1
|
Zhou M, Sun Y, Mao Q, Luo L, Pan H, Zhang Q, Yu C. Comparative metabolomics profiling reveals the unique bioactive compounds and astringent taste formation of rosehips. Food Chem 2024; 452:139584. [PMID: 38735110 DOI: 10.1016/j.foodchem.2024.139584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.
Collapse
Affiliation(s)
- Meichun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yanlin Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qingyi Mao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Li X, He G, Jiang S, Yang C, Yang B, Ming F. Function of two splicing variants of RcCPR5 in the resistance of Rosa chinensis to powdery mildew. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111678. [PMID: 37385384 DOI: 10.1016/j.plantsci.2023.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 07/01/2023]
Abstract
Rosa chinensis is an important economic and ornamental crop, but powdery mildew greatly reduces its ornamental and economic value. The RcCPR5 gene, encoding a constitutive expressor of pathogenesis-related genes, has two splicing variants in R. chinensis. Compared with RcCPR5-1, RcCPR5-2 has a large C-terminal deletion. During disease development, RcCPR5-2 responded quickly and coordinated with RcCPR5-1 to resist the invasion of the powdery mildew pathogen. In virus-induced gene silencing experiments, down-regulation of RcCPR5 improved the resistance of R. chinensis to powdery mildew. This was confirmed to be broad-spectrum resistance. In the absence of pathogen infection, RcCPR5-1 and RcCPR5-2 formed homodimers and heterodimers to regulate plant growth; but when infected by the powdery mildew pathogen, the RcCPR5-1 and RcCPR5-2 complexes disassociated and released RcSIM/RcSMR to induce effector-triggered immunity, thereby inducing resistance to pathogen infection.
Collapse
Affiliation(s)
- Xiaorui Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guoren He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shenghang Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chun Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Binan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
3
|
Yan Y, Zhao J, Lin S, Li M, Liu J, Raymond O, Vergne P, Kong W, Wu Q, Zhang X, Bao M, Bendahmane M, Fu X. Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5783-5804. [PMID: 37392434 DOI: 10.1093/jxb/erad253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 μmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 μmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.
Collapse
Affiliation(s)
- Yuhang Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Jiaxing Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Shengnan Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Mouliang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Jiayi Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Olivier Raymond
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Philippe Vergne
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Weilong Kong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Quanshu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Xiaoni Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Mohammed Bendahmane
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Li C, Li Y, Chu P, Hao-hao Z, Wei Z, Cheng Y, Liu X, Zhao F, Li YJ, Zhang Z, Zheng Y, Mu Z. Effects of salt stress on sucrose metabolism and growth in Chinese rose ( Rosa chinensis). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2116356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Caihua Li
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Yuhuan Li
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Peiyu Chu
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Zhao Hao-hao
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Zunmiao Wei
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Yan Cheng
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Xianxian Liu
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Fengzhou Zhao
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Yan-jun Li
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Zhiwen Zhang
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Yi Zheng
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Zhongsheng Mu
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| |
Collapse
|
5
|
Development and characterization of 29 InDel markers from the Mangrove Kandelia obovata genome using a resequencing dataset. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Yan Y, Li M, Zhang X, Kong W, Bendahmane M, Bao M, Fu X. Tissue-Specific Expression of the Terpene Synthase Family Genes in Rosa chinensis and Effect of Abiotic Stress Conditions. Genes (Basel) 2022; 13:genes13030547. [PMID: 35328100 PMCID: PMC8950262 DOI: 10.3390/genes13030547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/22/2023] Open
Abstract
Rose (Rosa chinensis) is one of the most famous ornamental plants worldwide, with a variety of colors and fragrances. Terpene synthases (TPSs) play critical roles in the biosynthesis of terpenes. In this work, we report a comprehensive study on the genome-wide identification and characterization of the TPS family in R. chinensis. We identified 49 TPS genes in the R. chinensis genome, and they were grouped into five subfamilies (TPS-a, TPS-b, TPS-c, TPS-g and TPS-e/f). Phylogenetics, gene structure and conserved motif analyses indicated that the RcTPS genes possessed relatively conserved gene structures and the RcTPS proteins contained relatively conserved motifs. Multiple putative cis-acting elements involved in the stress response were identified in the promoter region of RcTPS genes, suggesting that some could be regulated by stress. The expression profile of RcTPS genes showed that they were predominantly expressed in the petals of open flowers, pistils, leaves and roots. Under osmotic and heat stresses, the expression of most RcTPS genes was upregulated. These data provide a useful foundation for deciphering the functional roles of RcTPS genes during plant growth as well as addressing the link between terpene biosynthesis and abiotic stress responses in roses.
