1
|
Liu X, Guo N, Li S, Duan M, Wang G, Zong M, Han S, Wu Z, Liu F, Zhang J. Characterization of the Bax Inhibitor-1 Family in Cauliflower and Functional Analysis of BobBIL4. Int J Mol Sci 2024; 25:9562. [PMID: 39273509 PMCID: PMC11395134 DOI: 10.3390/ijms25179562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The Bax inhibitor-1 (BI-1) gene family, which is important for plant growth, development, and stress tolerance, remains largely unexplored in cauliflower. In this study, we identified and characterized cauliflower BI-1 family genes. Based on aligned homologous sequences and collinearity with Arabidopsis genes, we identified nine cauliflower BI-1 genes, which encode proteins that varied in length, molecular weight, isoelectric point, and predicted subcellular localization, including the Golgi apparatus, plasma membrane, and various compartments within the chloroplast. Phylogenetic analyses detected evolutionary conservation and divergence among these genes. Ten structural motifs were identified, with Motif 5 found to be crucial for inhibiting apoptosis. According to the cis-regulatory elements in their promoters, these genes likely influence hormone signaling and stress responses. Expression profiles among tissues highlighted the functional diversity of these genes, with particularly high expression levels observed in the silique and root. Focusing on BobBIL4, we investigated its role in brassinosteroid (BR)-mediated root development and salt stress tolerance. BobBIL4 expression levels increased in response to BR and salt treatments. The functional characterization of this gene in Arabidopsis revealed that it enhances root growth and salinity tolerance. These findings provide insights into BI-1 gene functions in cauliflower while also highlighting the potential utility of BobBIL4 for improving crop stress resistance.
Collapse
Affiliation(s)
- Xin Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an 625014, China; (X.L.); (S.L.)
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (N.G.); (M.D.); (G.W.); (M.Z.); (S.H.); (Z.W.)
| | - Ning Guo
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (N.G.); (M.D.); (G.W.); (M.Z.); (S.H.); (Z.W.)
| | - Shasha Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an 625014, China; (X.L.); (S.L.)
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (N.G.); (M.D.); (G.W.); (M.Z.); (S.H.); (Z.W.)
| | - Mengmeng Duan
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (N.G.); (M.D.); (G.W.); (M.Z.); (S.H.); (Z.W.)
| | - Guixiang Wang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (N.G.); (M.D.); (G.W.); (M.Z.); (S.H.); (Z.W.)
| | - Mei Zong
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (N.G.); (M.D.); (G.W.); (M.Z.); (S.H.); (Z.W.)
| | - Shuo Han
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (N.G.); (M.D.); (G.W.); (M.Z.); (S.H.); (Z.W.)
| | - Zihan Wu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (N.G.); (M.D.); (G.W.); (M.Z.); (S.H.); (Z.W.)
| | - Fan Liu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (N.G.); (M.D.); (G.W.); (M.Z.); (S.H.); (Z.W.)
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an 625014, China; (X.L.); (S.L.)
| |
Collapse
|
2
|
Yang D, Li Y, Zhu M, Cui R, Gao J, Shu Y, Lu X, Zhang H, Zhang K. Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses. Genes (Basel) 2023; 14:2006. [PMID: 38002948 PMCID: PMC10671320 DOI: 10.3390/genes14112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The FKBP (FK506-binding protein) gene family is an important member of the PPlase protease family and plays a vital role during the processes of plant growth and development. However, no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic analysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that 12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while others were only highly expressed in part of the 10 types of tissues. The expression profile analysis of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an important role in the growth and development of cucumber. The interaction protein analysis showed that most of the proteins in the FKBP gene family interacted with each other. The results of this study will lay the foundation for further research on the molecular biological functions of the cucumber FKBP gene family.
