1
|
Sun J, Yishake H, Wang M, Zhang H, Yan J. Integrated Transcriptome and Targeted Metabolome for Resolving Flavonoid Biosynthesis in Figs ( Ficus carica Linn.). BIOLOGY 2025; 14:184. [PMID: 40001952 PMCID: PMC11852052 DOI: 10.3390/biology14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Figs are an edible and medicinal plant rich in polyphenols and flavonoids with unique pharmacological effects. However, the mechanism of flavonoid synthesis in figs is not clear. In this study, fig fruits of six varieties were collected for RNA sequencing and UPLC-MS data collection. The results showed that a total of 39 differential metabolites were identified by targeted metabolomics, and their contents were determined by UPLC-MS. The clustered heat map analysis showed that most of the differential metabolites were highly accumulated in BRD and FY. A total of 62 flavonoid biosynthesis pathway genes were identified by transcriptome analysis, and FcCHS, FcCHI, FcFLS, FcCYP, and FcDFR were the key genes identified for the accumulation of flavonoids and flavonols in the dark-colored varieties. In addition, a total of 1671 transcription factor genes, mainly MYBs, bHLHs, and AP2/ERFs, were identified. This study will enrich the transcriptomic data of figs and provide some help in resolving the synthesis mechanism of fig flavonoids.
Collapse
Affiliation(s)
- Junting Sun
- College of Life Sciences, Shihezi University, Shihezi 832000, China;
- Xinjiang Academy of Forestry Sciences, Urumqi 830000, China; (H.Y.); (M.W.)
| | - Hadir Yishake
- Xinjiang Academy of Forestry Sciences, Urumqi 830000, China; (H.Y.); (M.W.)
| | - Ming Wang
- Xinjiang Academy of Forestry Sciences, Urumqi 830000, China; (H.Y.); (M.W.)
| | - Hao Zhang
- Xinjiang Academy of Forestry Sciences, Urumqi 830000, China; (H.Y.); (M.W.)
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi 832000, China;
| |
Collapse
|
2
|
Song M, Chen Z, Bahayiding W, Li J, Ma H, Wang Z. The transcription factor FcMYB3 responds to 60Co γ-ray irradiation of axillary buds in Ficus carica L. by activating the expression of the NADPH oxidase, FcRbohD. FRONTIERS IN PLANT SCIENCE 2024; 15:1476126. [PMID: 39659416 PMCID: PMC11628289 DOI: 10.3389/fpls.2024.1476126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Plant irradiation has been used to induce genetic variation in crop germplasm. However, the underlying mechanisms of plant responses to ionizing radiation stress are still unclear. In plants, reactive oxygen species (ROS) are produced with abiotic stress. Respiratory burst oxidative homologs (Rboh) genes are important regulators of plant ROS stress responses, but little is known of their involvement in the response to ionizing radiation stress. In this study, young branches of Ficus carica L. were irradiated with 60Co γ-rays and axillary buds were collected after 3- 48 h after irradiation. The differentially expressed genes (DEGs; p< 0.05) detected included an early (6 h) and sustained increase in member of the MAPK signaling pathway. The activities of superoxide dismutase SOD, POD and CAT in fig axillary buds showed a trend of first decrease and then increase with time, while the contents of MDA and H2O2 maintained an overall upward trend. The analysis of differentially expressed genes (DEGs; p < 0.05) indicated an early (6 h) and sustained increase in member of the MAPK signaling pathway. DEGs for glutathione-s-transferase and genes involved in phenylpropanoid and flavonoid biosynthesis pathways were detected at all time points, indicating that γ-irradiation induced an increased capacity for in ROS-scavenging. Substantial changes in the expression of MYB, NAC and bHLH transcription factor family members were also seen to occur within 6 h after irradiation. Taking Rboh-derived ROS signaling pathway as the entry point, the MYB transcription factor, FcMYB3, was identified as an potential upstream regulator of FcRbohD in a yeast one hybrid assay and this interaction verified by LUC and EMSA experiments. The knock-down and overexpression of FcMYB3 indicated that FcMYB3 is a positive regulator of ROS accumulation in response to γ-ray radiation stress responses in fig. Our results will provide a better understanding of the mechanisms of radiation tolerance in plant materials.
