1
|
Charagh S, Wang J, Hui S, Raza A, Cao R, Zhou L, Yang L, Xu B, Zhang Y, Mawia AM, Sheng Z, Tang S, Hu S, Hu P. Smart reprogramming of plants against cadmium toxicity using membrane transporters and modern tools. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109919. [PMID: 40239253 DOI: 10.1016/j.plaphy.2025.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/25/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Cadmium (Cd) in soil and water streams is now recognized as a significant environmental issue that harms plants and animals. Plants damaged by Cd toxicity experience various effects, from germination to yield reduction. Plant- and animal-based goods are allowing more Cd to enter our food chain, which could harm human health. Therefore, this urgent global concern must be addressed by implementing appropriate remedial measures. Plant-based phytoremediation is one safe, economical, and environmentally acceptable way to remove hazardous metals from the environment. Hyperaccumulator plants possess specialized transport proteins, such as metal transporters located in membranes of roots, as well as they facilitate Cd uptake from soil. This review outlines the latest findings about these membrane transporters. Moreover, we also discuss how innovative modern tools such as microbiomes, omics, nanotechnology, and genome editing have revealed molecular regulators connected to Cd tolerance, which may be employed to develop Cd-tolerant future plants. We can develop effective solutions to enhance tolerance of plant to Cd toxicity by leveraging membrane transporters and modern biotechnological tools. Additionally, implementing strategies to increase tolerance of Cd and restrict its bioavailability in plants' edible parts is crucial for improving food safety. These combined efforts will lead to the cultivation of safer food crops and support sustainable agricultural practices in contaminated environments.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China.
| |
Collapse
|
2
|
Gong X, Lin M, Song J, Mao J, Yao D, Gao Z, Wang X. Genome-wide identification of the AcBAM family in kiwifruit (Actinidia chinensis cv. Hongyang) and the expression profiling analysis of AcBAMs reveal their role in starch metabolism. BMC PLANT BIOLOGY 2025; 25:415. [PMID: 40175919 PMCID: PMC11963268 DOI: 10.1186/s12870-025-06425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/19/2025] [Indexed: 04/04/2025]
Abstract
After analyzing a high-quality 'Hongyang' genome, we identified 17 AcBAMs. Comprehensive bioinformatics were performed to elucidate the properties and evolutionary relationships of these genes. Our analysis revealed that most AcBAMs retained conserved active sites (e.g., Glu186 and Glu380) and exhibited similar structural properties. Phylogenetic and collinearity analyses grouped the genes into three main clusters, with segmental and tandem duplications contributing to their expansion. Expression profiling showed that AcBAM5 and AcBAM13 were most highly expressed during postharvest storage and were strongly induced by ABA signal. Silencing these genes led to a significant increase in starch content, suggesting their key role in starch degradation. Promoter analysis identified cis-elements related to ABA signal and cold response in the AcBAM family, and the expression of AcBAM genes was influenced by ABA and low-temperature treatments, with specific genes showing significant responsiveness.Background Kiwifruit (Actinidia chinensis cv. Hongyang) is a perennial woody fruit tree highly valued for its rich nutritional profile and high vitamin C content. The postharvest ripening process, characterized by starch degradation into soluble sugars, significantly influences the fruit's flavor and texture. β-amylase (BAM) has been proven to be one of the key enzymes catalyzing starch degradation, but which BAM genes are involved and how to participate in this process in kiwifruit still need to be clarified.Conclusion In the study, we identified a total of 17 AcBAM genes. The expansion of AcBAMs in kiwifruit was mainly due to segmental duplication events, and some of their catalytic residues were mutated, potentially leading to a loss of biological activity. The expression patterns of AcBAMs, along with VIGS data, suggest that AcBAM5 and AcBAM13 respond to ABA signals and promote starch degradation. Our findings provide valuable insights into the regulatory mechanisms of BAM genes in kiwifruit and highlight their importance in starch metabolism and fruit ripening.
Collapse
Affiliation(s)
- Xuchen Gong
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Jie Song
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jipeng Mao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Dongliang Yao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Zhu Gao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China.
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China.
| | - Xiaoling Wang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China.
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Zhou M, Di Q, Yan Y, He C, Wang J, Li Y, Yu X, Sun M. Multi-omics reveal the molecular mechanisms of Sodium Nitrophenolate in enhancing cold tolerance through hormonal and antioxidant pathways in cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109836. [PMID: 40157145 DOI: 10.1016/j.plaphy.2025.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Sodium nitrophenate (CSN) enhanced cold tolerance of cucumber. However, at the omics-level, the molecular mechanism of CSN to cold stress remains unclear. Here, we found that CSN was comparable to abscisic acid and much stronger than 2, 4-epibrassinolide (EBR) in enhancing cold tolerance. RNA-seq indicated that CSN regulated the brassinolides (BR) and cytokinin (CK) synthesis in the late stage of cold stress (LS-CS). CSN reduced the source of BR synthesis, accelerated the conversion of intermediate substances to BR and the deactivation of BR. While, CSN accelerated CK synthesis and CK deactivation by cytokinin dehydrogenase. Hormone content determination showed that CSN increased BR and decreased CK contents during most time-points of cold stress. Kinds of hormone signaling genes at LS-CS were activated by CSN, which may be due to changes in BR and CK contents. CSN also enhanced the expression of 90 % phenylalanine ammonia-lyase genes, participated in phenylpropanoid biosynthesis, at LS-CS. Genes of phenylpropanoid biosynthesis pathway and hormones signal were co-expression during cold stress. The metabolome also showed that CSN participated phenylpropanoid biosynthesis at LS-CS too. However, as for lipid metabolome, CSN up-regulated anthocyanin, flavones and flavonols metabolism at the early stage of cold stress. The autumn and winter field yield test showed that CSN increase cucumber yield by approximately 17.67 % and economic income by 207.67 dollars/667 m2. Collectedly, CSN may regulate lipid metabolism and hormone signaling mediated antioxidant pathways to enhance cold tolerance in the early and late stages of cold stress, respectively.
Collapse
Affiliation(s)
- Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China.
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China.
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China.
| |
Collapse
|
4
|
Singh A, Maurya A, Gupta R, Joshi P, Rajkumar S, Singh AK, Bhardwaj R, Singh GP, Singh R. Genome-wide identification and expression profiling of WRKY gene family in grain Amaranth (Amaranthus hypochondriacus L.) under salinity and drought stresses. BMC PLANT BIOLOGY 2025; 25:265. [PMID: 40021992 PMCID: PMC11869666 DOI: 10.1186/s12870-025-06270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND The WRKY gene family plays a significant role in plant growth, development, and responses to biotic and abiotic stresses. However, the role of the WRKY gene family has not been reported in Amaranthus hypochondriacus. This study presents a comprehensive genome-wide analysis of the WRKY gene family in grain amaranth (A. hypochondriacus L.), a resilient crop known for its high nutritional value and adaptability to challenging environments. RESULTS In this study, 55 WRKY genes (AhyWRKY1-55) were identified in A. hypochondriacus and distributed unevenly across 16 scaffolds. Of these, 50 contained conserved WRKY domains and were classified into three main groups. Group II was further divided into five subgroups (IIa-IIe) based on phylogenetic analysis, with each clade being well supported by conserved motifs. Additionally, the gene structure analysis revealed variations in exon-intron organization. In contrast, motif analysis showed the presence of conserved domains that were similar within the group but differed between groups, suggesting their functional diversity. Cis-acting elements related to plant growth and development and light, hormones, and stress responses were identified. Synteny analysis revealed that 34 (61.8%) of the genes originated from tandem duplication, indicating the role of tandem duplication in the expansion of the A. hypochondriacus WRKY gene family. Protein-protein interaction analysis suggested that AhyWRKY3, AhyWRKY27, AhyWRKY28, AhyWRKY36, and AhyWRKY52 were hub genes involved in the complex protein interaction network. Using in silico and real-time quantitative PCR, expression analysis revealed tissue- and condition-specific expression patterns of AhyWRKY genes. Notably, under drought stress, AhyWRKY39, AhyWRKY40, AhyWRKY54, and AhyWRKY01 showed increased expression, while under salt stress, AhyWRKY40, AhyWRKY54, AhyWRKY39, AhyWRKY49, and AhyWRKY8 were upregulated at 30 days, suggesting that these genes may play key role in response to salinity stress. CONCLUSIONS The present study provides valuable insights into the organization and evolutionary patterns of the WRKY gene family in amaranth. It also identifies putative candidate WRKY genes that may play a role in conferring drought and salt tolerance. Overall, this study lays a foundation for further functional validation of these WRKY candidate genes, facilitating their exploitation in the amaranth genetic improvement programs to develop stress-resilient varieties.
Collapse
Affiliation(s)
- Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - Rajat Gupta
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - Parampara Joshi
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - S Rajkumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - Amit Kumar Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - G P Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India.
| |
Collapse
|
5
|
Tan Z, Lu D, Yu Y, Li L, Xu L, Dong W, Yang Q, Li C, Wan X, Liang H. Genome-wide identification, characterization and expression analysis of WRKY transcription factors under abiotic stresses in Carthamus tinctorius L. BMC PLANT BIOLOGY 2025; 25:81. [PMID: 39838282 PMCID: PMC11748509 DOI: 10.1186/s12870-025-06079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation. Safflower, valued for its ornamental, medicinal, and culinary uses, exhibits significant resilience to salt, alkali, and drought. By elucidating the functions and expression patterns of WRKY genes, we aim to enhance breeding strategies for improved stress tolerance and metabolic traits in crops. RESULTS In this study, we identified 84 WRKY genes within the safflower genome, and classified them into three primary groups (Groups I, II, and III) based on molecular structure and phylogenetic relationships. Group II was further subdivided into five subgroups (II-a, II-b, II-c, II-d, and II-e). Gene structure, conserved domain, motif, cis-elements, and expression profiling were performed. Syntenic analysis revealed that there were 27 pairs of repetitive fragments. Expression profiles of CtWRKY genes were assessed across diverse tissues, colored cultivars, and abiotic stresses such as ABA, drought, and cold conditions. Several CtWRKY genes (e.g., CtWRKY44, CtWRKY63, CtWRKY65, CtWRKY70 and CtWRKY72) exhibited distinct expression patterns in response to cold stress and during different developmental stages. Additionally, CtWRKY13, CtWRKY69, CtWRKY29, CtWRKY56, and CtWRKY36 were upregulated across different flower colors. The expression patterns of CtWRKY48, CtWRKY58, and CtWRKY70 varied among safflower cultivars and flower colors. After exposure to drought stress, the expression levels of CtWRKY29 and CtWRKY58 were downregulated, while those of CtWRKY56 and CtWRKY62 were upregulated. CONCLUSION This study identified 84 WRKY genes in Carthamus tinctorius and classified them into three groups, with detailed analyses of their structure, conserved domains, motifs, and expression profiles under various stresses. Notably, several WRKY genes such as CtWRKY44, CtWRKY63, and CtWRKY72 displayed significant expression changes under cold stress, while CtWRKY56 and CtWRKY62 were responsive to drought stress. These findings highlight the critical roles of specific WRKY genes in abiotic stress tolerance and developmental regulation in safflower.