Collapse
Affiliation(s)
- Dekun Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yahui Li
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Mengdi Zhu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Rongjing Cui
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Jiong Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| |
Collapse
|
3
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Zhang X, Zhang X, Wang L, Liu Q, Liang Y, Zhang J, Xue Y, Tian Y, Zhang H, Li N, Sheng C, Nie P, Feng S, Liao B, Bai D. Fine mapping of a QTL and identification of candidate genes associated with cold tolerance during germination in peanut ( Arachis hypogaea L.) on chromosome B09 using whole genome re-sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1153293. [PMID: 37223785 PMCID: PMC10200878 DOI: 10.3389/fpls.2023.1153293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/25/2023]
Abstract
Low temperatures significantly affect the growth and yield of peanuts. Temperatures lower than 12 °C are generally detrimental for the germination of peanuts. To date, there has been no report on precise information on the quantitative trait loci (QTL) for cold tolerance during the germination in peanuts. In this study, we developed a recombinant inbred line (RIL) population comprising 807 RILs by tolerant and sensitive parents. Phenotypic frequencies of germination rate low-temperature conditions among RIL population showed normally distributed in five environments. Then, we constructed a high density SNP-based genetic linkage map through whole genome re-sequencing (WGRS) technique and identified a major quantitative trait locus (QTL), qRGRB09, on chromosome B09. The cold tolerance-related QTLs were repeatedly detected in all five environments, and the genetic distance was 6.01 cM (46.74 cM - 61.75 cM) after taking a union set. To further confirm that qRGRB09 was located on chromosome B09, we developed Kompetitive Allele Specific PCR (KASP) markers for the corresponding QTL regions. A regional QTL mapping analysis, which was conducted after taking the intersection of QTL intervals of all environments into account, confirmed that qRGRB09 was between the KASP markers, G22096 and G220967 (chrB09:155637831-155854093), and this region was 216.26 kb in size, wherein a total of 15 annotated genes were detected. This study illustrates the relevance of WGRS-based genetic maps for QTL mapping and KASP genotyping that facilitated QTL fine mapping of peanuts. The results of our study also provided useful information on the genetic architecture underlying cold tolerance during germination in peanuts, which in turn may be useful for those engaged in molecular studies as well as crop improvement in the cold-stressed environment.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Xiaoji Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Luhuan Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Qimei Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Yuying Liang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jiayu Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Yunyun Xue
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Yuexia Tian
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Huiqi Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Na Li
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Cong Sheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pingping Nie
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Suping Feng
- College of Food Science and Engineering, Hainan Tropical Ocean College, Hainan, China
| | - Boshou Liao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongmei Bai
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
6
|
Maisuria HJ, Dhaduk HL, Kumar S, Sakure AA, Thounaojam AS. Physiological and gene expression responses involved in teak (Tectona grandis L.) seedlings exposed to osmotic and salt stressors. Mol Biol Rep 2023; 50:4875-4886. [PMID: 37060520 DOI: 10.1007/s11033-023-08437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Teak (Tectona grandis L.) is a forest tree having 2n = 2x = 36 diploid chromosomes. Plants are continually subjected to variety of abiotic stresses due to climate change, which alter their physiological processes and gene expression. METHODS AND RESULTS The current study sought to examine the physiological and differential gene expression of teak seedlings exposed to abiotic stresses (150 mM NaCl and 15% PEG-6000). Chlorophyll content, membrane stability index and relative water content were measured at 0, 2, 7 and 12 days after treatment. These parameters were initially numerically reduced, but they were significantly reduced during a longer period of treatment. Seedlings treated with 150 mM NaCl displayed more harmful effect on the plant than other treatments. The results showed that variety of stresses significantly affect the physiology of seedlings because they cause membrane damage, ROS generation, chlorophyll degradation, and reduction in water absorption. The gene expression of treated and control seedlings was also evaluated at 12 days after treatment. Ten stress-related genes were examined for their differential expression using RT-PCR under applied stress. The stress-treated seedlings' leaves showed an up-regulated expression of the genes MYB-3, HSP-1, BI-1 and CS-2. CONCLUSION Up-regulation of the genes confirmed the protective function of these genes in plants under abiotic stress. However, gene expression was affected by treatments, the extent of stress and the species of plant. This study came to the conclusion that physiological parameters could be utilized as marker indices to assess a tree's capability to withstand stress at seedling stage. The up-regulated genes will be further investigated and utilized to validate stress tolerance and susceptible teak seedlings.
Collapse
|
7
|
Assessing the Heat Tolerance of Meiosis in Spanish Landraces of Tetraploid Wheat Triticum turgidum. PLANTS 2022; 11:plants11131661. [PMID: 35807613 PMCID: PMC9268776 DOI: 10.3390/plants11131661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Heat stress alters the number and distribution of meiotic crossovers in wild and cultivated plant species. Hence, global warming may have a negative impact on meiosis, fertility, and crop productions. Assessment of germplasm collections to identify heat-tolerant genotypes is a priority for future crop improvement. Durum wheat, Triticum turgidum, is an important cultivated cereal worldwide and given the genetic diversity of the durum wheat Spanish landraces core collection, we decided to analyse the heat stress effect on chiasma formation in a sample of 16 landraces of T. turgidum ssp. turgidum and T. turgidum ssp. durum, from localities with variable climate conditions. Plants of each landrace were grown at 18–22 °C and at 30 °C during the premeiotic temperature-sensitive stage. The number of chiasmata was not affected by heat stress in three genotypes, but decreased by 0.3–2 chiasmata in ten genotypes and more than two chiasmata in the remaining three ones. Both thermotolerant and temperature-sensitive genotypes were found in the two subspecies, and in some of the agroecological zones studied, which supports that genotypes conferring a heat tolerant meiotic phenotype are not dependent on subspecies or geographical origin. Implications of heat adaptive genotypes in future research and breeding are discussed.