Collapse
Affiliation(s)
- Yuhang Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
| | - Mouliang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
| | - Xiaoni Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (W.K.)
| | - Weilong Kong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (W.K.)
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Development des Plantes, Ecole Normale Supérieure Lyon, 520074 Lyon, France;
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
- Correspondence: ; Tel.: +86-159-2625-8658; Fax: +86-027-8728-2010
| |
Collapse
|
7
|
Li Y, Li S, Du R, Wang J, Li H, Xie D, Yan J. Isoleucine Enhances Plant Resistance Against Botrytis cinerea via Jasmonate Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:628328. [PMID: 34489985 PMCID: PMC8416682 DOI: 10.3389/fpls.2021.628328] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/23/2021] [Indexed: 05/27/2023]
Abstract
Amino acids are the building blocks of biomacromolecules in organisms, among which isoleucine (Ile) is the precursor of JA-Ile, an active molecule of phytohormone jasmonate (JA). JA is essential for diverse plant defense responses against biotic and abiotic stresses. Botrytis cinerea is a necrotrophic nutritional fungal pathogen that causes the second most severe plant fungal disease worldwide and infects more than 200 kinds of monocot and dicot plant species. In this study, we demonstrated that Ile application enhances plant resistance against B. cinerea in Arabidopsis, which is dependent on the JA receptor COI1 and the jasmonic acid-amido synthetase JAR1. The mutant lib with higher Ile content in leaves exhibits enhanced resistance to B. cinerea infection. Furthermore, we found that the exogenous Ile application moderately enhanced plant resistance to B. cinerea in various horticultural plant species, including lettuce, rose, and strawberry, suggesting a practical and effective strategy to control B. cinerea disease in agriculture. These results together showed that the increase of Ile could positively regulate the resistance of various plants to B. cinerea by enhancing JA signaling, which would offer potential applications for crop protection.
Collapse
Affiliation(s)
- Yuwen Li
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suhua Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Agricultural Synthetic Biology, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Agricultural Synthetic Biology, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiou Li
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianbin Yan
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Agricultural Synthetic Biology, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
8
|
Fang P, Arens P, Liu X, Zhang X, Lakwani D, Foucher F, Clotault J, Geike J, Kaufmann H, Debener T, Bai Y, Zhang Z, Smulders MJM. Analysis of allelic variants of RhMLO genes in rose and functional studies on susceptibility to powdery mildew related to clade V homologs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2495-2515. [PMID: 33934211 PMCID: PMC8277636 DOI: 10.1007/s00122-021-03838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Rose has 19 MLO genes. Of these, RhMLO1 and RhMLO2 were shown to be required for powdery mildew infection, which suggests their potential as susceptibility targets towards disease resistance. Powdery mildew, caused by Podosphaera pannosa, is one of the most serious and widespread fungal diseases for roses, especially in greenhouse-grown cut roses. It has been shown that certain MLO genes are involved in powdery mildew susceptibility and that loss of function in these genes in various crops leads to broad-spectrum, long-lasting resistance against this fungal disease. For this reason, these MLO genes are called susceptibility genes. We carried out a genome-wide identification of the MLO gene family in the Rosa chinensis genome, and screened for allelic variants among 22 accessions from seven different Rosa species using re-sequencing and transcriptome data. We identified 19 MLO genes in rose, of which four are candidate genes for functional homologs in clade V, which is the clade containing all dicot MLO susceptibility genes. We detected a total of 198 different allelic variants in the set of Rosa species and accessions, corresponding to 5-15 different alleles for each of the genes. Some diploid Rosa species shared alleles with tetraploid rose cultivars, consistent with the notion that diploid species have contributed to the formation of tetraploid roses. Among the four RhMLO genes in clade V, we demonstrated using expression study, virus-induced gene silencing as well as transient RNAi silencing that two of them, RhMLO1 and RhMLO2, are required for infection by P. pannosa and suggest their potential as susceptibility targets for powdery mildew resistance breeding in rose.