Collapse
Affiliation(s)
- Zhengwei Tan
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Dandan Lu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
| | - Lei Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Lanjie Xu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Wei Dong
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Qing Yang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Chunming Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijng, 100700, China
| | - Huizhen Liang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
6
|
Refaiy M, Tahir M, Jiao L, Zhang X, Zhang H, Chen Y, Xu Y, Song S, Pang X. Genome-Wide Identification of Xyloglucan Endotransglucosylase/Hydrolase Multigene Family in Chinese Jujube ( Ziziphus jujuba) and Their Expression Patterns Under Different Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:3503. [PMID: 39771201 PMCID: PMC11677919 DOI: 10.3390/plants13243503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The Xyloglucan endotransglucosylase/hydrolase (XTH) family, a group of cell wall-modifying enzymes, plays crucial roles in plant growth, development, and stress adaptation. The quality and yield of Chinese jujube (Ziziphus jujuba) fruit are significantly impacted by environmental stresses, including excessive salinity, drought, freezing, and disease. However, there has been no report of the XTH encoding genes present in the Chinese jujube genome and their response transcription level under various stresses. This study provides an in-depth analysis of ZjXTH genes in the genome of Chinese jujube and elucidates their structural motifs, regulatory networks, and expression patterns under various stresses. A total of 29 ZjXTH genes were identified from the Ziziphus jujuba genome. Phylogenetic analysis classifies ZjXTH genes into four distinct groups, while conserved motifs and domain analyses reveal coordinated xyloglucan modifications, highlighting key shared motifs and domains. Interaction network predictions suggest that ZjXTHs may interact with proteins such as Expansin-B1 (EXPB1) and Pectin Methylesterase 22 (PME22). Additionally, cis-regulatory element analysis enhances our understanding of Chinese jujube plant's defensive systems, where TCA- and TGACG-motifs process environmental cues and orchestrate stress responses. Expression profiling revealed that ZjXTH1 and ZjXTH5 were significantly upregulated under salt, drought, freezing, and phytoplasma infection, indicating their involvement in biotic and abiotic stress responses. Collectively, these findings deepen our understanding of the functional roles of Chinese jujube XTHs, emphasizing their regulatory function in adaptive responses in Chinese jujube plants.
Collapse
Affiliation(s)
- Mohamed Refaiy
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Muhammad Tahir
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Lijun Jiao
- Shuangjing Forest Farm, Aohan Banner, Chifeng 028000, China;
| | - Xiuli Zhang
- Xinhui Forest Farm, Aohan Banner, Chifeng 028000, China;
| | - Huicheng Zhang
- Agricultural and Animal Husbandry Technology Promotion Service Center, Aohan Banner, Chifeng 028000, China;
| | - Yuhan Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Yaru Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Shuang Song
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Xiaoming Pang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| |
Collapse
|
7
|
Anwar S, Siddique R, Ahmad S, Haider MZ, Ali H, Sami A, Lucas RS, Shafiq M, Nisa BU, Javed B, Akram J, Tabassum J, Javed MA. Genome wide identification and characterization of Bax inhibitor-1 gene family in cucumber (Cucumis sativus) under biotic and abiotic stress. BMC Genomics 2024; 25:1032. [PMID: 39497028 PMCID: PMC11536926 DOI: 10.1186/s12864-024-10704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/12/2024] [Indexed: 11/06/2024] Open
Abstract
In plants, the BAX inhibitor-1 (BI-1) gene plays a crucial part in controlling cell death under stress conditions. This mechanism of Programmed Cell Death (PCD) is genetically regulated and is crucial for the elimination of unwanted or damaged cells in a controlled manner, which is essential for normal development and tissue maintenance. A study on cucumber identified and characterized five BI-1 genes: CsBI1, CsBI2, CsBI3, CsBI4, and CsBI5. These genes share conserved domains, indicating common evolutionary history and function. Physicochemical analysis revealed their molecular weights and isoelectric points, while subcellular localization showed their presence in different cellular compartments. The phylogenetic analysis highlighted evolutionary relationships with related crops. Chromosomal distribution and synteny analysis suggested segmental or tandem duplications within the gene family. Protein-protein interaction analysis revealed extensive interactions with other cucumber proteins. Cis-regulatory elements in the promoter regions provided insights into potential functions and transcriptional regulation. miRNAs showed diverse regulatory mechanisms, including mRNA cleavage and translational inhibition. The CsBI3, CsBI4 and CsBI5 genes exhibit elevated expression levels during cold stress, suggesting their vital involvement in cucumber plant defense mechanisms. The application of chitosan oligosaccharides externally confirms their distinct expression patterns. The qRT-PCR confirms the upregulation of CsBI genes in ToLCNDV-infected plants, indicating their potential to mitigate biotic and abiotic stresses. The comprehensive genome-wide exploration provides opportunities for the development of cold-tolerant and virus-resistant cucumber variants by traditional breeding or gene.
Collapse
Affiliation(s)
- Samia Anwar
- Department of Botany, Lahore College for Women University, P.O BOX. 54000, Lahore, Pakistan
| | - Riffat Siddique
- Department of Botany, Lahore College for Women University, P.O BOX. 54000, Lahore, Pakistan
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water and Agriculture, Riyadh, 14712, Kingdom of Saudi Arabia
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Haider Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Rosa Sanchez Lucas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Bader Un Nisa
- Department of Botany, Lahore College for Women University, P.O BOX. 54000, Lahore, Pakistan
| | - Bilal Javed
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Jannat Akram
- Department of Botany, Lahore College for Women University, P.O BOX. 54000, Lahore, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| |
Collapse
|
8
|
Kelimujiang K, Zhang W, Zhang X, Waili A, Tang X, Chen Y, Chen L. Genome-wide investigation of WRKY gene family in Lavandula angustifolia and potential role of LaWRKY57 and LaWRKY75 in the regulation of terpenoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1449299. [PMID: 39445139 PMCID: PMC11496791 DOI: 10.3389/fpls.2024.1449299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The WRKY transcription factors are integral to plant biology, serving essential functions in growth, development, stress responses, and the control of secondary metabolism. Through the use of bioinformatics techniques, this research has effectively characterized 207 members of the WRKY family (LaWRKY) present in the entire genome of Lavandula angustifolia. Phylogenetic analysis classified LaWRKYs into three distinct categories based on conserved domains. Collinearity analysis revealed tandem repeats, segmental duplications, and whole genome duplications in LaWRKYs, especially for segmental duplication playing a significant role in gene family expansion. LaWRKYs displayed distinct tissue-specific expression profiles across six different tissues of L. angustifolia. Particularly noteworthy were 12 genes exhibiting high expression in flower buds and calyx, the primary sites of volatile terpenoid production, indicating their potential role in terpenoid biosynthesis in L. angustifolia. RT-qPCR analysis revealed a notable increase in the expression levels of most examined LaWRKY genes in flower buds in response to both intense light and low-temperature conditions, whereas the majority of these genes in leaves were primarily induced by drought stress. However, all genes exhibited downregulation following GA treatment in both flower buds and leaves. Overexpression of LaWRKY57 (La13G01665) and LaWRKY75 (La16G00030) in tobacco led to a reduction in the density of glandular trichomes on leaf surfaces, resulting in changes to the volatile terpenoid composition in the leaves. Specifically, the content of Neophytadiene was significantly elevated compared to wild-type tobacco, while compounds such as eucalyptol, cis-3-Hexenyl iso-butyrate, and D-Limonene were produced, which were absent in the wild type. These findings provide a valuable reference for future investigations into the biological functions of the WRKY gene family in L. angustifolia.
Collapse
Affiliation(s)
- Kelaremu Kelimujiang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Wenying Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Aliya Waili
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Xinyue Tang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Yongkun Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Lingna Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
9
|
Liu T, Zheng Y, Yang J, Li R, Chang H, Li N, Suna W, Wang L, Wang X. Identification of MYC genes in four Cucurbitaceae species and their roles in the response to temperature stress. BMC Genomics 2024; 25:867. [PMID: 39285374 PMCID: PMC11403959 DOI: 10.1186/s12864-024-10771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Myelocytomatosis (MYC) transcription factors are crucial mediators of the response of plants to environmental stresses through via binding to DNA regulatory regions. However, few systematic characterizations of MYC genes are available in Cucurbitaceae species. RESULTS In this study, we identified 10, 8, 12, and 10 MYC genes in Cucumis sativus, Cucumis melo, Citrullus lanatus, and Benincasa hispida, respectively. Characterization revealed that all of the MYC proteins contain a highly conserved H4-V5-E6-E8-R9-R11-R12 sequence, which is essential for the binding of DNA regulatory regions. Evolutionary analysis enabled us to categorize 40 predicted MYC proteins from seven species into five distinct groups and revealed that the expansion of the MYC genes occurred before the divergence of monocots and dicots. The upstream promoter regions of the MYC genes contain a variety of developmental, stress, and hormone-responsive regulatory elements. The expression of cucumber MYC genes varies significantly across organs, with particularly high expression of CsaV3_3G001710 observed across all organs. Transcriptomic analysis revealed that certain cucumber MYC genes undergo specific upregulation or downregulation in response to both biotic and abiotic stressors. In particular, under temperature stress, the cucumber genes CsaV3_3G007980 and CsaV3_3G001710 were significantly upregulated. Interestingly, the homologs of these two genes in C. lanatus presented a similar expression pattern to that in C. sativus, whereas in B. hispida, they presented the opposite pattern, i.e., significant downregulation. These findings indicated that these two genes indeed respond to temperature stress but with different expression patterns, highlighting the divergent functions of homologous genes across different species. CONCLUSIONS This study analyzed the size and composition of the MYC gene family in four Cucurbitaceae species and investigated stress-responsive expression profiles, especially under temperature stress. All the results showed that MYC genes play important roles in development and stress responses, laying a theoretical foundation for further investigations of these response mechanisms.
Collapse
Affiliation(s)
- Tao Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Yani Zheng
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Jingyu Yang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Rourou Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Huan Chang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Nanyang Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
- Hebei Engineering Research Center for Seedling Breeding of Solanaceae Vegetables, Handan, 056038, China
| | - Wang Suna
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
- Hebei Engineering Research Center for Seedling Breeding of Solanaceae Vegetables, Handan, 056038, China
| | - Liping Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
- Hebei Engineering Research Center for Seedling Breeding of Solanaceae Vegetables, Handan, 056038, China
| | - Xing Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China.