Collapse
|
8
|
Wu J, Gao T, Hu J, Zhao L, Yu C, Ma F. Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154054. [PMID: 35202686 DOI: 10.1016/j.scitotenv.2022.154054] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
Plants respond to various stresses by triggering the expression of genes that encode proteins involved in plant growth, fruit ripening, cellular protein homeostasis, and tolerance systems. sHSPs, a subfamily of heat shock proteins (HSPs), can be expressed in plants to inhibit abnormal aggregation of proteins and protect normal proteins by interacting with folding target proteins, protect cell integrity, and improve resistance under various adverse conditions. Thus, sHSPs have significant influences on seed germination and plant development. In this review, the classification, structure, and functions of sHSP family members in plants are systematically summarized, with emphasis on their roles in promoting fruit ripening and plant growth by reducing the accumulation of ROS, improving the survival rate of plants and the antioxidant activity, and protecting photosynthesis under biotic and abiotic stresses. Meanwhile, the production and regulatory mechanisms of sHSPs are described in detail. Heat shock factors, long non-coding RNA (lncRNAs), microRNA (miRNAs), and FK506 binding proteins are related to the production process of sHSPs. Molecular chaperone complex HSP70/100, plastidic proteins, and abscisic acid (ABA) are involved in the regulatory mechanisms of sHSPs. Besides, scientific efforts and practices for improving plant stress resistance have carried out the constitutive expression of sHSPs in transgenic plants in recent years. It is a powerful path for inducing the protective mechanisms of plants under various stresses. Therefore, exploring the role of sHSPs in the plant defense system paves a way for comprehensively unraveling plant tolerance in response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian 116032, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Chang Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
9
|
Li M, Feng J, Zhou H, Najeeb U, Li J, Song Y, Zhu Y. Overcoming Reproductive Compromise Under Heat Stress in Wheat: Physiological and Genetic Regulation, and Breeding Strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:881813. [PMID: 35646015 PMCID: PMC9137415 DOI: 10.3389/fpls.2022.881813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 05/27/2023]
Abstract
The reproductive compromise under heat stress is a major obstacle to achieve high grain yield and quality in wheat worldwide. Securing reproductive success is the key solution to sustain wheat productivity by understanding the physiological mechanism and molecular basis in conferring heat tolerance and utilizing the candidate gene resources for breeding. In this study, we examined the performance on both carbon supply source (as leaf photosynthetic rate) and carbon sink intake (as grain yields and quality) in wheat under heat stress varying with timing, duration, and intensity, and we further surveyed physiological processes from source to sink and the associated genetic basis in regulating reproductive thermotolerance; in addition, we summarized the quantitative trait loci (QTLs) and genes identified for heat stress tolerance associated with reproductive stages. Discovery of novel genes for thermotolerance is made more efficient via the combination of transcriptomics, proteomics, metabolomics, and phenomics. Gene editing of specific genes for novel varieties governing heat tolerance is also discussed.