Collapse
Affiliation(s)
- Peihong Fang
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Xin Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Deepika Lakwani
- IRHS, Agrocampus-Ouest, INRAE, Université D’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRAE, Université D’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Jérémy Clotault
- IRHS, Agrocampus-Ouest, INRAE, Université D’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Juliane Geike
- Institute of Plant Genetics, Molecular Plant Breeding Unit, Leibniz Universität Hannover, Hannover, Germany
| | - Helgard Kaufmann
- Institute of Plant Genetics, Molecular Plant Breeding Unit, Leibniz Universität Hannover, Hannover, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Molecular Plant Breeding Unit, Leibniz Universität Hannover, Hannover, Germany
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | | |
Collapse
|
9
|
Lu J, Zhang Q, Lang L, Jiang C, Wang X, Sun H. Integrated metabolome and transcriptome analysis of the anthocyanin biosynthetic pathway in relation to color mutation in miniature roses. BMC PLANT BIOLOGY 2021; 21:257. [PMID: 34088264 PMCID: PMC8176584 DOI: 10.1186/s12870-021-03063-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Roses are famous ornamental plants worldwide. Floral coloration is one of the most prominent traits in roses and is mainly regulated through the anthocyanin biosynthetic pathway. In this study, we investigated the key genes and metabolites of the anthocyanin biosynthetic pathway involved in color mutation in miniature roses. A comparative metabolome and transcriptome analysis was carried out on the Neptune King rose and its color mutant, Queen rose, at the blooming stage. Neptune King rose has light pink colored petals while Queen rose has deep pink colored petals. RESULT A total of 190 flavonoid-related metabolites and 38,551 unique genes were identified. The contents of 45 flavonoid-related metabolites, and the expression of 15 genes participating in the flavonoid pathway, varied significantly between the two cultivars. Seven anthocyanins (cyanidin 3-O-glucosyl-malonylglucoside, cyanidin O-syringic acid, cyanidin 3-O-rutinoside, cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, peonidin 3-O-glucoside chloride, and pelargonidin 3-O-glucoside) were found to be the major metabolites, with higher abundance in the Queen rose. Thirteen anthocyanin biosynthetic related genes showed an upregulation trend in the mutant flower, which may favor the higher levels of anthocyanins in the mutant. Besides, eight TRANSPARENT TESTA 12 genes were found upregulated in Queen rose, probably contributing to a high vacuolar sequestration of anthocyanins. Thirty transcription factors, including two MYB and one bHLH, were differentially expressed between the two cultivars. CONCLUSIONS This study provides important insights into major genes and metabolites of the anthocyanin biosynthetic pathway modulating flower coloration in miniature rose. The results will be conducive for manipulating the anthocyanin pathways in order to engineer novel miniature rose cultivars with specific colors.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Qing Zhang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Lixin Lang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Chuang Jiang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xiaofeng Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
10
|
Yang Y, He R, Zheng J, Hu Z, Wu J, Leng P. Development of EST-SSR markers and association mapping with floral traits in Syringa oblata. BMC PLANT BIOLOGY 2020; 20:436. [PMID: 32957917 PMCID: PMC7507607 DOI: 10.1186/s12870-020-02652-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lilac (Syringa oblata) is an important woody plant with high ornamental value. However, very limited genetic marker resources are currently available, and little is known about the genetic architecture of important ornamental traits for S. oblata, which is hindering its genetic studies. Therefore, it is of great significance to develop effective molecular markers and understand the genetic architecture of complex floral traits for the genetic research of S. oblata. RESULTS In this study, a total of 10,988 SSRs were obtained from 9864 unigene sequences with an average of one SSR per 8.13 kb, of which di-nucleotide repeats were the dominant type (32.86%, 3611). A set of 2042 primer pairs were validated, out of which 932 (45.7%) exhibited successful amplifications, and 248 (12.1%) were polymorphic in eight S. oblata individuals. In addition, 30 polymorphic EST-SSR markers were further used to assess the genetic diversity and the population structure of 192 cultivated S. oblata individuals. Two hundred thirty-four alleles were detected, and the PIC values ranged from 0.23 to 0.88 with an average of 0.51, indicating a high level of genetic diversity within this cultivated population. The analysis of population structure showed two major subgroups in the association population. Finally, 20 significant associations were identified involving 17 markers with nine floral traits using the mixed linear model. Moreover, marker SO104, SO695 and SO790 had significant relationship with more than one trait. CONCLUSION The results showed newly developed markers were valuable resource and provided powerful tools for genetic breeding of lilac. Beyond that, our study could serve an efficient foundation for further facilitate genetic improvement of floral traits for lilac.