- Hebei Engineering Research Center for Seedling Breeding of Solanaceae Vegetables, Handan, 056038, China.
| |
Collapse
|
10
|
Liu XM, Yuan ZG, Rao S, Zhang WW, Ye JB, Cheng SY, Xu F. Identification, characterization, and expression analysis of WRKY transcription factors in Cardamine violifolia reveal the key genes involved in regulating selenium accumulation. BMC PLANT BIOLOGY 2024; 24:860. [PMID: 39266968 PMCID: PMC11396617 DOI: 10.1186/s12870-024-05562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cardamine violifolia is a significant Brassicaceae plant known for its high selenium (Se) accumulation capacity, serving as an essential source of Se for both humans and animals. WRKY transcription factors play crucial roles in plant responses to various biotic and abiotic stresses, including cadmium stress, iron deficiency, and Se tolerance. However, the molecular mechanism of CvWRKY in Se accumulation is not completely clear. RESULTS In this study, 120 WRKYs with conserved domains were identified from C. violifolia and classified into three groups based on phylogenetic relationships, with Group II further subdivided into five subgroups. Gene structure analysis revealed WRKY variations and mutations within the CvWRKYs. Segmental duplication events were identified as the primary driving force behind the expansion of the CvWRKY family, with numerous stress-responsive cis-acting elements found in the promoters of CvWRKYs. Transcriptome analysis of plants treated with exogenous Se and determination of Se levels revealed a strong positive correlation between the expression levels of CvWRKY034 and the Se content. Moreover, CvWRKY021 and CvWRKY099 exhibited high homology with AtWRKY47, a gene involved in regulating Se accumulation in Arabidopsis thaliana. The WRKY domains of CvWRKY021 and AtWRKY47 were highly conserved, and transcriptome data analysis revealed that CvWRKY021 responded to Na2SeO4 induction, showing a positive correlation with the concentration of Na2SeO4 treatment. Under the induction of Na2SeO3, CvWRKY021 and CvWRKY034 were significantly upregulated in the roots but downregulated in the shoots, and the Se content in the roots increased significantly and was mainly concentrated in the roots. CvWRKY021 and CvWRKY034 may be involved in the accumulation of Se in roots. CONCLUSIONS The results of this study elucidate the evolution of CvWRKYs in the C. violifolia genome and provide valuable resources for further understanding the functional characteristics of WRKYs related to Se hyperaccumulation in C. violifolia.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
| | - Zhi-Gang Yuan
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
| | - Wei-Wei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Jia-Bao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Shui-Yuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei, 445000, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China.
| |
Collapse
|
11
|
Rehman S, Bahadur S, Xia W. Unlocking nature's secrets: The pivotal role of WRKY transcription factors in plant flowering and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112150. [PMID: 38857658 DOI: 10.1016/j.plantsci.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
12
|
Chang C, Yang B, Guo X, Gao C, Wang B, Zhao X, Tang Z. Genome-Wide Survey of the Potential Function of CrLBDs in Catharanthus roseus MIA Biosynthesis. Genes (Basel) 2024; 15:1140. [PMID: 39336732 PMCID: PMC11431567 DOI: 10.3390/genes15091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Catharanthus roseus (C. roseus) can produce over 150 types of monoterpenoid indole alkaloids (MIAs), including vinblastine and vincristine, which are currently the primary sources of these alkaloids. Exploring the complex regulatory mechanisms of C. roseus is significant for resolving MIA biosynthesis. The Lateral Organ Boundaries Domain (LBD) is a plant-specific transcription factor family that plays crucial roles in the physiological processes of plant growth, stress tolerance, and specialized metabolism. However, the LBD gene family has not been extensively characterized in C. roseus, and whether its members are involved in MIA biosynthesis is still being determined. A total of 34 C. roseus LBD (CrLBD) genes were identified. RNA-Seq data were investigated to examine the expression patterns of CrLBD genes in various tissues and methyl jasmonate (MeJA) treatments. The results revealed that the Class Ia member CrLBD4 is positively correlated with iridoid biosynthetic genes (p < 0.05, r ≥ 0.8); the Class IIb member CrLBD11 is negatively correlated with iridoid biosynthetic genes (p < 0.05, r ≤ -0.8). Further validation in leaves at different growth stages of C. roseus showed that CrLBD4 and CrLBD11 exhibited different potential expression trends with iridoid biosynthetic genes and the accumulation of vindoline and catharanthine. Yeast one-hybrid (Y1H) and subcellular localization assays demonstrated that CrLBD4 and CrLBD11 could bind to the "aattatTCCGGccgc" cis-element and localize to the nucleus. These findings suggest that CrLBD4 and CrLBD11 may be potential candidates for regulating MIA biosynthesis in C. roseus. In this study, we systematically analyzed the CrLBD gene family and provided insights into the roles of certain CrLBDs in the MIA biosynthesis of C. roseus.
Collapse
Affiliation(s)
- Chunhao Chang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.Y.); (B.W.)
| | - Bingrun Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.Y.); (B.W.)
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Chunyan Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Biying Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.Y.); (B.W.)
| | - Xiaoju Zhao
- Bioengineering Institute, Daqing Normal University, Daqing 163712, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
13
|
Amjad M, Wang Y, Han S, Haider MZ, Sami A, Batool A, Shafiq M, Ali Q, Dong J, Sabir IA, Manzoor MA. Genome wide identification of phenylalanine ammonia-lyase (PAL) gene family in Cucumis sativus (cucumber) against abiotic stress. BMC Genom Data 2024; 25:76. [PMID: 39187758 PMCID: PMC11348668 DOI: 10.1186/s12863-024-01259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Phenylalanine ammonia lyase (PAL) is a widely studied enzyme in plant biology due to its role in connecting primary metabolism to secondary phenylpropanoid metabolism, significantly influencing plant growth, development, and stress response. Although PAL genes have been extensively studied in various plant species but their exploration in cucumber has been limited. This study successfully identified 11 CsPAL genes in Cucumis sativus (cucumber). These CsPAL genes were categorized based on their conserved sequences revealing patterns through MEME analysis and multiple sequence alignment. Interestingly, cis-elements related to stress were found in the promoter regions of CsPAL genes, indicating their involvement in responding to abiotic stress. Furthermore, these gene's promoters contained components associated with light, development and hormone responsiveness. This suggests that they may have roles in hormone developmental processes. MicroRNAs were identified as a key regulators for the CsPAL genes, playing a crucial role in modulating their expression. This discovery underscores the complex regulatory network involved in the plant's response to various stress conditions. The influence of these microRNAs further highlights the complicated mechanisms that plants use to manage stress. Gene expression patterns were analyzed using RNA-seq data. The significant upregulation of CsPAL9 during HT3h (heat stress for 3 h) and the heightened upregulation of both CsPAL9 and CsPAL7 under HT6h (heat stress for 6 h) in the transcriptome study suggest a potential role for these genes in cucumber's tolerance to heat stress. This comprehensive investigation aims to enhance our understanding of the PAL gene family's versatility, offering valuable insights for advancements in cucumber genetics.
Collapse
Affiliation(s)
- Muskan Amjad
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- Department of Botany, Government Graduate College Township, Lahore, Pakistan
| | - Yuexia Wang
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China
| | - Shiming Han
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China.
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Alia Batool
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Jihong Dong
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Chen C, Yu W, Xu X, Wang Y, Wang B, Xu S, Lan Q, Wang Y. Research Advancements in Salt Tolerance of Cucurbitaceae: From Salt Response to Molecular Mechanisms. Int J Mol Sci 2024; 25:9051. [PMID: 39201741 PMCID: PMC11354715 DOI: 10.3390/ijms25169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Soil salinization severely limits the quality and productivity of economic crops, threatening global food security. Recent advancements have improved our understanding of how plants perceive, signal, and respond to salt stress. The discovery of the Salt Overly Sensitive (SOS) pathway has been crucial in revealing the molecular mechanisms behind plant salinity tolerance. Additionally, extensive research into various plant hormones, transcription factors, and signaling molecules has greatly enhanced our knowledge of plants' salinity tolerance mechanisms. Cucurbitaceae plants, cherished for their economic value as fruits and vegetables, display sensitivity to salt stress. Despite garnering some attention, research on the salinity tolerance of these plants remains somewhat scattered and disorganized. Consequently, this article offers a review centered on three aspects: the salt response of Cucurbitaceae under stress; physiological and biochemical responses to salt stress; and the current research status of their molecular mechanisms in economically significant crops, like cucumbers, watermelons, melon, and loofahs. Additionally, some measures to improve the salt tolerance of Cucurbitaceae crops are summarized. It aims to provide insights for the in-depth exploration of Cucurbitaceae's salt response mechanisms, uncovering the roles of salt-resistant genes and fostering the cultivation of novel varieties through molecular biology in the future.
Collapse
Affiliation(s)
- Cuiyun Chen
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Xinrui Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Shiyong Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| |
Collapse
|
15
|
Ishfaqe Q, Sami A, Zeshan Haider M, Ahmad A, Shafiq M, Ali Q, Batool A, Haider MS, Ali D, Alarifi S, Islam MS, Manzoor MA. Genome wide identification of the NPR1 gene family in plant defense mechanisms against biotic stress in chili ( Capsicum annuum L.). Front Microbiol 2024; 15:1437553. [PMID: 39161600 PMCID: PMC11332612 DOI: 10.3389/fmicb.2024.1437553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Chili pepper cultivation in the Indian subcontinent is severely affected by viral diseases, prompting the need for environmentally friendly disease control methods. To achieve this, it is essential to understand the molecular mechanisms of viral resistance in chili pepper. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) genes are known to provide broad-spectrum resistance to various phytopathogens by activating systemic acquired resistance (SAR). An in-depth understanding of NPR1 gene expression during begomovirus infection and its correlation with different biochemical and physiological parameters is crucial for enhancing resistance against begomoviruses in chili pepper. Nevertheless, limited information on chili CaNPR genes and their role in biotic stress constrains their potential in breeding for biotic stress resistance. By employing bioinformatics for genome mining, we identify 5 CaNPR genes in chili. The promoter regions of 1,500 bp of CaNPR genes contained cis-elements associated with biotic stress responses, signifying their involvement in biotic stress responses. Furthermore, these gene promoters harbored components linked to light, development, and hormone responsiveness, suggesting their roles in plant hormone responses and development. MicroRNAs played a vital role in regulating these five CaNPR genes, highlighting their significance in the regulation of chili genes. Inoculation with the begomovirus "cotton leaf curl Khokhran virus (CLCuKV)" had a detrimental effect on chili plant growth, resulting in stunted development, fibrous roots, and evident virus symptoms. The qRT-PCR analysis of two local chili varieties inoculated with CLCuKV, one resistant (V1) and the other susceptible (V2) to begomoviruses, indicated that CaNPR1 likely provides extended resistance and plays a role in chili plant defense mechanisms, while the remaining genes are activated during the early stages of infection. These findings shed light on the function of chili's CaNPR in biotic stress responses and identify potential genes for biotic stress-resistant breeding. However, further research, including gene cloning and functional analysis, is needed to confirm the role of these genes in various physiological and biological processes. This in-silico analysis enhances our genome-wide understanding of how chili CaNPR genes respond during begomovirus infection.
Collapse
Affiliation(s)
- Qandeel Ishfaqe
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Arsalan Ahmad
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Alia Batool
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Saleem Haider
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Daoud Ali
- Department of Zoology College of Science King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology College of Science King Saud University, Riyadh, Saudi Arabia
| | - Md Samiul Islam
- Graduate School of Agriculture, Hokkaido University/Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Qu J, Xiao P, Zhao ZQ, Wang YL, Zeng YK, Zeng X, Liu JH. Genome-wide identification, expression analysis of WRKY transcription factors in Citrus ichangensis and functional validation of CiWRKY31 in response to cold stress. BMC PLANT BIOLOGY 2024; 24:617. [PMID: 38937686 PMCID: PMC11212357 DOI: 10.1186/s12870-024-05320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Ichang papeda (Citrus ichangensis), a wild perennial plant of the Rutaceae family, is a cold-hardy plant. WRKY transcription factors are crucial regulators of plant growth and development as well as abiotic stress responses. However, the WRKY genes in C. ichangensis (CiWRKY) and their expression patterns under cold stress have not been thoroughly investigated, hindering our understanding of their role in cold tolerance. RESULTS In this study, a total of 52 CiWRKY genes identified in the genome of C. ichangensis were classified into three main groups and five subgroups based on phylogenetic analysis. Comprehensive analyses of motif features, conserved domains, and gene structures were performed. Segmental duplication plays a significant role in the CiWRKY gene family expansion. Cis-acting element analysis revealed the presence of various stress-responsive elements in the promoters of the majority of CiWRKYs. Gene ontology (GO) analysis and protein-protein interaction predictions indicate that the CiWRKYs exhibit crucial roles in regulation of both development and stress response. Expression profiling analysis demonstrates that 14 CiWRKYs were substantially induced under cold stress. Virus-induced gene silencing (VIGS) assay confirmed that CiWRKY31, one of the cold-induced WRKYs, functions positively in regulation of cold tolerance. CONCLUSION Sequence and protein properties of CiWRKYs were systematically analyzed. Among the 52 CiWRKY genes 14 members exhibited cold-responsive expression patterns, and CiWRKY31 was verified to be a positive regulator of cold tolerance. These findings pave way for future investigations to understand the molecular functions of CiWRKYs in cold tolerance and contribute to unravelling WRKYs that may be used for engineering cold tolerance in citrus.