Collapse
Affiliation(s)
- Min Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jiming Feng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Han Zhou
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Ullah Najeeb
- Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Jincai Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Youhong Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yulei Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Ding H, Qian Y, Fang Y, Ji Y, Sheng J, Ge C. Characteristics of SlCML39, a Tomato Calmodulin-like Gene, and Its Negative Role in High Temperature Tolerance of Arabidopsis thaliana during Germination and Seedling Growth. Int J Mol Sci 2021; 22:ijms222111479. [PMID: 34768907 PMCID: PMC8584099 DOI: 10.3390/ijms222111479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Calmodulin-like (CML) proteins are primary calcium sensors and function in plant growth and response to stress stimuli. However, so far, the function of plant CML proteins, including tomato, is still unclear. Previously, it was found that a tomato (Solanum lycopersicum) CML, here named SlCML39, was significantly induced by high temperature (HT) at transcription level, but its biological function is scarce. In this study, the characteristics of SlCML39 and its role in HT tolerance were studied. SlCML39 encodes a protein of 201 amino acids containing four EF hand motifs. Many cis-acting elements related to plant stress and hormone response appear in the promoter regions of SlCML39. SlCML39 is mainly expressed in the root, stem, and leaf and can be regulated by HT, cold, drought, and salt stresses as well as ABA and H2O2. Furthermore, heterologous overexpression of SlCML39 reduces HT tolerance in Arabidopsis thaliana at the germination and seedling growth stages. To better understand the molecular mechanism of SlCML39, the downstream gene network regulated by SlCML39 under HT was analyzed by RNA-Seq. Interestingly, we found that many genes involved in stress responses as well as ABA signal pathway are down-regulated in the transgenic seedlings under HT stress, such as KIN1, RD29B, RD26, and MAP3K18. Collectively, these data indicate that SlCML39 acts as an important negative regulator in response to HT stress, which might be mediated by the ABA signal pathway.
Collapse
Affiliation(s)
- Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| | - Ying Qian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yifang Fang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yurong Ji
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Jiarong Sheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Cailin Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| |
Collapse
|
11
|
Luo Y, Xie Y, He D, Wang W, Yuan S. Exogenous trehalose protects photosystem II by promoting cyclic electron flow under heat and drought stresses in winter wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:770-776. [PMID: 33914400 DOI: 10.1111/plb.13277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Drought and rising global temperatures are important factors that reduce wheat production. Trehalose protects the reaction centres and improves photosystem II (PSII) activity under diverse stress conditions. However, the underlying mechanism remains unknown. Cyclic electron flow (CEF) plays an important role in protecting PSII under environmental stresses. Our study focused on the effects of exogenous trehalose on the activity of PSII, D1 protein content, plastoquinone (PQ) pool and ATP synthase activity in wheat seedlings under heat and drought stresses to explore the relationship between trehalose and CEF. The results indicated that heat and drought stresses decreased maximum photochemical efficiency of PSII (Fv /Fm ) and electron transport rate of PSII (EFR(II)), whereas the trehalose pretreatment improved photochemical efficiency and electron transport rate of PSII. The trehalose pretreatment stimulated CEF under heat and drought stresses. Furthermore, the proton gradient (ΔpH) across the thylakoid membrane and ATPase activity increased. The higher ΔpH and ATPase activity played a key role in protecting PSII under stresses. Trehalose pretreatment could reduce inhibition caused by heat and drought stresses on the PQ pool. Thus, our results indicated that photoinhibition in heat- and drought-stressed plants was alleviated by the trehalose pretreatment, which was mediated by CEF and the PQ pool.
Collapse
Affiliation(s)
- Y Luo
- Instruments Sharing Platform of School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Y Xie
- Instruments Sharing Platform of School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - D He
- Instruments Sharing Platform of School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shenyang University, Shenyang, 110044, China
| | - W Wang
- College of Life Sciences, Zaozhuang University, Zhaozhuang, 277000, China
| | - S Yuan
- Instruments Sharing Platform of School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
12
|
Browne RG, Li SF, Iacuone S, Dolferus R, Parish RW. Differential responses of anthers of stress tolerant and sensitive wheat cultivars to high temperature stress. PLANTA 2021; 254:4. [PMID: 34131818 DOI: 10.1007/s00425-021-03656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/03/2021] [Indexed: 05/27/2023]
Abstract
Transcriptomic analyses identified anther-expressed genes in wheat likely to contribute to heat tolerance and hence provide useful genetic markers. The genes included those involved in hormone biosynthesis, signal transduction, the heat shock response and anther development. Pollen development is particularly sensitive to high temperature heat stress. In wheat, heat-tolerant and heat-sensitive cultivars have been identified, although the underlying genetic causes for these differences are largely unknown. The effects of heat stress on the developing anthers of two heat-tolerant and two heat-sensitive wheat cultivars were examined in this study. Heat stress (35 °C) was found to disrupt pollen development in the two heat-sensitive wheat cultivars but had no visible effect on pollen or anther development in the two heat-tolerant cultivars. The sensitive anthers exhibited a range of developmental abnormalities including an increase in unfilled and clumped pollen grains, abnormal pollen walls and a decrease in pollen viability. This subsequently led to a greater reduction in grain yield in the sensitive cultivars following heat stress. Transcriptomic analyses of heat-stressed developing wheat anthers of the four cultivars identified a number of key genes which may contribute to heat stress tolerance during pollen development. Orthologs of some of these genes in Arabidopsis and rice are involved in regulation of the heat stress response and the synthesis of auxin, ethylene and gibberellin. These genes constitute candidate molecular markers for the breeding of heat-tolerant wheat lines.