Collapse
Affiliation(s)
- Yunyao Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Ruiqing He
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian Zheng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Zenghui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Jing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China.
| | - Pingsheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| |
Collapse
|
11
|
Veluru A, Bhat KV, Raju DVS, Prasad KV, Tolety J, Bharadwaj C, Mitra SVACR, Banyal N, Singh KP, Panwar S. Characterization of Indian bred rose cultivars using morphological and molecular markers for conservation and sustainable management. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:95-106. [PMID: 32158123 PMCID: PMC7036390 DOI: 10.1007/s12298-019-00735-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/27/2019] [Accepted: 11/19/2019] [Indexed: 05/25/2023]
Abstract
Rose (Rosa × hybrid L.) is one of the most important commercial ornamental crops cultivated worldwide for its beauty, fragrance and nutraceutical values. Characterization of rose germplasm provides precise information about the extent of diversity present among the cultivars. It also helps in cultivar identification, intellectual property right protection, variety improvement and genetic diversity conservation. In the present study, 109 Indian bred rose cultivars were characterized using 59 morphological and 48 SSR markers. Out of 48 SSRs used, 31 markers exhibited polymorphism and 96 alleles were identified with an average of 3.9 alleles per locus. Nei's expected heterozygosity value of each locus ranged from 0.08 (with SSR ABRII/RPU32) to 0.78 (SSR Rh58). The similarity coefficient values ranged from 0.42 to 0.90 which indicated presence of moderated diversity among Indian cultivars. The neighbor-joining tree based on morphological data grouped the cultivars into two major clusters and several minor clusters based on their morphological resemblance. However, UPGMA dendrogram constructed using matching coefficient values grouped the cultivars into eight different clusters. Interpopulation analysis revealed higher genetic similarities between Hybrid Tea and Floribunda cultivars. An analysis for presence of population sub-structure grouped the Indian cultivars into eight different genetic groups. Analysis of molecular variance revealed apportioning of 97.59% of the variation to within subgroup diversity and 3.07% to between the cultivar groups. We have demonstrated here successful utilization of robust SSR to distinguish cultivars and assess genetic diversity among Indian bred rose cultivars. The information provided here is useful for cultivar identification and protection, cultivar improvement and genetic diversity conservation.
Collapse
Affiliation(s)
- Aparna Veluru
- 1Division of Floriculture and Landscape Architecture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | | | | | | | - Janakiram Tolety
- 3Assistant Director General, Horticulture, KAB-II, Indian Council of Agricultural Research, New Delhi, 110 012 India
| | - Chellapilla Bharadwaj
- 5Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, 110 012 India
| | | | - Namita Banyal
- 1Division of Floriculture and Landscape Architecture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Kanwar Pal Singh
- 1Division of Floriculture and Landscape Architecture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Sapna Panwar
- 1Division of Floriculture and Landscape Architecture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
12
|
Lebedev VG, Subbotina NM, Maluchenko OP, Lebedeva TN, Krutovsky KV, Shestibratov KA. Transferability and Polymorphism of SSR Markers Located in Flavonoid Pathway Genes in Fragaria and Rubus Species. Genes (Basel) 2019; 11:E11. [PMID: 31877734 PMCID: PMC7017068 DOI: 10.3390/genes11010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Strawberry (Fragaria) and raspberry (Rubus) are very popular crops, and improving their nutritional quality and disease resistance are important tasks in their breeding programs that are becoming increasingly based on use of functional DNA markers. We identified 118 microsatellite (simple sequence repeat-SSR) loci in the nucleotide sequences of flavonoid biosynthesis and pathogenesis-related genes and developed 24 SSR markers representing some of these structural and regulatory genes. These markers were used to assess the genetic diversity of 48 Fragaria and Rubus specimens, including wild species and rare cultivars, which differ in berry color, ploidy, and origin. We have demonstrated that a high proportion of the developed markers are transferable within and between Fragaria and Rubus genera and are polymorphic. Transferability and polymorphism of the SSR markers depended on location of their polymerase chain reaction (PCR) primer annealing sites and microsatellite loci in genes, respectively. High polymorphism of the SSR markers in regulatory flavonoid biosynthesis genes suggests their allelic variability that can be potentially associated with differences in flavonoid accumulation and composition. This set of SSR markers may be a useful molecular tool in strawberry and raspberry breeding programs for improvement anthocyanin related traits.