Collapse
Affiliation(s)
- Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Qi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Lei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Ke Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Shui D, Sun J, Xiong Z, Zhang S, Shi J. Comparative identification of WRKY transcription factors and transcriptional response to Ralstonia solanacearum in tomato. Gene 2024; 912:148384. [PMID: 38493971 DOI: 10.1016/j.gene.2024.148384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
In order to study the responses of tomato (Solanum lycopersicum) WRKY TFs to bacterial wilt caused by Ralstonia solanacearum, the most up-to-date genomes and transcriptional profiles were used to identify WRKY TFs in control and infected inbred lines. In total, 85 tomato WRKY TFs were identified and categorized into groups I, IIa + b, IIc, IId + e, and III. These WRKYs, especially those from group IIe, were mainly distributed at chromosome ends and in clusters. More than 45 % and 70 % of tomato WRKYs exhibited intraspecific and interspecific synteny, respectively. Nearly 60 % of tomato WRKYs (mainly in groups I and IIc) formed 73 pairs of orthologs with WRKYs in Arabidopsis and pepper, with Ka/Ks less than 1. Sixteen tomato WRKYs (mainly in groups IIa + b and IIc) responded strongly to biotic stress, and 12 differentially expressed WRKYs (mainly in groups III and IIb) were identified. RT-qPCR revealed that tomato WRKYs could respond to bacterial wilt through positive (predominant) or negative regulation. In particular, the interaction between Solyc03g095770.3 (group III) and Solyc09g014990.4 (group I) may play an important role. In brief, WRKY TFs were comprehensively identified in tomato and several bacterial wilt responsive genes were screened.
Collapse
Affiliation(s)
- Deju Shui
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Ji Sun
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Zili Xiong
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Shengmei Zhang
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Jianlei Shi
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China.
| |
Collapse
|
18
|
Vodiasova E, Sinchenko A, Khvatkov P, Dolgov S. Genome-Wide Identification, Characterisation, and Evolution of the Transcription Factor WRKY in Grapevine ( Vitis vinifera): New View and Update. Int J Mol Sci 2024; 25:6241. [PMID: 38892428 PMCID: PMC11172563 DOI: 10.3390/ijms25116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
WRKYs are a multigenic family of transcription factors that are plant-specific and involved in the regulation of plant development and various stress response processes. However, the evolution of WRKY genes is not fully understood. This family has also been incompletely studied in grapevine, and WRKY genes have been named with different numbers in different studies, leading to great confusion. In this work, 62 Vitis vinifera WRKY genes were identified based on six genomes of different cultivars. All WRKY genes were numbered according to their chromosomal location, and a complete revision of the numbering was performed. Amino acid variability between different cultivars was assessed for the first time and was greater than 5% for some WRKYs. According to the gene structure, all WRKYs could be divided into two groups: more exons/long length and fewer exons/short length. For the first time, some chimeric WRKY genes were found in grapevine, which may play a specific role in the regulation of different processes: VvWRKY17 (an N-terminal signal peptide region followed by a non-cytoplasmic domain) and VvWRKY61 (Frigida-like domain). Five phylogenetic clades A-E were revealed and correlated with the WRKY groups (I, II, III). The evolution of WRKY was studied, and we proposed a WRKY evolution model where there were two dynamic phases of complexity and simplification in the evolution of WRKY.
Collapse
Affiliation(s)
- Ekaterina Vodiasova
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Anastasiya Sinchenko
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Pavel Khvatkov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Sergey Dolgov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| |
Collapse
|
19
|
Zhang D, Zhu Z, Yang B, Li X, Zhang H, Zhu H. CsWRKY11 cooperates with CsNPR1 to regulate SA-triggered leaf de-greening and reactive oxygen species burst in cucumber. MOLECULAR HORTICULTURE 2024; 4:21. [PMID: 38773570 PMCID: PMC11110285 DOI: 10.1186/s43897-024-00092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/24/2024]
Abstract
Salicylic acid (SA) is a multi-functional phytohormone, regulating diverse processes of plant growth and development, especially triggering plant immune responses and initiating leaf senescence. However, the early SA signaling events remain elusive in most plant species apart from Arabidopsis, and even less is known about the multi-facet mechanism underlying SA-regulated processes. Here, we report the identification of a novel regulatory module in cucumber, CsNPR1-CsWRKY11, which mediates the regulation of SA-promoted leaf senescence and ROS burst. Our analyses demonstrate that under SA treatment, CsNPR1 recruits CsWRKY11 to bind to the promoter of CsWRKY11 to activate its expression, thus amplifying the primary SA signal. Then, CsWRKY11 cooperates with CsNPR1 to directly regulate the expression of both chlorophyll degradation and ROS biosynthesis related genes, thereby inducing leaf de-greening and ROS burst. Our study provides a solid line of evidence that CsNPR1 and CsWRKY11 constitute a key module in SA signaling pathway in cucumber, and gains an insight into the interconnected regulation of SA-triggered processes.
Collapse
Affiliation(s)
- Dingyu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ziwei Zhu
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Xiaofeng Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Hongfang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
20
|
Kim H, Kim J, Choi DS, Kim MS, Deslandes L, Jayaraman J, Sohn KH. Molecular basis for the interference of the Arabidopsis WRKY54-mediated immune response by two sequence-unrelated bacterial effectors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:839-855. [PMID: 38271178 DOI: 10.1111/tpj.16639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Arabidopsis thaliana WRKY proteins are potential targets of pathogen-secreted effectors. RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1; AtWRKY52) is a well-studied Arabidopsis nucleotide-binding and leucine-rich repeat (NLR) immune receptor carrying a C-terminal WRKY domain that functions as an integrated decoy. RRS1-R recognizes the effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia pseudosolanacearum by direct interaction through its WRKY domain. AvrRps4 and PopP2 were previously shown to interact with several AtWRKYs. However, how these effectors selectively interact with their virulence targets remains unknown. Here, we show that several members of subgroup IIIb of the AtWRKY family are targeted by AvrRps4 and PopP2. We demonstrate that several AtWRKYs induce cell death when transiently expressed in Nicotiana benthamiana, indicating the activation of immune responses. AtWRKY54 was the only cell death-inducing AtWRKY that interacted with both AvrRps4 and PopP2. We found that AvrRps4 and PopP2 specifically suppress AtWRKY54-induced cell death. We also demonstrate that the amino acid residues required for the avirulence function of AvrRps4 and PopP2 are critical for suppressing AtWRKY54-induced cell death. AtWRKY54 residues predicted to form a binding interface with AvrRps4 were predominantly located in the DNA binding domain and necessary for inducing cell death. Notably, one AtWRKY54 residue, E164, contributes to affinity with AvrRps4 and is exclusively present among subgroup IIIb AtWRKYs, yet is located outside of the DNA-binding domain. Surprisingly, AtWRKY54 mutated at E164 evaded AvrRps4-mediated cell death suppression. Taking our observations together, we propose that AvrRp4 and PopP2 specifically target AtWRKY54 to suppress plant immune responses.
Collapse
Affiliation(s)
- Haseong Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jieun Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Du Seok Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Kee Hoon Sohn
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
21
|
Chen J, Tao F, Xue Y, Xu B, Li X. Genome-Wide Identification of the WRKY Gene Family and Functional Characterization of CpWRKY5 in Cucurbita pepo. Int J Mol Sci 2024; 25:4177. [PMID: 38673762 PMCID: PMC11049939 DOI: 10.3390/ijms25084177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The WRKY gene family is crucial for regulating plant growth and development. However, the WRKY gene is rarely studied in naked kernel formation in hull-less Cucurbita pepo L. (HLCP), a natural mutant that lacks the seed coat. In this research, 76 WRKY genes were identified through bioinformatics-based methods in C. pepo, and their phylogenetics, conserved motifs, synteny, collinearity, and temporal expression during seed coat development were analyzed. The results showed that 76 CpWRKYs were identified and categorized into three main groups (I-III), with Group II further divided into five subgroups (IIa-IIe). Moreover, 31 segmental duplication events were identified in 49 CpWRKY genes. A synteny analysis revealed that C. pepo shared more collinear regions with cucumber than with melon. Furthermore, quantitative RT-PCR (qRT-PCR) results indicated the differential expression of CpWRKYs across different varieties, with notable variations in seed coat development between HLCP and CP being attributed to differences in CpWRKY5 expression. To investigate this further, CpWRKY5-overexpression tobacco plants were generated, resulting in increased lignin content and an upregulation of related genes, as confirmed by qRT-PCR. This study offers valuable insights for future functional investigations of CpWRKY genes and presents novel information for understanding the regulation mechanism of lignin synthesis.
Collapse
Affiliation(s)
- Junhong Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Fei Tao
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yingyu Xue
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaowei Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
22
|
Danso B, Ackah M, Jin X, Ayittey DM, Amoako FK, Zhao W. Genome-Wide Analysis of the Xyloglucan Endotransglucosylase/Hydrolase ( XTH) Gene Family: Expression Pattern during Magnesium Stress Treatment in the Mulberry Plant ( Morus alba L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:902. [PMID: 38592929 PMCID: PMC10975095 DOI: 10.3390/plants13060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we identified several differential candidate genes associated with Mg homeostasis via transcriptome analysis, including the xyloglucan endotransglucosylase/hydrolase (XTH) gene family. The XTH gene family is crucial for plant cell wall reconstruction and stress responses. These genes have been identified and thoroughly investigated in various plant species. However, there is no research pertaining to XTH genes within the M. alba plant. This research systematically examined the M. alba XTH (MaXTH) gene family at the genomic level using a bioinformatic approach. In total, 22 MaXTH genes were discovered and contained the Glyco_hydro_16 and XET_C conserved domains. The MaXTHs were categorized into five distinct groups by their phylogenetic relationships. The gene structure possesses four exons and three introns. Furthermore, the MaXTH gene promoter analysis reveals a plethora of cis-regulatory elements, mainly stress responsiveness, phytohormone responsiveness, and growth and development. GO analysis indicated that MaXTHs encode proteins that exhibit xyloglucan xyloglucosyl transferase and hydrolase activities in addition to cell wall biogenesis as well as xyloglucan and carbohydrate metabolic processes. Moreover, a synteny analysis unveiled an evolutionary relationship between the XTH genes in M. alba and those in three other species: A. thaliana, P. trichocarpa, and Zea mays. Expression profiles from RNA-Seq data displayed distinct expression patterns of XTH genes in M. alba leaf tissue during Mg treatments. Real-time quantitative PCR analysis confirmed the expression of the MaXTH genes in Mg stress response. Overall, this research enhances our understanding of the characteristics of MaXTH gene family members and lays the foundation for future functional genomic study in M. alba.