Collapse
Affiliation(s)
- Miaoyu Song
- College of Horticulture, Yunnan Agricultural University, Kunming, China
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ziyu Chen
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Wupur Bahayiding
- Institute of Agricultural Sciences in Turpan, Xinjiang Academy of Agricultural Sciences, Turpan, China
| | - Jinping Li
- Fig and Walnut Research Institute of Weiyuan County, Weiyuan, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ziran Wang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Chatti K, Kmeli N, Bettaieb I, Hamdi J, Gaaied S, Mlouka R, Mars M, Bouktila D. Genome-Wide Analysis of the Common Fig (Ficus carica L.) R2R3-MYB Genes Reveals Their Structure, Evolution, and Roles in Fruit Color Variation. Biochem Genet 2024:10.1007/s10528-024-10960-w. [PMID: 39508995 DOI: 10.1007/s10528-024-10960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
The R2R3-MYB transcription factor (TF) family is crucial for regulating plant growth, stress response, and fruit ripening. Although this TF family has been examined in a multitude of plants, the R2R3-MYB TFs in Ficus carica, a Mediterranean fruit species, have yet to be characterized. This study identified and classified 63 R2R3-MYB genes (FcMYB1 to FcMYB63) in the F. carica genome. We analyzed these genes for physicochemical properties, conserved motifs, phylogenetic relationships, gene architecture, selection pressure, and gene expression profiles and networks. The genes were classified into 29 clades, with members of the same clade showing similar exon-intron structures and motif compositions. Of the 54 orthologous gene pairs shared with mulberry (Morus notabilis), 52 evolved under negative selection, while two pairs (FcMYB55/MnMYB20 and FcMYB59/MnMYB31) experienced diversifying selection. RNA-Seq analysis showed that FcMYB26, FcMYB33, and FcMYB34 were significantly overexpressed in fig fruit peel during maturation phase III. Weighted gene co-expression network analysis (WGCNA) indicated that these genes are part of an expression module associated with the anthocyanin pathway. RT-qPCR validation confirmed these findings and revealed that the Tunisian cultivars 'Zidi' and 'Soltani' have cultivar-specific R2R3-FcMYB genes highly overexpressed during the final stage of fruit maturation and color acquisition. These genes likely influence cultivar-specific pigment synthesis. This study provides a comprehensive overview of the R2R3-MYB TF family in fig, offering a framework for selecting genes related to fruit peel color in breeding programs.
Collapse
Affiliation(s)
- Khaled Chatti
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Narjes Kmeli
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Inchirah Bettaieb
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Jihen Hamdi
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Messaoud Mars
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Dhia Bouktila
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia.
| |
Collapse
|
4
|
Xu X, Xu L, Yang Z, Chen L, Wang Y, Ren H, Zhang Z, El-Kassaby YA, Wu S. Identification of key gene networks controlling organic acid and sugar metabolism during star fruit (Averrhoa carambola) development. BMC PLANT BIOLOGY 2024; 24:943. [PMID: 39385090 PMCID: PMC11465491 DOI: 10.1186/s12870-024-05621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
The sugar and organic acid content significantly impacts the flavor quality of star fruit, and it undergoes dynamic changes during development. However, the metabolic network and molecular mechanisms governing the formation of sugar and organic acid in star fruit remain unclear. In this study, 23 of 743 components were detected by metabonomic analysis. The highest metabolites contents were organic acids and derivatives. The highest sugar content in the fruit was fructose and glucose, followed by sucrose, which proved that A. carambola is a hexose accumulation type fruit. Genome identification preliminarily screened 141 genes related to glucose metabolism and 67 genes related to acid metabolism. A total of 7,881 unigenes were found in transcriptome data, 6,124 differentially expressed genes were screened, with more up-regulated than down-regulated genes. Transcriptome and metabolome association analysis screened seven core candidate genes related to glucose metabolism and 17 core genes highly related to organic acid pathway, and eight differentially expressed sugar and acid genes were selected for qRT-PCR verification. In addition, 29 bHLHs and eight bZIPs transcription factors were predicted in the glucose metabolism pathway, and 23 MYBs, nine C2H2s transcription factors and one GRAS transcription factor was predicted in the acid metabolism pathway, and transcription factors have both positive and negative regulatory effects on sugar and acid structure genes. This study increased our understanding of A. carambola fruit flavor and provided basic information for further exploring the ornamental and edible values of star fruit.