Collapse
Affiliation(s)
- Vadim G. Lebedev
- Pushchino State Institute of Natural Sciences, Prospekt Nauki 3, 142290 Pushchino, Russia; (V.G.L.); (N.M.S.)
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
| | - Natalya M. Subbotina
- Pushchino State Institute of Natural Sciences, Prospekt Nauki 3, 142290 Pushchino, Russia; (V.G.L.); (N.M.S.)
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
| | - Oleg P. Maluchenko
- All-Russian Research Institute of Agricultural Biotechnology, Timiriazevskaya Str. 42, 127550 Moscow, Russia;
| | - Tatyana N. Lebedeva
- Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Institutskaya Str. 2, 142290 Pushchino, Russia;
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX 77843-2138, USA
| | - Konstantin A. Shestibratov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
| |
Collapse
|
13
|
Cao X, Yan H, Liu X, Li D, Sui M, Wu J, Yu H, Zhang Z. A detached petal disc assay and virus-induced gene silencing facilitate the study of Botrytis cinerea resistance in rose flowers. HORTICULTURE RESEARCH 2019; 6:136. [PMID: 31814989 PMCID: PMC6885046 DOI: 10.1038/s41438-019-0219-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 05/29/2023]
Abstract
Fresh-cut roses (Rosa hybrida) are one of the most important ornamental crops worldwide, with annual trade in the billions of dollars. Gray mold disease caused by the pathogen Botrytis cinerea is the most serious fungal threat to cut roses, causing extensive postharvest losses. In this study, we optimized a detached petal disc assay (DPDA) for artificial B. cinerea inoculation and quantification of disease symptoms in rose petals. Furthermore, as the identification of rose genes involved in B. cinerea resistance could provide useful genetic and genomic resources, we devised a virus-induced gene silencing (VIGS) procedure for the functional analysis of B. cinerea resistance genes in rose petals. We used RhPR10.1 as a reporter of silencing efficiency and found that the rose cultivar 'Samantha' showed the greatest decrease in RhPR10.1 expression among the cultivars tested. To determine whether jasmonic acid and ethylene are required for B. cinerea resistance in rose petals, we used VIGS to silence the expression of RhLOX5 and RhEIN3 (encoding a jasmonic acid biosynthesis pathway protein and an ethylene regulatory protein, respectively) and found that petal susceptibility to B. cinerea was affected. Finally, a VIGS screen of B. cinerea-induced rose transcription factors demonstrated the potential benefits of this method for the high-throughput identification of gene function in B. cinerea resistance. Collectively, our data show that the combination of the DPDA and VIGS is a reliable and high-throughput method for studying B. cinerea resistance in rose.
Collapse
Affiliation(s)
- Xiaoqian Cao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Huijun Yan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Mengjie Sui
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Hongqiang Yu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
14
|
Liu X, Li D, Zhang S, Xu Y, Zhang Z. Genome-wide characterization of the rose (Rosa chinensis) WRKY family and role of RcWRKY41 in gray mold resistance. BMC PLANT BIOLOGY 2019; 19:522. [PMID: 31775626 PMCID: PMC6882016 DOI: 10.1186/s12870-019-2139-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND The WRKYs are a major family of plant transcription factors that play roles in the responses to biotic and abiotic stresses; however, a comprehensive study of the WRKY family in roses (Rosa sp.) has not previously been performed. RESULTS In the present study, we performed a genome-wide analysis of the WRKY genes in the rose (Rosa chinensis), including their phylogenetic relationships, gene structure, chromosomal locations, and collinearity. Using a phylogenetic analysis, we divided the 56 RcWRKY genes into three subgroups. The RcWRKYs were unevenly distributed across all seven rose chromosomes, and a study of their collinearity suggested that genome duplication may have played a major role in RcWRKY gene duplication. A Ka/Ks analysis indicated that they mainly underwent purifying selection. Botrytis cinerea infection induced the expression of 19 RcWRKYs, most of which had undergone gene duplication during evolution. These RcWRKYs may regulate rose resistance against B. cinerea. Based on our phylogenetic and expression analyses, RcWRKY41 was identified as a candidate regulatory gene in the response to B. cinerea infection, which was confirmed using virus-induced gene silencing. CONCLUSIONS This study provides useful information to facilitate the further study of the function of the rose WRKY gene family.