Collapse
Affiliation(s)
- Blessing Danso
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Derek M. Ayittey
- School of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201308, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
23
|
Yan Y, Yan Z, Zhao G. Genome-wide identification of WRKY transcription factor family members in Miscanthus sinensis (Miscanthus sinensis Anderss). Sci Rep 2024; 14:5522. [PMID: 38448638 PMCID: PMC10918066 DOI: 10.1038/s41598-024-55849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Miscanthus is an emerging sustainable bioenergy crop whose growing environment is subject to many abiotic and biological stresses. WRKY transcription factors play an important role in stress response and growth of biotic and abiotic. To clarify the distribution and expression of the WRKY genes in Miscanthus, it is necessary to classify and phylogenetically analyze the WRKY genes in Miscanthus. The v7.1 genome assembly of Miscanthus was analyzed by constructing an evolutionary tree. In Miscanthus, there are 179 WRKY genes were identified. The 179 MsWRKYs were classified into three groups with conserved gene structure and motif composition. The tissue expression profile of the WRKY genes showed that MsWRKY genes played an essential role in all growth stages of plants. At the early stage of plant development, the MsWRKY gene is mainly expressed in the rhizome of plants. In the middle stage, it is mainly expressed in the leaf. At the end stage, mainly in the stem. According to the results, it showed significant differences in the expression of the MsWRKY in different stages of Miscanthus sinensis. The results of the study contribute to a better understanding of the role of the MsWRKY gene in the growth and development of Miscanthus.
Collapse
Affiliation(s)
- Yongkang Yan
- Faculty of Science, the University of Hong Kong, Hong Kong, China.
| | - Zhanyou Yan
- Shijiazhuang Tiedao University, Shijiazhuang, China
| | - Guofang Zhao
- Hebei Vocational University of Industry and Technology, Shijiazhuang, China
| |
Collapse
|
24
|
Zhu R, Gao N, Luo J, Shi W. Genome and Transcriptome Analysis of the Torreya grandis WRKY Gene Family during Seed Development. Genes (Basel) 2024; 15:267. [PMID: 38540326 PMCID: PMC10970084 DOI: 10.3390/genes15030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Torreya grandis, an economically significant evergreen tree species exclusive to subtropical China, is highly valued for its seeds. However, the seed development process of T. grandis remains relatively unexplored. Given the pivotal role WRKY transcription factors (TFs) play in coordinating diverse cellular and biological activities, as well as crucial signaling pathways essential for plant growth and development, and the lack of comprehensive investigation into their specific functions in T. grandis, our study investigated its genome and successfully isolated 78 WRKY genes and categorized them into three distinct clades. A conserved motif analysis unveiled the presence of the characteristic WRKY domain in each identified TgWRKY protein. The examination of gene structures revealed variable numbers of introns (ranging from zero to eight) and exons (ranging from one to nine) among TgWRKY genes. A chromosomal distribution analysis demonstrated the presence of TgWRKY across eight chromosomes in T. grandis. Tissue-specific expression profiling unveiled distinctive patterns of these 78 TgWRKY genes across various tissues. Remarkably, a co-expression analysis integrating RNA-seq data and morphological assessments pinpointed the pronounced expression of TgWRKY25 during the developmental stages of T. grandis seeds. Moreover, a KEGG enrichment analysis, focusing on genes correlated with TgWRKY25 expression, suggested its potential involvement in processes such as protein processing in the endoplasmic reticulum, starch, and sucrose metabolism, thereby modulating seed development in T. grandis. These findings not only underscore the pivotal role of WRKY genes in T. grandis seed development but also pave the way for innovative breeding strategies.
Collapse
Affiliation(s)
- Ruiqian Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (R.Z.); (N.G.); (J.L.)
| | - Ning Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (R.Z.); (N.G.); (J.L.)
| | - Jiali Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (R.Z.); (N.G.); (J.L.)
| | - Wenhui Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (R.Z.); (N.G.); (J.L.)
- Key Laboratory of Bamboo Science and Technology, Zhejiang A&F University, Ministry of Education, Hangzhou 311300, China
| |
Collapse
|
25
|
Yu H, Li J, Chang X, Dong N, Chen B, Wang J, Zha L, Gui S. Genome-wide identification and expression profiling of the WRKY gene family reveals abiotic stress response mechanisms in Platycodon grandiflorus. Int J Biol Macromol 2024; 257:128617. [PMID: 38070802 DOI: 10.1016/j.ijbiomac.2023.128617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
The WRKY family of transcription factors (TFs) is an important gene family involved in abiotic stress responses. Although the roles of WRKY TFs in plant abiotic stress responses are well studied, little is known about the stress-induced changes in WRKY family in Platycodon grandiflorus. 42 PgWRKY genes in seven subgroups were identified in the P. grandiflorus genome. The content of eight platycodins in P. grandiflorus was investigated under cold, heat, and drought stresses. Platycodin D levels significantly increased under three abiotic stresses, while the content changes of other platycodins varied. Transcriptome analysis showed that different WRKY family members exhibited varied expression patterns under different abiotic stresses. PgWRKY20, PgWRKY26, and PgWRKY39 were identified as three key candidates for temperature and drought stress responses, and were cloned and analysed for sequence characteristics, gene structure, subcellular localisation, and expression patterns. The RT-qPCR results showed that PgWRKY26 expression significantly increased after heat stress for 48 h, cold stress for 6 h, and drought stress for 2 d (DS_2 d). The PgWRKY39 expression level significantly increased at DS_2 d. This study provides a theoretical basis for clarifying the molecular mechanism of the abiotic stress responses of the WRKY gene family in P. grandiflorus.
Collapse
Affiliation(s)
- Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.
| |
Collapse
|
26
|
Liu K, Xu H, Gao X, Lu Y, Wang L, Ren Z, Chen C. Pan-Genome Analysis of TIFY Gene Family and Functional Analysis of CsTIFY Genes in Cucumber. Int J Mol Sci 2023; 25:185. [PMID: 38203357 PMCID: PMC10778933 DOI: 10.3390/ijms25010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cucumbers are frequently affected by gray mold pathogen Botrytis cinerea, a pathogen that causes inhibited growth and reduced yield. Jasmonic acid (JA) plays a primary role in plant responses to biotic stresses, and the jasmonate-ZIM-Domain (JAZ) proteins are key regulators of the JA signaling pathway. In this study, we used the pan-genome of twelve cucumber varieties to identify cucumber TIFY genes. Our findings revealed that two CsTIFY genes were present in all twelve cucumber varieties and showed no differences in protein sequence, gene structure, and motif composition. This suggests their evolutionary conservation across different cucumber varieties and implies that they may play a crucial role in cucumber growth. On the other hand, the other fourteen CsTIFY genes exhibited variations in protein sequence and gene structure or conserved motifs, which could be the result of divergent evolution, as these genes adapt to different cultivation and environmental conditions. Analysis of the expression profiles of the CsTIFY genes showed differential regulation by B. cinerea. Transient transfection plants overexpressing CsJAZ2, CsJAZ6, or CsZML2 were found to be more susceptible to B. cinerea infection compared to control plants. Furthermore, these plants infected by the pathogen showed lower levels of the enzymatic activities of POD, SOD and CAT. Importantly, after B. cinerea infection, the content of JA was upregulated in the plants, and cucumber cotyledons pretreated with exogenous MeJA displayed increased resistance to B. cinerea infection compared to those pretreated with water. Therefore, this study explored key TIFY genes in the regulation of cucumber growth and adaptability to different cultivation environments based on bioinformatics analysis and demonstrated that CsJAZs negatively regulate cucumber disease resistance to gray mold via multiple signaling pathways.
Collapse
Affiliation(s)
- Kun Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Haiyu Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Xinbin Gao
- College of Horticulture, Northwest A and F University, Yangling 712100, China;
| | - Yinghao Lu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Lina Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Zhonghai Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Chunhua Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| |
Collapse
|
27
|
Zhang J, Zhao H, Chen L, Lin J, Wang Z, Pan J, Yang F, Ni X, Wang Y, Wang Y, Li R, Pi E, Wang S. Multifaceted roles of WRKY transcription factors in abiotic stress and flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303667. [PMID: 38169626 PMCID: PMC10758500 DOI: 10.3389/fpls.2023.1303667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
28
|
Zhu Z, Dai Y, Yu G, Zhang X, Chen Q, Kou X, Mehareb EM, Raza G, Zhang B, Wang B, Wang K, Han J. Dynamic physiological and transcriptomic changes reveal memory effects of salt stress in maize. BMC Genomics 2023; 24:726. [PMID: 38041011 PMCID: PMC10690987 DOI: 10.1186/s12864-023-09845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Pre-exposing plants to abiotic stresses can induce stress memory, which is crucial for adapting to subsequent stress exposure. Although numerous genes involved in salt stress response have been identified, the understanding of memory responses to salt stress remains limited. RESULTS In this study, we conducted physiological and transcriptional assays on maize plants subjected to recurrent salt stress to characterize salt stress memory. During the second exposure to salt stress, the plants exhibited enhanced salt resistance, as evidenced by increased proline content and higher POD and SOD activity, along with decreased MDA content, indicative of physiological memory behavior. Transcriptional analysis revealed fewer differentially expressed genes and variations in response processes during the second exposure compared to the first, indicative of transcriptional memory behavior. A total of 2,213 salt stress memory genes (SMGs) were identified and categorized into four response patterns. The most prominent group of SMGs consisted of genes with elevated expression during the first exposure to salt stress but reduced expression after recurrent exposure to salt stress, or vice versa ([+ / -] or [- / +]), indicating that a revised response is a crucial process in plant stress memory. Furthermore, nine transcription factors (TFs) (WRKY40, WRKY46, WRKY53, WRKY18, WRKY33, WRKY70, MYB15, KNAT7, and WRKY54) were identified as crucial factors related to salt stress memory. These TFs regulate over 53% of SMGs, underscoring their potential significance in salt stress memory. CONCLUSIONS Our study demonstrates that maize can develop salt stress memory, and the genes identified here will aid in the genetic improvement of maize and other crops.
Collapse
Affiliation(s)
- Zhiying Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Eid M Mehareb
- Sugar Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
29
|
Yang D, Li Y, Zhu M, Cui R, Gao J, Shu Y, Lu X, Zhang H, Zhang K. Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses. Genes (Basel) 2023; 14:2006. [PMID: 38002948 PMCID: PMC10671320 DOI: 10.3390/genes14112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The FKBP (FK506-binding protein) gene family is an important member of the PPlase protease family and plays a vital role during the processes of plant growth and development. However, no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic analysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that 12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while others were only highly expressed in part of the 10 types of tissues. The expression profile analysis of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an important role in the growth and development of cucumber. The interaction protein analysis showed that most of the proteins in the FKBP gene family interacted with each other. The results of this study will lay the foundation for further research on the molecular biological functions of the cucumber FKBP gene family.