Collapse
Affiliation(s)
- Xinyu Xu
- The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Lianhuan Xu
- The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zirui Yang
- The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Chen
- The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiqing Wang
- The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Ren
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zehuang Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada.
| | - Shasha Wu
- The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Gu X, Fan Z, Wang Y, He J, Zheng C, Ma H. Metabolome and Transcriptome Joint Analysis Reveals That Different Sucrose Levels Regulate the Production of Flavonoids and Stilbenes in Grape Callus Culture. Int J Mol Sci 2024; 25:10398. [PMID: 39408726 PMCID: PMC11476901 DOI: 10.3390/ijms251910398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
To reveal the effect of sucrose concentration on the production of secondary metabolites, a metabolome and transcriptome joint analysis was carried out using callus induced from grape variety Mio Red cambial meristematic cells. We identified 559 metabolites-mainly flavonoids, phenolic acids, and stilbenoids-as differential content metabolites (fold change ≥2 or ≤0.5) in at least one pairwise comparison of treatments with 7.5, 15, or 30 g/L sucrose in the growing media for 15 or 30 days (d). Resveratrol, viniferin, and amurensin contents were highest at 15 d of subculture; piceid, ampelopsin, and pterostilbene had higher contents at 30 d. A transcriptome analysis identified 1310 and 498 (at 15 d) and 1696 and 2211 (at 30 d) differentially expressed genes (DEGs; log2(fold change) ≥ 1, p < 0.05) in 7.5 vs. 15 g/L and 15 vs. 30 g/L sucrose treatments, respectively. In phenylpropane and isoflavone pathways, DEGs encoding cinnamic acid 4-hydroxylase, chalcone synthase, chalcone isomerase, and flavanone 3-hydroxylase were more highly expressed at 15 d than at 30 d, while other DEGs showed different regulation patterns corresponding to sucrose concentrations and cultivation times. For all three sucrose concentrations, the stilbene synthase (STS) gene exhibited significantly higher expression at 15 vs. 30 d, while two resveratrol O-methyltransferase (ROMT) genes related to pterostilbene synthesis showed significantly higher expression at 30 vs. 15 d. In addition, a total of 481 DEGs were annotated as transcription factors in pairwise comparisons; an integrative analysis suggested MYB59, WRKY20, and MADS8 as potential regulators responding to sucrose levels in flavonoid and stilbene biosynthesis in grape callus. Our results provide valuable information for high-efficiency production of flavonoids and stilbenes using grape callus.
Collapse
Affiliation(s)
| | | | | | | | - Chuanlin Zheng
- College of Horticulture, China Agricultural University, Beijing 100083, China; (X.G.); (Z.F.); (Y.W.); (J.H.)
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing 100083, China; (X.G.); (Z.F.); (Y.W.); (J.H.)
| |
Collapse
|
6
|
Liu D, Yuan M, Wang Y, Zhang L, Yao W, Feng M. Integrated metabolome and transcriptome analysis of differences in quality of ripe Lycium barbarum L. fruits harvested at different periods. BMC PLANT BIOLOGY 2024; 24:82. [PMID: 38302892 PMCID: PMC10835843 DOI: 10.1186/s12870-024-04751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.
Collapse
Affiliation(s)
- Deshuai Liu
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China
| | - Miao Yuan
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ye Wang
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China
| | - Li Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Wenkong Yao
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China.
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, 750021, Ningxia, China.
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China.
| | - Mei Feng
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China.
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, 750021, Ningxia, China.
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
7
|
Jue DW, Sang XL, Li ZX, Zhang WL, Liao QH, Tang J. Determination of the effects of pre-harvest bagging treatment on kiwifruit appearance and quality via transcriptome and metabolome analyses. Food Res Int 2023; 173:113276. [PMID: 37803588 DOI: 10.1016/j.foodres.2023.113276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Bagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.
