in the reconstructed phylogenetic tree.
Collapse
Affiliation(s)
- D K Wahyuni
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - D T Indriati
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - M Ilham
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - A A A Murtadlo
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - H Purnobasuki
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - Junairiah
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - P R Purnama
- Chulalongkorn University, Faculty of Science, Graduate Program in Bioinformatics and Computational Biology, Bangkok, Thailand
| | - N K K Ikram
- Universiti Malaya, Faculty of Science, Institute of Biological Sciences, Kuala Lumpur, Malaysia
- Universiti Malaya, Centre for Research in Biotechnology for Agriculture - CEBAR, Kuala Lumpur, Malaysia
| | - M Z Samian
- Universiti Malaya, Faculty of Science, Institute of Biological Sciences, Kuala Lumpur, Malaysia
- Universiti Malaya, Centre for Research in Biotechnology for Agriculture - CEBAR, Kuala Lumpur, Malaysia
| | - S Subramaniam
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
- Universiti Sains Malaysia, School of Biological Science, Georgetown, Malaysia
| |
Collapse
|
3
|
Supplementing Diets with Agriophyllum squarrosum Reduced Blood Lipids, Enhanced Immunity and Anti-Inflammatory Capacities, and Mediated Lipid Metabolism in Tan Lambs. Animals (Basel) 2022; 12:ani12243486. [PMID: 36552407 PMCID: PMC9774518 DOI: 10.3390/ani12243486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Agriophyllum squarrosum (sand rice), a widespread desert plant, possesses anti-hyperglycemic and anti-inflammatory properties, and has been used in traditional Chinese medicine for many years. However, its effects on ruminants are unknown. To fill this gap, we examined the effects of A. squarrosum on the immune and anti-inflammatory responses of lambs. A total of 23, 6-month-old Tan ewe-lambs (27.6 ± 0.47 kg) were divided into four groups and offered a basic diet (C—control), or a diet that contained 10%, 20%, or 30% A. squarrosum, on a dry matter basis, for 128 days. Serum concentrations of total cholesterol were lower (p = 0.004) in the 30% supplemented lambs than controls, while concentrations of high-density lipoprotein cholesterol were lower (p = 0.006) in the 10% and 20%, but not in 30% supplemented lambs than controls. Serum-cortisol concentrations were lower (p = 0.012) in the 30% supplemented lambs and free fatty acid concentrations were higher in the 10% and 20% supplemented lambs than in control lambs (p < 0.001). Supplementation with A. squarrosum decreased (p < 0.05) the area of adipocytes in subcutaneous adipose tissue, but there was no difference between the 20% and 30% diets. Conversely, the area in visceral adipose tissue (VAT) increased (p < 0.05), especially for the 10% and 20% supplemented diets. Supplementation with A. squarrosum also enriched immune and anti-inflammatory related and lipid and glucose-metabolic pathways and associated differentially expressed gene expressions in adipose tissue. A total of 10 differential triacylglycerol, 34 differential phosphatidylcholines and seven differential phosphatidylethanolamines decreased in the diet with 30% supplementation, when compared to the other diets. Finally, adipocyte-differentiation genes, and immune and inflammatory response-related gene expression levels decreased in lamb adipocytes cultured with an aqueous A. squarrosum extract. In conclusion, supplementing lamb diets with A. squarrosum reduced blood lipids, enhanced immunity and anti-inflammatory capacities, and mediated lipid metabolism in adipose tissue and adipocytes of Tan lambs. A level of approximately 10% is recommended, but further research is required to determine the precise optimal level.
Collapse
|
4
|
Dawan J, Ahn J. Application of DNA barcoding for ensuring food safety and quality. Food Sci Biotechnol 2022; 31:1355-1364. [PMID: 36060568 PMCID: PMC9433498 DOI: 10.1007/s10068-022-01143-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
With increasing international food trade, food quality and safety are high priority worldwide. The consumption of contaminated and adulterated food can cause serious health problems such as infectious diseases and allergies. Therefore, the authentication and traceability systems are needed to improve food safety. The mitochondrial DNA can be used for species authentication of food and food products. Effective DNA barcode markers have been developed to correctly identify species. The US FDA approved to the use of DNA barcoding for various food products. The DNA barcoding technology can be used as a regulatory tool for identification and authenticity. The application of DNA barcoding can reduce the microbiological and toxicological risks associated with the consumption of food and food products. DNA barcoding can be a gold-standard method in food authenticity and fraud detection. This review describes the DNA barcoding method for preventing food fraud and adulteration in meat, fish, and medicinal plants.