Collapse
Affiliation(s)
- Dekun Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yahui Li
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Mengdi Zhu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Rongjing Cui
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Jiong Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| |
Collapse
|
30
|
Iida Y, Higashi Y, Nishi O, Kouda M, Maeda K, Yoshida K, Asano S, Kawakami T, Nakajima K, Kuroda K, Tanaka C, Sasaki A, Kamiya K, Yamagishi N, Fujinaga M, Terami F, Yamanaka S, Kubota M. Entomopathogenic fungus Beauveria bassiana-based bioinsecticide suppresses severity of powdery mildews of vegetables by inducing the plant defense responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1211825. [PMID: 37692425 PMCID: PMC10484095 DOI: 10.3389/fpls.2023.1211825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
The entomopathogenic fungus Beauveria bassiana is used commercially as a microbial insecticides against a wide range of agricultural insect pests. Some strains of B. bassiana protect the plants from pathogens, but the underlying mechanisms are largely unknown. Here, we found that prophylactic sprays of commercial bioinsecticide Botanigard on cucumber, tomato, and strawberry plants suppressed the severity of economically damaging powdery mildews. On leaf surfaces, hyphal elongation and spore germination of cucumber powdery mildew, Podosphaera xanthii, were inhibited, but B. bassiana strain GHA, the active ingredient isolated from Botanigard, only inhibited hyphal elongation but had no effect on spore germination of P. xanthii. In addition, strain GHA suppressed powdery mildew symptoms locally, not systemically. Treatment with Botanigard and strain GHA induced a hypersensitive response (HR)-like cell death in epidermal cells of the cucumber leaves in a concentration-dependent manner and inhibited penetration by P. xanthii. Transcriptome analysis and mass spectrometry revealed that GHA induced expression of salicylic acid (SA)-related genes, and treatment with Botanigard and GHA increased the SA level in the cucumber leaves. In NahG-transgenic tomato plants, which do not accumulate SA, the biocontrol effect of tomato powdery mildew by GHA was significantly reduced. These results suggested that B. bassiana GHA induces SA accumulation, leading to the induction of HR-like cell death against powdery mildew and subsequent suppression of fungal penetration. Thus, Botanigard has the potential to control both insect pests and plant diseases.
Collapse
Affiliation(s)
- Yuichiro Iida
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
- National Agriculture and Food Research Organization, Tsu, Japan
| | - Yumiko Higashi
- National Agriculture and Food Research Organization, Tsu, Japan
| | - Oumi Nishi
- National Agriculture and Food Research Organization, Tsu, Japan
| | - Mariko Kouda
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | - Kazuya Maeda
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | - Kandai Yoshida
- Nara Prefecture Agricultural Research and Development Center, Sakurai, Japan
| | - Shunsuke Asano
- Nara Prefecture Agricultural Research and Development Center, Sakurai, Japan
| | - Taku Kawakami
- Mie Prefecture Agricultural Research Institute, Matsusaka, Japan
| | - Kaori Nakajima
- Mie Prefecture Agricultural Research Institute, Matsusaka, Japan
| | | | - Chiharu Tanaka
- Mie Prefecture Agricultural Research Institute, Matsusaka, Japan
| | - Ayano Sasaki
- Mie Prefecture Agricultural Research Institute, Matsusaka, Japan
| | - Katsumi Kamiya
- Gifu Prefectural Agricultural Technology Center, Gifu, Japan
| | - Naho Yamagishi
- Nagano Vegetable and Ornamental Crops Experiment Station, Shiojiri, Japan
| | - Masashi Fujinaga
- Nagano Vegetable and Ornamental Crops Experiment Station, Shiojiri, Japan
| | - Fumihiro Terami
- National Agriculture and Food Research Organization, Tsu, Japan
| | | | - Masaharu Kubota
- National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
31
|
Zinati Z, Nazari L. Deciphering the molecular basis of abiotic stress response in cucumber (Cucumis sativus L.) using RNA-Seq meta-analysis, systems biology, and machine learning approaches. Sci Rep 2023; 13:12942. [PMID: 37558755 PMCID: PMC10412635 DOI: 10.1038/s41598-023-40189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
Abiotic stress in cucumber (Cucumis sativus L.) may trigger distinct transcriptome responses, resulting in significant yield loss. More insight into the molecular underpinnings of the stress response can be gained by combining RNA-Seq meta-analysis with systems biology and machine learning. This can help pinpoint possible targets for engineering abiotic tolerance by revealing functional modules and key genes essential for the stress response. Therefore, to investigate the regulatory mechanism and key genes, a combination of these approaches was utilized in cucumber subjected to various abiotic stresses. Three significant abiotic stress-related modules were identified by gene co-expression network analysis (WGCNA). Three hub genes (RPL18, δ-COP, and EXLA2), ten transcription factors (TFs), one transcription regulator, and 12 protein kinases (PKs) were introduced as key genes. The results suggest that the identified PKs probably govern the coordination of cellular responses to abiotic stress in cucumber. Moreover, the C2H2 TF family may play a significant role in cucumber response to abiotic stress. Several C2H2 TF target stress-related genes were identified through co-expression and promoter analyses. Evaluation of the key identified genes using Random Forest, with an area under the curve of ROC (AUC) of 0.974 and an accuracy rate of 88.5%, demonstrates their prominent contributions in the cucumber response to abiotic stresses. These findings provide novel insights into the regulatory mechanism underlying abiotic stress response in cucumber and pave the way for cucumber genetic engineering toward improving tolerance ability under abiotic stress.
Collapse
Affiliation(s)
- Zahra Zinati
- Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, Iran.
| | - Leyla Nazari
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| |
Collapse
|
32
|
Li M, Zhang X, Zhang T, Bai Y, Chen C, Guo D, Guo C, Shu Y. Genome-wide analysis of the WRKY genes and their important roles during cold stress in white clover. PeerJ 2023; 11:e15610. [PMID: 37456899 PMCID: PMC10348312 DOI: 10.7717/peerj.15610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Background White clover (Trifolium repens L) is a high-quality forage grass with a high protein content, but it is vulnerable to cold stress, which can negatively affect its growth and development. WRKY transcription factor is a family of plant transcription factors found mainly in higher plants and plays an important role in plant growth, development, and stress response. Although WRKY transcription factors have been studied extensively in other plants, it has been less studied in white clover. Methods and Results In the present research, we have performed a genome-wide analysis of the WRKY gene family of white clover, in total, there were 145 members of WRKY transcription factors identified in white clover. The characterization of the TrWRKY genes was detailed, including conserved motif analysis, phylogenetic analysis, and gene duplication analysis, which have provided a better understanding of the structure and evolution of the TrWRKY genes in white clover. Meanwhile, the genetic regulation network (GRN) containing TrWRKY genes was reconstructed, and Gene Ontology (GO) annotation analysis of these function genes showed they contributed to regulation of transcription process, response to wounding, and phosphorylay signal transduction system, all of which were important processes in response to abiotic stress. To determine the TrWRKY genes function under cold stress, the RNA-seq dataset was analyzed; most of TrWRKY genes were highly upregulated in response to cold stress, particularly in the early stages of cold stress. These results were validated by qRT-PCR experiment, implying they are involved in various gene regulation pathways in response to cold stress. Conclusion The results of this study provide insights that will be useful for further functional analyses of TrWRKY genes in response to biotic or abiotic stresses in white clover. These findings are likely to be useful for further research on the functions of TrWRKY genes and their role in response to cold stress, which is important to understand the molecular mechanism of cold tolerance in white clover and improve its cold tolerance.
Collapse
|
33
|
Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131039. [PMID: 36867909 DOI: 10.1016/j.jhazmat.2023.131039] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Natural and anthropogenic causes are continually growing sources of metals in the ecosystem; hence, heavy metal (HM) accumulation has become a primary environmental concern. HM contamination poses a serious threat to plants. A major focus of global research has been to develop cost-effective and proficient phytoremediation technologies to rehabilitate HM-contaminated soil. In this regard, there is a need for insights into the mechanisms associated with the accumulation and tolerance of HMs in plants. It has been recently suggested that plant root architecture has a critical role in the processes that determine sensitivity or tolerance to HMs stress. Several plant species, including those from aquatic habitats, are considered good hyperaccumulators for HM cleanup. Several transporters, such as the ABC transporter family, NRAMP, HMA, and metal tolerance proteins, are involved in the metal acquisition mechanisms. Omics tools have shown that HM stress regulates several genes, stress metabolites or small molecules, microRNAs, and phytohormones to promote tolerance to HM stress and for efficient regulation of metabolic pathways for survival. This review presents a mechanistic view of HM uptake, translocation, and detoxification. Sustainable plant-based solutions may provide essential and economical means of mitigating HM toxicity.
Collapse
Affiliation(s)
- Sandip A Ghuge
- Agricultural Research Organization (ARO), The Volcani Institute, P.O. Box 15159, 7505101 Rishon LeZion, Israel
| | - Ganesh Chandrakant Nikalje
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, Affiliated to University of Mumbai, Ulhasnagar 421003, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea.
| | - Penna Suprasanna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
34
|
Wang C, Ye D, Li Y, Hu P, Xu R, Wang X. Genome-wide identification and bioinformatics analysis of the WRKY transcription factors and screening of candidate genes for anthocyanin biosynthesis in azalea ( Rhododendron simsii). Front Genet 2023; 14:1172321. [PMID: 37234867 PMCID: PMC10206045 DOI: 10.3389/fgene.2023.1172321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
WRKY transcription factors have been demonstrated to influence the anthocyanin biosynthesis in many plant species. However, there is limited knowledge about the structure and function of WRKY genes in the major ornamental plant azalea (Rhododendron simsii). In this study, we identified 57 RsWRKY genes in the R. simsii genome and classified them into three main groups and several subgroups based on their structural and phylogenetic characteristics. Comparative genomic analysis suggested WRKY gene family has significantly expanded during plant evolution from lower to higher species. Gene duplication analysis indicated that the expansion of the RsWRKY gene family was primarily due to whole-genome duplication (WGD). Additionally, selective pressure analysis (Ka/Ks) suggested that all RsWRKY duplication gene pairs underwent purifying selection. Synteny analysis indicated that 63 and 24 pairs of RsWRKY genes were orthologous to Arabidopsis thaliana and Oryza sativa, respectively. Furthermore, RNA-seq data was used to investigate the expression patterns of RsWRKYs, revealing that 17 and 9 candidate genes may be associated with anthocyanin synthesis at the bud and full bloom stages, respectively. These findings provide valuable insights into the molecular mechanisms underlying anthocyanin biosynthesis in Rhododendron species and lay the foundation for future functional studies of WRKY genes.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Dan Ye
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai, China
| | - Peiling Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Run Xu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Xiaojing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| |
Collapse
|
35
|
Viswanath KK, Kuo SY, Tu CW, Hsu YH, Huang YW, Hu CC. The Role of Plant Transcription Factors in the Fight against Plant Viruses. Int J Mol Sci 2023; 24:ijms24098433. [PMID: 37176135 PMCID: PMC10179606 DOI: 10.3390/ijms24098433] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.