Collapse
Affiliation(s)
- Richard G Browne
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Song F Li
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Sylvana Iacuone
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- Melbourne Polytechnic, Epping, VIC, Australia
| | - Rudy Dolferus
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Roger W Parish
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
13
|
Wang B, Zhang M, Zhang J, Huang L, Chen X, Jiang M, Tan M. Profiling of rice Cd-tolerant genes through yeast-based cDNA library survival screening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:429-436. [PMID: 32814279 DOI: 10.1016/j.plaphy.2020.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The bioaccumulation of cadmium (Cd) in crop and the subsequent food chain has aroused extensive concerns. However, the underlying molecular mechanisms of plant Cd tolerance remain to be clarified from the viewpoint of novel candidate genes. Here we described a highly efficient approach for preliminary identifying rice Cd-tolerant genes through the yeast-based cDNA library survival screening combined with high-throughput sequencing strategy. About 690 gene isoforms were identified as being Cd-tolerant candidates using this shotgun approach. Among the Cd-tolerant genes identified, several categories of genes such as BAX inhibitor (BI), NAC transcription factors and Rapid ALkalinization Factors (RALFs) were of particular interest, and their function of Cd tolerance was further validated via heterologous expression, which suggested that SNAC1, RALF12, OsBI-1 can confer Cd tolerance in yeast and tobacco leaves. Regarding the genes involved in ion transport, the validated Cd-tolerant heavy metal-associated domain (HMAD) isoprenylated protein HIPP42 was particularly noteworthy. Further elucidation of these genes associated with Cd tolerance in rice will benefit agricultural activities.
Collapse
Affiliation(s)
- Baoxiang Wang
- Lianyungang Institute of Agricultural Sciences in Jiangsu Xuhuai Region, Jiangsu Academy of Agricultural Sciences, Lianyungang, China.
| | - Manman Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Jie Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Liping Huang
- School of Food Science and Engineering, Foshan University, Foshan, China.
| | - Xi Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
14
|
Chen K, Tang T, Song Q, Wang Z, He K, Liu X, Song J, Wang L, Yang Y, Feng C. Transcription Analysis of the Stress and Immune Response Genes to Temperature Stress in Ostrinia furnacalis. Front Physiol 2019; 10:1289. [PMID: 31681003 PMCID: PMC6803539 DOI: 10.3389/fphys.2019.01289] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
Ostrinia furnacalis is one of the most important pests on maize. O. furnacalis larvae are frequently exposed to the temperature challenges such as high temperature in summer and cold temperature in winter in the natural environment. High and low temperature stress, like any abiotic stress, impairs the physiology and development of insects. Up to now, there is limited information about gene regulation and signaling pathways related to the high and cold stress response in O. furnacalis. High-throughput sequencing of transcriptome provides a new approach for detecting stress and immune response genes under high and low temperature stresses in O. furnacalis. In the present study, O. furnacalis larvae were treated with the temperature at 8 and 40°C, and the responses of O. furnacalis larvae to the temperature stress were investigated through RNA-sequencing and further confirmation. The results showed that immune responses were up-regulated in larvae by the cold stress at 8°C while some stress response genes, such as HSP family, GST-2, Bax inhibitor and P450, were significantly increased at 40°C. Furthermore, quantitative real time polymerase chain reaction were performed to quantify the expression levels of immune related genes, such as PGRP-LB, antimicrobial peptides, lysozyme, serine protease and stress response genes such as small HSPs and HSP90, and the expression levels of these genes were similar to the RNA-seq results. In addition, the iron storage protein Ferritin was found to be involved in the response to temperature stress, and the changes of total iron concentration in the hemolymph were, in general, consistent with the expression levels of Ferritin. Taken together, our results suggested that the stress response genes were involved in the defense against the heat stress at 40°C, and the immune responses triggered by cold stress might provide protection for larvae from cold stress at 8°C. More interestingly, our results showed that during the responses to temperature stress, the total iron concentration in hemolymph regulated by Ferritin increased, which might help O. furnacalis in surviving the low and high temperature stress.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tai Tang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiahui Song
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yizhong Yang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|