Collapse
|
5
|
Fayaz S, Mahajan R, Hami A, Husaini AM, Bhat SA, Murtaza I, Dhekale B, Bhat BA, Zargar SM. Polyphenolics, antioxidant characterization and DNA barcoding of Kala zeera [Bunium persicum (Boiss.) Fedtsch] through multiple barcode analysis to unravel best barcode combination. Mol Biol Rep 2022; 49:7205-7217. [PMID: 35729477 DOI: 10.1007/s11033-022-07682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kala zeera [Bunium persicum (Boiss.) Fedtsch] is one of the important spice crops of North Western Himalayas with lot of medicinal and culinary values. In spite of having great importance, this crop is under the threat of extinction due to loss of habitat and lack of awareness. The limited availability of the seeds has ultimately increased the economic value of this spice. The upmarket of Kala zeera leads to its adulteration with other black seeds and cumin seeds. The present investigation was undertaken to evaluate polyphenolics and antioxidant properties of Kala zeera genotypes collected from North Western Himalayas and to develop DNA barcodes that can ensure their purity and can also guide in conservation of selected Kala zeera germplasm lines. METHODS AND RESULTS Various locations of North Western Himalayas were explored for collecting 31 diverse germplasm lines of Kala zeera. The collected germplasm was maintained at our experimental stations during 2019-2020 and 2020-2021. These genotypes were evaluated for different seed traits and the methanolic extract from Kala zeera seeds was examined for total phenolic content, total flavonoid content, antioxidant activities by DPPH and FRAP. The results revealed significant variation in seed traits, polyphenolic content and antioxidant properties. 100 seed weight ranged from 0.05 to 0.35 g, TPC ranged from 7.5 to 22.56 mg/g, TFC ranged from 0.58 to 4.15 mg/g, antioxidant properties DPPH ranged from 168 to 624.4 μg/ml and FRAP ranged from 0.72 to 6.91 mg/g. Further, three different barcodes (ITS, rbcL and psbA-trnH) were used to reveal the authenticity of selected Kala zeera. MEGA 5 software was used for clustering and the barcodes did clustering based on geographical distribution of Kala zeera germplasm. CONCLUSION Based on molecular barcoding, best barcode combination was identified that may discriminate the Kala zeera germplasm vis-a-vis can authenticate their purity. Moreover, the identified DNA barcodes will have significant role in studying the evolutionary biology of Bunium species and will be important for designing a strategy to conserve the selected Kala zeera germplasm lines. The identified genotypes with high phenolic content and antioxidant activity can further be utilized in Kala zeera breeding programmes.
Collapse
Affiliation(s)
- Salima Fayaz
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, 190025, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, 190025, India.
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, 190025, India
| | - Amjad M Husaini
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, 190025, India
| | - Sajad Ahmad Bhat
- Division of Basic Science, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Imtiyaz Murtaza
- Division of Basic Science, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Bhagyashree Dhekale
- Division of Agricultural Statistics, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Bilal A Bhat
- MAR&ES, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Gurez, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, 190025, India.
| |
Collapse
|
6
|
Ma Q, Wei L, Chen F, Zhang D, Wang X. Population dynamics of Agriophyllum squarrosum along an ecosystem restoration chronosequence in the Tengger Desert, China: Indication implications for desertification combating. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Zhang B, Jiang Y, Li Z, Wang F, Wu XY. Recent Progress on Chemical Production From Non-food Renewable Feedstocks Using Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 8:606047. [PMID: 33392171 PMCID: PMC7775722 DOI: 10.3389/fbioe.2020.606047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/31/2020] [Indexed: 11/13/2022] Open
Abstract
Due to the non-renewable nature of fossil fuels, microbial fermentation is considered a sustainable approach for chemical production using glucose, xylose, menthol, and other complex carbon sources represented by lignocellulosic biomass. Among these, xylose, methanol, arabinose, glycerol, and other alternative feedstocks have been identified as superior non-food sustainable carbon substrates that can be effectively developed for microbe-based bioproduction. Corynebacterium glutamicum is a model gram-positive bacterium that has been extensively engineered to produce amino acids and other chemicals. Recently, in order to reduce production costs and avoid competition for human food, C. glutamicum has also been engineered to broaden its substrate spectrum. Strengthening endogenous metabolic pathways or assembling heterologous ones enables C. glutamicum to rapidly catabolize a multitude of carbon sources. This review summarizes recent progress in metabolic engineering of C. glutamicum toward a broad substrate spectrum and diverse chemical production. In particularly, utilization of lignocellulosic biomass-derived complex hybrid carbon source represents the futural direction for non-food renewable feedstocks was discussed.