Collapse
Affiliation(s)
- Kotapati Kasi Viswanath
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Tu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
36
|
Dong W, Xie Q, Liu Z, Han Y, Wang X, Xu R, Gao C. Genome-wide identification and expression profiling of the bZIP gene family in Betula platyphylla and the functional characterization of BpChr04G00610 under low-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107676. [PMID: 37060866 DOI: 10.1016/j.plaphy.2023.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
The basic leucine zipper (bZIP) gene, which plays a significant role in the regulation of tolerance to biotic/abiotic stresses, has been characterized in many plant species. Betula platyphylla is a significant afforestation species. To elucidate the stress resistance mechanism of birch, previous studies identified some stress resistance genes. However, the genome-wide identification and characterization of bZIP gene family in the birch have not been reported. Here, the 56 BpbZIP genes were identified and classified into 13 groups in birch. Cis-element analysis showed that the promoters of 56 family genes contained 108 elements, of which 16 were shared by 13 groups. There were 8 pairs of fragment repeats and 1 pair of tandem repeats, indicating that duplication may be the major reason for the amplification of the BpbZIP gene family. Tissue-specific of BpbZIP genes showed 18 genes with the highest expression in roots, 15 in flowers, 11 in xylem and 9 in leaves. In addition, five differentially expressed bZIP genes were identified from the RNA-seq data of birch under low-temperature stress, and the co-expressed differentially expressed genes were further screened. The analysis of gene ontology (GO) enrichment of each co-expression regulatory network showed that they were related to membrane lipids and cell walls. Furthermore, the transient overexpression of BpChr04G00610 decreased the ROS scavenging ability of birch under low-temperature stress, suggesting that it may be more sensitive to low-temperature. In conclusion, this study provides a basis for the study of the function of BpbZIP genes.
Collapse
Affiliation(s)
- Wenfang Dong
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Qingjun Xie
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Yating Han
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Xinyu Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Ruiting Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China.
| |
Collapse
|
37
|
Xu Z, Liu Y, Fang H, Wen Y, Wang Y, Zhang J, Peng C, Long J. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Neolamarckia cadamba. Int J Mol Sci 2023; 24:ijms24087537. [PMID: 37108700 PMCID: PMC10142840 DOI: 10.3390/ijms24087537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The WRKY transcription factor family plays important regulatory roles in multiple biological processes in higher plants. They have been identified and functionally characterized in a number of plant species, but very little is known in Neolamarckia cadamba, a 'miracle tree' for its fast growth and potential medicinal resource in Southeast Asia. In this study, a total of 85 WRKY genes were identified in the genome of N. cadamba. They were divided into three groups according to their phylogenetic features, with the support of the characteristics of gene structures and conserved motifs of protein. The NcWRKY genes were unevenly distributed on 22 chromosomes, and there were two pairs of segmentally duplicated events. In addition, a number of putative cis-elements were identified in the promoter regions, of which hormone- and stress-related elements were shared in many NcWRKYs. The transcript levels of NcWRKY were analyzed using the RNA-seq data, revealing distinct expression patterns in various tissues and at different stages of vascular development. Furthermore, 16 and 12 NcWRKY genes were confirmed to respond to various hormone treatments and two different abiotic stress treatments, respectively. Moreover, the content of cadambine, the active metabolite used for the various pharmacological activities found in N. cadamba, significantly increased after Methyl jasmonate treatment. In addition, expression of NcWRKY64/74 was obviously upregulated, suggesting that they may have a potential function of regulating the biosynthesis of cadambine in response to MeJA. Taken together, this study provides clues into the regulatory roles of the WRKY gene family in N. cadamba.
Collapse
Affiliation(s)
- Zuowei Xu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yutong Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Huiting Fang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yanqiong Wen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ying Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Changcao Peng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
38
|
Gao J, Chen Y, Gao M, Wu L, Zhao Y, Wang Y. LcWRKY17, a WRKY Transcription Factor from Litsea cubeba, Effectively Promotes Monoterpene Synthesis. Int J Mol Sci 2023; 24:ijms24087210. [PMID: 37108396 PMCID: PMC10138983 DOI: 10.3390/ijms24087210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The WRKY gene family is one of the most significant transcription factor (TF) families in higher plants and participates in many secondary metabolic processes in plants. Litsea cubeba (Lour.) Person is an important woody oil plant that is high in terpenoids. However, no studies have been conducted to investigate the WRKY TFs that regulate the synthesis of terpene in L. cubeba. This paper provides a comprehensive genomic analysis of the LcWRKYs. In the L. cubeba genome, 64 LcWRKY genes were discovered. According to a comparative phylogenetic study with Arabidopsis thaliana, these L. cubeba WRKYs were divided into three groups. Some LcWRKY genes may have arisen from gene duplication, but the majority of LcWRKY evolution has been driven by segmental duplication events. Based on transcriptome data, a consistent expression pattern of LcWRKY17 and terpene synthase LcTPS42 was found at different stages of L. cubeba fruit development. Furthermore, the function of LcWRKY17 was verified by subcellular localization and transient overexpression, and overexpression of LcWRKY17 promotes monoterpene synthesis. Meanwhile, dual-Luciferase and yeast one-hybrid (Y1H) experiments showed that the LcWRKY17 transcription factor binds to W-box motifs of LcTPS42 and enhances its transcription. In conclusion, this research provided a fundamental framework for future functional analysis of the WRKY gene families, as well as breeding improvement and the regulation of secondary metabolism in L. cubeba.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
39
|
Yang YL, Cushman SA, Wang SC, Wang F, Li Q, Liu HL, Li Y. Genome-wide investigation of the WRKY transcription factor gene family in weeping forsythia: expression profile and cold and drought stress responses. Genetica 2023; 151:153-165. [PMID: 36853516 PMCID: PMC9973247 DOI: 10.1007/s10709-023-00184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Weeping forsythia is a wide-spread shrub in China with important ornamental, medicinal and ecological values. It is widely distributed in China's warm temperate zone. In plants, WRKY transcription factors play important regulatory roles in seed germination, flower development, fruit ripening and coloring, and biotic and abiotic stress response. To date, WRKY transcription factors have not been systematically studied in weeping forsythia. In this study, we identified 79 WRKY genes in weeping forsythia and classified them according to their naming rules in Arabidopsis thaliana. Phylogenetic tree analysis showed that, except for IIe subfamily, whose clustering was inconsistent with A. thaliana clustering, other subfamily clustering groups were consistent. Cis-element analysis showed that WRKY genes related to pathogen resistance in weeping forsythia might be related to methyl jasmonate and salicylic acid-mediated signaling pathways. Combining cis-element and expression pattern analyses of WRKY genes showed that more than half of WRKY genes were involved in light-dependent development and morphogenesis in different tissues. The gene expression results showed that 13 WRKY genes were involved in drought response, most of which might be related to the abscisic acid signaling pathway, and a few of which might be regulated by MYB transcription factors. The gene expression results under cold stress showed that 17 WRKY genes were involved in low temperature response, and 9 of them had low temperature responsiveness cis-elements. Our study of WRKY family in weeping forsythia provided useful resources for molecular breeding and important clues for their functional verification.
Collapse
Affiliation(s)
- Ya-Lin Yang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Samuel A Cushman
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Shu-Chen Wang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Fan Wang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Qian Li
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Hong-Li Liu
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China. .,State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
40
|
Ling J, Liu R, Hao Y, Li Y, Ping X, Yang Q, Yang Y, Lu X, Xie B, Zhao J, Mao Z. Comprehensive analysis of the WRKY gene family in Cucumis metuliferus and their expression profile in response to an early stage of root knot nematode infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1143171. [PMID: 37021316 PMCID: PMC10067755 DOI: 10.3389/fpls.2023.1143171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Root-knot nematode (RKN) is a major factor that limits the growth and productivity of important Cucumis crops, such as cucumber and melon, which lack RKN-resistance genes in their genome. Cucumis metuliferus is a wild Cucumis species that displays a high degree of RKN-resistance. WRKY transcription factors were involved in plant response to biotic stresses. However, little is known on the function of WRKY genes in response to RKN infection in Cucumis crops. In this study, Cucumis metuliferus 60 WRKY genes (CmWRKY) were identified in the C. metuliferus genome, and their conserved domains were classified into three main groups based on multiple sequence alignment and phylogenetic analysis. Synteny analysis indicated that the WRKY genes were highly conserved in Cucumis crops. Transcriptome data from of C. metuliferus roots inoculated with RKN revealed that 16 CmWRKY genes showed differential expression, of which 13 genes were upregulated and three genes were downregulated, indicating that these CmWRKY genes are important to C. metuliferus response to RKN infection. Two differentially expression CmWRKY genes (CmWRKY10 and CmWRKY28) were selected for further functional analysis. Both CmWRKY genes were localized in nucleus, indicating they may play roles in transcriptional regulation. This study provides a foundation for further research on the function of CmWRKY genes in RKN stress resistance and elucidation of the regulatory mechanism.
Collapse
Affiliation(s)
- Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yali Hao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingxing Ping
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qihong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Zhang M, Zhang W, Zheng Z, Zhang Z, Hua B, Liu J, Miao M. Genome-Wide Identification and Expression Analysis of NPF Genes in Cucumber ( Cucumis sativus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1252. [PMID: 36986940 PMCID: PMC10057324 DOI: 10.3390/plants12061252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) proteins perform an essential role in regulating plant nitrate absorption and distribution and in improving plant nitrogen use efficiency. In this study, cucumber (Cucumis sativus L.) NPF genes were comprehensively analyzed at the whole genome level, and 54 NPF genes were found to be unevenly distributed on seven chromosomes in the cucumber genome. The phylogenetic analysis showed that these genes could be divided into eight subfamilies. We renamed all CsNPF genes according to the international nomenclature, based on their homology with AtNPF genes. By surveying the expression profiles of CsNPF genes in various tissues, we found that CsNPF6.4 was specifically expressed in roots, indicating that CsNPF6.4 may play a role in N absorption; CsNPF6.3 was highly expressed in petioles, which may be related to NO3- storage in petioles; and CsNPF2.8 was highly expressed in fruits, which may promote NO3- transport to the embryos. We further examined their expression patterns under different abiotic stress and nitrogen conditions, and found that CsNPF7.2 and CsNPF7.3 responded to salt, cold, and low nitrogen stress. Taken together, our study lays a foundation for further exploration of the molecular and physiological functions of cucumber nitrate transporters.