Collapse
Affiliation(s)
- Deng-Wei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China; Southwest University, College of Horticulture and Landscape, Chongqing 400715, China
| | - Xue-Lian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Zhe-Xin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Wen-Lin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Qin-Hong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| |
Collapse
|
8
|
Long L, Zhao XT, Feng YM, Fan ZH, Zhao JR, Wu JF, Xu FC, Yuan M, Gao W. Profile of cotton flavonoids: Their composition and important roles in development and adaptation to adverse environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107866. [PMID: 37392667 DOI: 10.1016/j.plaphy.2023.107866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Cotton is a commercial crop that is cultivated in more than 50 countries. The production of cotton has severely diminished in recent years owing to adverse environments. Thus, it is a high priority of the cotton industry to produce resistant cultivars to prevent diminished cotton yields and quality. Flavonoids comprise one of the most important groups of phenolic metabolites in plants. However, the advantage and biological roles of flavonoids in cotton have yet not been studied in depth. In this study, we performed a widely targeted metabolic study and identified 190 flavonoids in cotton leaves that span seven different classes with flavones and flavonols as the dominant groups. Furthermore, flavanone-3-hydroxylase was cloned and silenced to knock down flavonoid production. The results show that the inhibition of flavonoid biosynthesis affects the growth and development of cotton and causes semi-dwarfing in cotton seedlings. We also revealed that the flavonoids contribute to cotton defense against ultraviolet radiation and Verticillium dahliae. Moreover, we discuss the promising role of flavonoids in cotton development and defense against biotic and abiotic stresses. This study provides valuable information to study the variety and biological functions of flavonoids in cotton and will help to profile the advantages of flavonoids in cotton breeding.
Collapse
Affiliation(s)
- Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; School of Life Science, Henan University, Henan, 4750004, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Henan, 475004, PR China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Ya-Mei Feng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Zhi-Hao Fan
- School of Life Science, Henan University, Henan, 4750004, PR China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Jian-Feng Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; School of Life Science, Henan University, Henan, 4750004, PR China
| | - Fu-Chun Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; Changzhi Medical College, Shanxi, 046000, PR China
| | - Man Yuan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; School of Life Science, Henan University, Henan, 4750004, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Henan, 475004, PR China.
| |
Collapse
|
9
|
Chen Y, Li W, Jia K, Liao K, Liu L, Fan G, Zhang S, Wang Y. Metabolomic and transcriptomice analyses of flavonoid biosynthesis in apricot fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1210309. [PMID: 37534290 PMCID: PMC10390783 DOI: 10.3389/fpls.2023.1210309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Introduction Flavonoids, as secondary metabolites in plants, play important roles in many biological processes and responses to environmental factors. Methods Apricot fruits are rich in flavonoid compounds, and in this study, we performed a combined metabolomic and transcriptomic analysis of orange flesh (JN) and white flesh (ZS) apricot fruits. Results and discussion A total of 222 differentially accumulated flavonoids (DAFs) and 15855 differentially expressed genes (DEGs) involved in flavonoid biosynthesis were identified. The biosynthesis of flavonoids in apricot fruit may be regulated by 17 enzyme-encoding genes, namely PAL (2), 4CL (9), C4H (1), HCT (15), C3'H (4), CHS (2), CHI (3), F3H (1), F3'H (CYP75B1) (2), F3'5'H (4), DFR (4), LAR (1), FLS (3), ANS (9), ANR (2), UGT79B1 (6) and CYP81E (2). A structural gene-transcription factor (TF) correlation analysis yielded 3 TFs (2 bHLH, 1 MYB) highly correlated with 2 structural genes. In addition, we obtained 26 candidate genes involved in the biosynthesis of 8 differentially accumulated flavonoids metabolites in ZS by weighted gene coexpression network analysis. The candidate genes and transcription factors identified in this study will provide a highly valuable molecular basis for the in-depth study of flavonoid biosynthesis in apricot fruits.