Collapse
Affiliation(s)
- Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Yan Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
8
|
Genievskaya Y, Karelova D, Abugalieva S, Zhao P, Chen G, Turuspekov Y. SSR-based evaluation of genetic diversity in populations of Agriophyllum squarrosum L. and Agriophyllum minus Fisch. & Mey. collected in South-East Kazakhstan. Vavilovskii Zhurnal Genet Selektsii 2020; 24:697-704. [PMID: 33738387 PMCID: PMC7960446 DOI: 10.18699/vj20.664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The development of informative polymorphic DNA markers for poorly studied genera is an important
step in population analyses of living organisms, including those that play very important ecological roles in harsh
environments, such as desert and semi-desert area. Examples of those poorly studied desert species are Agriophyllum
squarrosum L. and Agriophyllum minus Fisch. & Mey. However, a recent RNA-sequencing project in A. squarrosum
has proposed a large set of hypothetical SSR (simple sequence repeat) markers. In this work, 11 novel polymorphic
SSRs were found due to the screening of 24 randomly selected SSRs for three populations of A. squarrosum
and one population of A. minus. The analysis of 11 SSRs revealed 16 polymorphic loci in two Agriophyllum species,
8 polymorphic loci within three populations of A. squarrosum, and 6 polymorphic loci in the population of A. minus.
Statistical analyses showed high interspecific, but relatively low intraspecific genetic diversity. The phylogenetic
clusterization and population structure analysis have demonstrated a clear segregation of A. minus from A. squarrosum,
as well as the separation of population 1 from populations 2 and 3 of A. squarrosum. Thus, we identified the
set of novel and informative SSR markers suitable for the study of genetic diversity in Agriophyllum.
Collapse
Affiliation(s)
- Y Genievskaya
- Laboratory of molecular genetics, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - D Karelova
- Laboratory of molecular genetics, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - S Abugalieva
- Laboratory of molecular genetics, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan Department of biodiversity and bioresources, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - P Zhao
- Key laboratory of stress physiology and ecology in cold and arid regions, Northwest Institute of Eco-Environment and Resources, Gansu, China
| | - G Chen
- Key laboratory of stress physiology and ecology in cold and arid regions, Northwest Institute of Eco-Environment and Resources, Gansu, China
| | - Y Turuspekov
- Laboratory of molecular genetics, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan Department of biodiversity and bioresources, al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
9
|
The molecular taxonomy of three endemic Central Asian species of Ranunculus(Ranunculaceae). PLoS One 2020; 15:e0240121. [PMID: 33017445 PMCID: PMC7535031 DOI: 10.1371/journal.pone.0240121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022] Open
Abstract
Worldwide, the genus Ranunculus includes approximately 600 species and is highly genetically diverse. Recent taxonomic reports suggest that the genus has a monophyletic origin, divided into two subgenera, and consists of 17 sections. The Central Asian country of Kazakhstan has 62 species of the genus that have primarily been collected in the central part of the country. The latest collection trips in southern parts of the country have led to the description of a wider distribution area for Ranunculus and the identification of a new species Ranunculus talassicus Schegol. et A.L. Ebel from Western Tien Shan. Therefore, in this study, attempts were made to assess the molecular taxonomic positions of R. talassicus and two other species endemic to the Central Asian region R. karkaralensis Schegol. and R. pskemensis V.N. Pavlov in relation to other species of the genus, using internal transcribed spacer (ITS) molecular genetic markers. The ITS-aligned sequences of 22 local Central Asian accessions and 43 accession sequences available in the National Center for Biotechnology Information (NCBI) database allowed the construction of a maximum parsimony phylogenetic tree and a Neighbor-Net network. The results indicated that R. talassicus and R. pskemensis could be assigned to section Ranunculastrum. Additionally, an assessment of the network suggested that R. pskemensis was the rooting taxon for the group of species containing R. talassicus, and that R. illyricus L. and R. pedatus Waldst. & Kit. were founders of a prime rooting node for the Ranunculastrum section of the genus. The ITS-aligned sequences showed that R. karkaralensis was indifferent with respect to three other species in the Ranunculus section of the genus, i.e., R. acris L., R. grandifolius C.A. Mey., and R. subborealis Tzvelev. The study indicated that the assessments of ITS-based phylogenetic tree and Neighbor-Net network provided new insights into the taxonomic positions of three endemic species from Central Asia.