Collapse
Affiliation(s)
- Mengying Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zijian Zheng
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Jiexia Liu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
42
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
43
|
Li Q, Huang C, Liu C, Jia X, Wen W, Li L, He Y, Xu D. Exploring the role and expression pattern of WRKY transcription factor in the growth and development of Bletilla striata based on transcriptome. GENE REPORTS 2023; 30:101730. [DOI: 10.1016/j.genrep.2022.101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Wang Y, Li Y, Zhou F, Zhang L, Gong J, Cheng C, Chen J, Lou Q. Genome-wide characterization, phylogenetic and expression analysis of Histone gene family in cucumber (Cucumis sativus L.). Int J Biol Macromol 2023; 230:123401. [PMID: 36702227 DOI: 10.1016/j.ijbiomac.2023.123401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Histones are essential components of chromatin and play an important role in regulating gene transcription and participating in DNA replication. Here, we performed a comprehensive analysis of this gene family. In this study, we identified 37 CsHistones that were classified into five groups (H1, H2A, H2B, H3 and H4). The closely linked subfamilies exhibited more similarity in terms of motifs and intron/exon numbers. Segmental duplication (SD) is the main driving force of cucumber CsHistones expansion. Analysis of cis-regulatory elements in the promoter region of CsHistones showed that CsHistones can respond to a variety of stresses. RNA-Seq analysis indicated that the expression of most CsHistones was associated with different stresses, including downy mildew, powdery mildew, wilt, heat, cold, salt stress, and waterlogging. Expression analysis showed that several genes of H3 group were highly expressed in different reproductive organs. Notably, CsCENH3 (CsHistone30) has the characteristics of a variant histone, and we demonstrated that CsCENH3 was localized on the nucleus and its proteins were expressed in centromere region. These findings provide valuable information for the identification and potential functions of Histone genes and ideas for the cultivation of CENH3-mediated haploid induction lines in cucumber.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianlei Gong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Mu D, Chen W, Shao Y, Wilson IW, Zhao H, Luo Z, Lin X, He J, Zhang Y, Mo C, Qiu D, Tang Q. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Siraitia siamensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:288. [PMID: 36679001 PMCID: PMC9861706 DOI: 10.3390/plants12020288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
WRKY transcription factors, as the largest gene family in higher plants, play an important role in various biological processes including growth and development, regulation of secondary metabolites, and stress response. In this study, we performed genome-wide identification and analysis of WRKY transcription factors in S. siamensis. A total of 59 SsWRKY genes were identified that were distributed on all 14 chromosomes, and these were classified into three major groups based on phylogenetic relationships. Each of these groups had similar conserved motifs and gene structures. We compared all the S. siamensis SsWRKY genes with WRKY genes identified from three diverse plant species, and the results implied that segmental duplication and tandem duplication play an important roles in the evolution processes of the WRKY gene family. Promoter region analysis revealed that SsWRKY genes included many cis-acting elements related to plant growth and development, phytohormone response, and both abiotic and biotic stress. Expression profiles originating from the transcriptome database showed expression patterns of these SsWRKY genes in four different tissues and revealed that most genes are expressed in plant roots. Fifteen SsWRKY genes with low-temperature response motifs were surveyed for their gene expression under cold stress, showing that most genes displayed continuous up-regulation during cold treatment. Our study provides a foundation for further study on the function and regulatory mechanism of the SsWRKY gene family.
Collapse
Affiliation(s)
- Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wenqiang Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Iain W. Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaodong Lin
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jialong He
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Laboaratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
46
|
Transcriptomic Analysis Provides Novel Insights into the Heat Stress-Induced Response in Codonopsis tangshen. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010168. [PMID: 36676120 PMCID: PMC9867074 DOI: 10.3390/life13010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Codonopsis tangshen Oliv (C. tangshen) is a valuable traditional Chinese medicinal herb with tremendous health benefits. However, the growth and development of C. tangshen are seriously affected by high temperatures. Therefore, understanding the molecular responses of C. tangshen to high-temperature stress is imperative to improve its thermotolerance. Here, RNA-Seq analysis was performed to investigate the genome-wide transcriptional changes in C. tangshen in response to short-term heat stress. Heat stress significantly damages membrane stability and chlorophyll biosynthesis in C. tangshen, as evidenced by pronounced malonaldehyde (MDA), electrolyte leakage (EL), and reduced chlorophyll content. Transcriptome analysis showed that 2691 differentially expressed genes (DEGs) were identified, including 1809 upregulated and 882 downregulated. Functional annotations revealed that the DEGs were mainly related to heat shock proteins (HSPs), ROS-scavenging enzymes, calcium-dependent protein kinases (CDPK), HSP-HSP network, hormone signaling transduction pathway, and transcription factors such as bHLHs, bZIPs, MYBs, WRKYs, and NACs. These heat-responsive candidate genes and TFs could significantly regulate heat stress tolerance in C. tangshen. Overall, this study could provide new insights for understanding the underlying molecular mechanisms of thermotolerance in C. tangshen.
Collapse
|
47
|
Liu S, Zhang C, Guo F, Sun Q, Yu J, Dong T, Wang X, Song W, Li Z, Meng X, Zhu M. A systematical genome-wide analysis and screening of WRKY transcription factor family engaged in abiotic stress response in sweetpotato. BMC PLANT BIOLOGY 2022; 22:616. [PMID: 36575404 PMCID: PMC9795774 DOI: 10.1186/s12870-022-03970-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND WRKY transcription factors play pivotal roles in regulating plant multiple abiotic stress tolerance, however, a genome-wide systematical analysis of WRKY genes in sweetpotato is still missing. RESULTS Herein, 84 putative IbWRKYs with WRKY element sequence variants were identified in sweetpotato reference genomes. Fragment duplications, rather than tandem duplications, were shown to play prominent roles in IbWRKY gene expansion. The collinearity analysis between IbWRKYs and the related orthologs from other plants further depicted evolutionary insights into IbWRKYs. Phylogenetic relationships displayed that IbWRKYs were divided into three main groups (I, II and III), with the support of the characteristics of exon-intron structures and conserved protein motifs. The IbWRKY genes, mainly from the group Ib, displayed remarkable and diverse expression profiles under multiple abiotic stress (NaCl, PEG6000, cold and heat) and hormone (ABA, ACC, JA and SA) treatments, which were determined by RNA-seq and qRT-PCR assays, suggesting their potential roles in mediating particular stress responses. Moreover, IbWRKY58L could interact with IbWRKY82 as revealed by yeast two-hybrid based on the protein interaction network screening. And abiotic stress-remarkably induced IbWRKY21L and IbWRKY51 were shown to be localized in the nucleus and had no transactivation activities. CONCLUSION These results provide valuable insights into sweetpotato IbWRKYs and will lay a foundation for further exploring functions and possible regulatory mechanisms of IbWRKYs in abiotic stress tolerance.
Collapse
Affiliation(s)
- Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Qing Sun
- Agricultural Bureau of Linyi City, 276000, Linyi, Shandong Province, China
| | - Jing Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
- Jiangsu Key laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Xin Wang
- Jiangsu Xuzhou Sweetpotato Research Center, 221131, Xuzhou, Jiangsu Province, China
| | - Weihan Song
- Jiangsu Xuzhou Sweetpotato Research Center, 221131, Xuzhou, Jiangsu Province, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
- Jiangsu Key laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China.
- Jiangsu Key laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China.
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China.
- Jiangsu Key laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
48
|
Chang X, Yang Z, Zhang X, Zhang F, Huang X, Han X. Transcriptome-wide identification of WRKY transcription factors and their expression profiles under different stress in Cynanchum thesioides. PeerJ 2022; 10:e14436. [PMID: 36518281 PMCID: PMC9744163 DOI: 10.7717/peerj.14436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Cynanchum thesioides (Freyn) K. Schum. is an important economic and medicinal plant widely distributed in northern China. WRKY transcription factors (TFs) play important roles in plant growth, development and regulating responses. However, there is no report on the WRKY genes in Cynanchum thesioides. A total of 19 WRKY transcriptome sequences with complete ORFs were identified as WRKY transcriptome sequences by searching for WRKYs in RNA sequencing data. Then, the WRKY genes were classified by phylogenetic and conserved motif analysis of the WRKY family in Cynanchum thesioides and Arabidopsis thaliana. qRT-PCR was used to determine the expression patterns of 19 CtWRKY genes in different tissues and seedlings of Cynanchum thesioides under plant hormone (ABA and ETH) and abiotic stresses (cold and salt). The results showed that 19 CtWRKY genes could be divided into groups I-III according to their structure and phylogenetic characteristics, and group II could be divided into five subgroups. The prediction of CtWRKY gene protein interactions indicates that CtWRKY is involved in many biological processes. In addition, the CtWRKY gene was differentially expressed in different tissues and positively responded to abiotic stress and phytohormone treatment, among which CtWRKY9, CtWRKY18, and CtWRKY19 were significantly induced under various stresses. This study is the first to identify the WRKY gene family in Cynanchum thesioides, and the systematic analysis lays a foundation for further identification of the function of WRKY genes in Cynanchum thesioides.
Collapse
Affiliation(s)
- Xiaoyao Chang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Zhongren Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xiaoyan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Fenglan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xiumei Huang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xu Han
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| |
Collapse
|
49
|
Bioinformatics Analysis of WRKY Family Genes in Erianthus fulvus Ness. Genes (Basel) 2022; 13:genes13112102. [DOI: 10.3390/genes13112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most prominent transcription factors in higher plants, the WRKY gene family, is crucial for secondary metabolism, phytohormone signaling, plant defense responses, and plant responses to abiotic stresses. It can control the expression of a wide range of target genes by coordinating with other DNA-binding or non-DNA-binding interacting proteins. In this study, we performed a genome-wide analysis of the EfWRKY genes and initially identified 89 members of the EfWRKY transcription factor family. Using some members of the OsWRKY transcription factor family, an evolutionary tree was built using the neighbor-joining (NJ) method to classify the 89 members of the EfWRKY transcription factor family into three major taxa and one unclassified group. Molecular weights ranged from 22,614.82 to 303,622.06 Da; hydrophilicity ranged from (−0.983)–(0.159); instability coefficients ranged from 40.97–81.30; lipid coefficients ranged from 38.54–91.89; amino acid numbers ranged from 213–2738 bp; isoelectric points ranged from 4.85–10.06. A signal peptide was present in EfWRKY41 but not in the other proteins, and EfWRK85 was subcellularly localized to the cell membrane. Chromosome localization revealed that the WRKY gene was present on each chromosome, proving that the conserved pattern WRKYGQK is the family’s central conserved motif. Conserved motif analysis showed that practically all members have this motif. Analysis of the cis-acting elements indicated that, in addition to the fundamental TATA-box, CAAT-box, and light-responsive features (GT1-box), there are response elements implicated in numerous hormones, growth regulation, secondary metabolism, and abiotic stressors. These results inform further studies on the function of EfWRKY genes and will lead to the improvement of sugarcane.
Collapse
|
50
|
Wan Z, Li X, Cheng H, Zhang J, Chen Y, Xu Y, Jin S. Comprehensive Genomic Survey, Structural Classification, and Expression Analysis of WRKY Transcription Factor Family in Rhododendron simsii. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212967. [PMID: 36365420 PMCID: PMC9654210 DOI: 10.3390/plants11212967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/01/2023]
Abstract
(1) Rhododendron is one of the top ten traditional flowers in China, with both high ornamental and economic values. However, with the change of the environment, Rhododendron suffers from various biological stresses. The WRKY transcription factor is a member of the most crucial transcription factor families, which plays an essential regulatory role in a variety of physiological processes and developmental stresses. (2) In this study, 57 RsWRKYs were identified using genome data and found to be randomly distributed on 13 chromosomes. Based on gene structure and phylogenetic relationships, 57 proteins were divided into three groups: I, II, and III. Multiple alignments of RsWRKYs with Arabidopsis thaliana homologous genes revealed that WRKY domains in different groups had different conserved sites. RsWRKYs have a highly conserved domain, WRKYGQK, with three variants, WRKYGKK, WRKYGEK, and WRKYGRK. Furthermore, cis-acting elements analysis revealed that all of the RsWRKYs had stress and plant hormone cis-elements, with figures varying by group. Finally, the expression patterns of nine WRKY genes treated with gibberellin acid (GA), methyl jasmonate (MeJA), heat, and drought in Rhododendron were also measured using quantitative real-time PCR (qRT-PCR). The results showed that the expression levels of the majority of RsWRKY genes changed in response to multiple phytohormones and abiotic stressors. (3) This current study establishes a theoretical basis for future studies on the response of RsWRKY transcription factors to various hormone and abiotic stresses as well as a significant foundation for the breeding of new stress-tolerant Rhododendron varieties.
Collapse
Affiliation(s)
- Ziyun Wan
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Hefeng Cheng
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Jing Zhang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Yujia Chen
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Yanxia Xu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
- School of Life Science and Health, Huzhou College, Huzhou 313000, China
| |
Collapse
|