Collapse
Affiliation(s)
- Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Yaling Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China.
| |
Collapse
|
15
|
Huang P, Lin F, Li B, Zheng Y. Hybrid-Transcriptome Sequencing and Associated Metabolite Analysis Reveal Putative Genes Involved in Flower Color Difference in Rose Mutants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E267. [PMID: 31387222 PMCID: PMC6724100 DOI: 10.3390/plants8080267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/21/2019] [Accepted: 07/29/2019] [Indexed: 02/04/2023]
Abstract
Gene mutation is a common phenomenon in nature that often leads to phenotype differences, such as the variations in flower color that frequently occur in roses. With the aim of revealing the genomic information and inner mechanisms, the differences in the levels of both transcription and secondary metabolism between a pair of natural rose mutants were investigated by using hybrid RNA-sequencing and metabolite analysis. Metabolite analysis showed that glycosylated derivatives of pelargonidin, e.g., pelargonidin 3,5 diglucoside and pelargonidin 3-glucoside, which were not detected in white flowers (Rosa 'Whilte Mrago Koster'), constituted the major pigments in pink flowers. Conversely, the flavonol contents of petal, such as kaempferol-3-glucoside, quercetin 3-glucoside, and rutin, were higher in white flowers. Hybrid RNA-sequencing obtained a total of 107,280 full-length transcripts in rose petal which were annotated in major databases. Differentially expressed gene (DEG) analysis showed that the expression of genes involved in the flavonoid biosynthesis pathway was significantly different, e.g., CHS, FLS, DFR, LDOX, which was verified by qRT-PCR during flowering. Additionally, two MYB transcription factors were found and named RmMYBAN2 and RmMYBPA1, and their expression patterns during flowering were also analyzed. These findings indicate that these genes may be involved in the flower color difference in the rose mutants, and competition between anthocyanin and flavonol biosynthesis is a primary cause of flower color variation, with its regulation reflected by transcriptional and secondary metabolite levels.
Collapse
Affiliation(s)
- Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Bin Li
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
16
|
Hao Y, Fang P, Ma C, White JC, Xiang Z, Wang H, Zhang Z, Rui Y, Xing B. Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. ENVIRONMENTAL RESEARCH 2019; 170:1-6. [PMID: 30554052 DOI: 10.1016/j.envres.2018.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
In the present study, we investigated the antifungal effects of engineered nanomaterials (ENMs) against Podosphaera pannosa (P. pannosa), a fungal pathogen that causes powdery mildew on plants in the rose family. Four commercial ENMs, including multi-wall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), copper oxide (CuO) nanoparticles (NPs) and titanium dioxide (TiO2) NPs, were used to prepare 50 or 200 mg/L NP suspensions in deionized water. Rose leaves in water-agar plates were sprayed by different ENM suspensions mixed with P. pannosa conidia. After a 19-day standard infection test, the growth of P. pannosa on rose leaves was evaluated. All four ENMs inhibited infection by P. pannosa at the concentration 200 mg/L, whereas only CuO NPs decreased fungal growth at 50 mg/L. The phytohormone content of the leaves was measured across all treatments to investigate potential ENMs antifungal mechanisms. The results suggest that ENMs increased plant resistance to fungal infection by altering the content of endogenous hormones, particularly zeatin riboside (ZR). Our study demonstrates that ENMs exhibited distinctly antifungal effects against P. pannosa on roses, and could be utilized as a novel plant protection strategy after a comprehensive assessment of potential environmental risk.
Collapse
Affiliation(s)
- Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Peihong Fang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States; Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Zhiqian Xiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Haitao Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, Heilongjiang 150070, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, United States
| |
Collapse
|