Collapse
|
10
|
Wang Q, Shao H, Zhang Z, Yan S, Huang F, Zhang H, Yang X. Phenolic profile and antioxidant properties of sand rice (Agriophyllum squarrosum) as affected by cooking and in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3871-3878. [PMID: 30680736 DOI: 10.1002/jsfa.9609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sand rice (Agriophyllum squarrosum) is an underutilized pseudocereal bearing edible seeds. In this study, the phenolics and antioxidant activity of sand rice seeds after cooking and in vitro digestion were extensively investigated. RESULTS Total phenolic content (TPC) of the sand rice seeds was slightly increased whereas total flavonoid content (TFC) decreased after boiling. Furthermore, nine compounds were detected in the uncooked seeds, with hyperoside (169.19 ± 6.59 µg g-1 dry weight (DW)), protocatechuic acid (167.46 ± 7.21 µg g-1 DW), and rutin (83.15 ± 3.26 µg g-1 DW) as the major components. Apart from the bioaccessible phenolics in the aqueous fraction, these compounds retained in the solid residue of the porridge were released to varying degrees during simulated digestion. In addition, these phenolic extracts also exerted considerable antioxidant potency, which was positively correlated with their corresponding TPC, TFC, and phenolic profiles. CONCLUSION These results indicated that both boiling and in vitro digestive treatments could considerably enhance the release of bioactive compounds and thus contribute antioxidant properties to sand rice porridge. These findings suggest that sand rice seed is a potential functional food and an excellent natural antioxidant source. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Shuaishuai Yan
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Hong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xinbing Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
11
|
Han K, Wang M, Zhang L, Wang C. Application of Molecular Methods in the Identification of Ingredients in Chinese Herbal Medicines. Molecules 2018; 23:E2728. [PMID: 30360419 PMCID: PMC6222746 DOI: 10.3390/molecules23102728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/16/2022] Open
Abstract
There are several kinds of Chinese herbal medicines originating from diverse sources. However, the rapid taxonomic identification of large quantities of Chinese herbal medicines is difficult using traditional methods, and the process of identification itself is prone to error. Therefore, the traditional methods of Chinese herbal medicine identification must meet higher standards of accuracy. With the rapid development of bioinformatics, methods relying on bioinformatics strategies offer advantages with respect to the speed and accuracy of the identification of Chinese herbal medicine ingredients. This article reviews the applicability and limitations of biochip and DNA barcoding technology in the identification of Chinese herbal medicines. Furthermore, the future development of the two technologies of interest is discussed.
Collapse
Affiliation(s)
- Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Miao Wang
- Life sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin 150010, China.
| | - Lei Zhang
- Life sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin 150010, China.
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
12
|
Xu HY, Zheng HC, Zhang HW, Zhang JY, Ma CM. Comparison of Antioxidant Constituents of Agriophyllum squarrosum Seed with Conventional Crop Seeds. J Food Sci 2018; 83:1823-1831. [PMID: 29870059 DOI: 10.1111/1750-3841.14159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/10/2018] [Accepted: 03/19/2018] [Indexed: 11/26/2022]
Abstract
Twelve chemical constituents were identified from the Agriophyllum squarrosum seed (ASS). ASS contained large amounts of flavonoids, which were more concentrated in the seed coat. ASS-coat (1 g) contained 335.7 μg flavonoids of rutin equivalent, which was similar to the flavonoid content in soybean (351.2 μg/g), and greater than that in millet, wheat, rice, peanut, and corn. By LC-MS analysis, the major constituents in ASS were 3-O-[α-L-rhamnopyranosyl-(1→6)-β-D- glucopyranosyl]-7- O-(β-D-glucopyranosyl)-quercetin (1), rutin (4), quercetin-3-O-β-D- apiosyl(1→2)-[α-L-rhamnosyl(l→6)]-β-D-glucoside (2), isorhamnetin-3-O-rutinoside (5), and allantoin (3), compared with isoflavonoids-genistin (16), daidzin (14), and glycitin (18) in soybean. Among constituents in ASS, compounds 1, 2, 4, protocatechuic acid (8), isoquercitrin (11), and luteolin-6-C-glucoside (12) potently scavenged DPPH radicals and intracellular ROS; strongly protected against peroxyl radical-induced DNA scission; and upregulated Nrf2, phosphorylated p38, phosphorylated JNK, and Bcl-2 in HepG2 cells. These results indicate that ASS is rich in antioxidant constituents that can enrich the varieties of food flavonoids, with significant beneficial implications for those who suffer from oxidative stress-related conditions. PRACTICAL APPLICATION This study found that A. squarrosum seed contains large amounts of antioxidative flavonoids and compared its chemical constituents with those of conventional foods. These results should increase the interest in planting the sand-fixing A. squarrosum on a large scale, thus preventing desertification and providing valuable foods.
Collapse
Affiliation(s)
- Hai-Yan Xu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, and Key Laboratory of Forage and Endemic Crop Biotechnology of Ministry of Education, School of Life Sciences, Inner Mongolia Univ., Hohhot, P.R. China, 010070
| | - Hua-Chuan Zheng
- Dept. of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical Univ., Shenyang, China
| | - Hui-Wen Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, and Key Laboratory of Forage and Endemic Crop Biotechnology of Ministry of Education, School of Life Sciences, Inner Mongolia Univ., Hohhot, P.R. China, 010070
| | - Jin-Yu Zhang
- Inner Mongolia Alashan Cistanche Co. ltd, Alashanzuoqi, Inner Mongolia, China
| | - Chao-Mei Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, and Key Laboratory of Forage and Endemic Crop Biotechnology of Ministry of Education, School of Life Sciences, Inner Mongolia Univ., Hohhot, P.R. China, 010070
| |
Collapse
|
13
|
Almerekova S, Abugalieva S, Mukhitdinov N. Taxonomic assessment of the Oxytropis species from South-East of Kazakhstan. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genus Oxytropis DC. is one of the largest genera in the Fabaceae family. The most plant species belonging to the Oxytropis genus have an important medicinal value. Currently the botanical taxonomy of the genus is complicated due to existence of many subgenera and sections that developed based on morphological traits. Also, in the literature there is luck of knowledge on phylogeny of Oxytropis species from Central Asian region. Therefore, the purpose of the present study was the clarification of taxonomic relationship of two Oxytropis species from SouthEast of Kazakhstan (O. almaatensis Bajt. and O. glabra DC.). The study was based on using phylogenetic analysis and haplotype network assessment based on sequences ITS (internal transcribed spacers), which is DNA marker of nuclear genome. Plant materials of O. almaatensis were collected from 2 populations in two neighboring Gorges in Trans Ili Alatau Mountains, O. glabra plant material was obtained from Herbarium of the Department of Biodiversity and Bioresources, al-Farabi Kazakh National University. Based on DNA sequences of ITS the phylogenetic and network relationships were investigated by using Neighbor Joining and Median Joining methods, respectively. The nucleotide sequences of ITS of O. almaatensis and O. glabra were aligned with sequences of 29 Oxytropis references found in the NCBI database. Out of the 601 aligned positions of ITS 33 (5.6 %) sites were found to be polymorphic nucleotides and used in evaluation of the genetic relationship of species. Constructed MJ haplotype network showed a very high congruence with the NJ phylogenetic tree. MJ network provided valuable additional hints in clarification of the taxonomic relationship among species involved in the analysis. In this study phylogenetic NJ tree and MJ network based on the variation of ITS sequences confirmed the monophyletic origin of the genus. The ITS haplotype network suggested that O. glabra is very diverse species and possibly played important role in the evolutionary processes of the genus in Central Asian region. The study is additional contribution in the molecular taxonomy of complex Oxytropis genus.
Collapse
Affiliation(s)
- S. Almerekova
- Institute of Plant Biology and Biotechnology; Al-Farabi Kazakh National University
| | - S. Abugalieva
- Institute of Plant Biology and Biotechnology; Al-Farabi Kazakh National University
| | | |
Collapse
|