Collapse
Affiliation(s)
- Yilin Chen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Wenwen Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
- Postdoctoral Research Station of Crop Science, Xinjiang Agricultural University, Urumqi, China
| | - Kai Jia
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Kang Liao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Liqiang Liu
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Guoquan Fan
- Luntai Fruit Tree Resource Nursery, Xinjiang Academy of Agricultural Sciences, Luntai, China
| | - Shikui Zhang
- Luntai Fruit Tree Resource Nursery, Xinjiang Academy of Agricultural Sciences, Luntai, China
| | - Yatong Wang
- Luntai Fruit Tree Resource Nursery, Xinjiang Academy of Agricultural Sciences, Luntai, China
| |
Collapse
|
10
|
Lu R, Song M, Wang Z, Zhai Y, Hu C, Perl A, Ma H. Independent flavonoid and anthocyanin biosynthesis in the flesh of a red-fleshed table grape revealed by metabolome and transcriptome co-analysis. BMC PLANT BIOLOGY 2023; 23:361. [PMID: 37454071 DOI: 10.1186/s12870-023-04368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Red flesh is a desired fruit trait, but the regulation of red flesh formation in grape is not well understood. 'Mio Red' is a seedless table grape variety with light-red flesh and blue-purple skin. The skin color develops at veraison whereas the flesh color develops at a later stage of berry development. The flesh and skin flavonoid metabolomes and transcriptomes were analyzed. RESULTS A total of 161 flavonoids were identified, including 16 anthocyanins. A total of 66 flavonoids were found at significantly different levels in the flesh and skin (fold change ≥ 2 or ≤ 0.5, variable importance in projection (VIP) ≥ 1). The main anthocyanins in the flesh were pelargonidin and peonidin, and in the skin were peonidin, delphinidin, and petunidin. Transcriptome comparison revealed 57 differentially expressed structural genes of the flavonoid-metabolism pathway (log2fold change ≥ 1, FDR < 0.05, FPKM ≥ 1). Two differentially expressed anthocyanin synthase (ANS) genes were annotated, ANS2 (Vitvi02g00435) with high expression in flesh and ANS1 (Vitvi11g00565) in skin, respectively. One dihydro flavonol 4-reductase (DFR, Vitvi18g00988) gene was differentially expressed although high in both skin and flesh. Screened and correlation analysis of 12 ERF, 9 MYB and 3 bHLH genes. The Y1H and dual luciferase assays showed that MYBA1 highly activates the ANS2 promoter in flesh and that ERFCBF6 was an inhibitory, EFR23 and bHLH93 may activate the DFR gene. These genes may be involved in the regulation of berry flesh color. CONCLUSIONS Our study revealed that anthocyanin biosynthesis in grape flesh is independent of that in the skin. Differentially expressed ANS, MYB and ERF transcription factors provide new clues for the future breeding of table grapes that will provide the health benefits as red wine.
Collapse
Affiliation(s)
- Renxiang Lu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhe Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chaoyang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Avihai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Wu Z, Zhang S, Liu L, Wang L, Ban Z. The Grade of Dried Jujube ( Ziziphus jujuba Mill. cv. Junzao) Affects Its Quality Attributes, Antioxidant Activity, and Volatile Aroma Components. Foods 2023; 12:foods12050989. [PMID: 36900506 PMCID: PMC10000541 DOI: 10.3390/foods12050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Jujube (Ziziphus jujuba Mill. cv. Junzao) has attracted a large number of consumers because it is rich in nutrients, such as carbohydrates, organic acids, and amino acids. Dried jujube is more conducive to storage and transportation, and has a more intense flavor. Consumers are affected by subjective factors, and the most important factor is the appearance of the fruit, including size and color. In this study, fully matured jujubes were dried and divided into five grades according to their transverse diameter and jujube number per kilogram. In addition, the quality attributes, antioxidant activities, mineral elements, and volatile aroma components of dried jujube were further analyzed. As the dried jujube grade increased, the total flavonoid content increased, which was positively correlated with the antioxidant activity. The results showed that small dried jujube had a higher total acidity and lower sugar-acid ratio than large and medium dried jujube, thus, large and medium dried jujube had a better flavor than small dried jujube. However, the antioxidant activity and mineral elements of medium and small dried jujube were superior to large dried jujube. From the edible value analysis of dried jujube, medium and small dried jujube were better than large dried jujube. Potassium is the highest among the measured mineral elements, with contents ranging from 10,223.80 mg/kg to 16,620.82 mg/kg, followed by Ca and Mg. Twenty-nine volatile aroma components of dried jujube were identified by GC-MS analysis. The main volatile aroma components were acids including n-decanoic acid, benzoic acid, and dodecanoic acid. The fruit size affected the quality attributes, antioxidant activity, mineral elements, and volatile aroma components of dried jujube. This study provided a piece of reference information for further high-quality production of dried jujube fruit.
Collapse
Affiliation(s)
- Zhengbao Wu
- Economic Forest Research Institute, Xinjiang Academy of Forestry Sciences, Urumqi 830000, China
| | - Shuang Zhang
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lingling Liu
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Luyin Wang
- Aksu Youneng Agricultural Technology Co., Ltd., Aksu 843001, China
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Correspondence:
| |
Collapse
|
12
|
Partial compression increases acidity, but decreases phenolics in jujube fruit: Evidence from targeted metabolomics. Food Res Int 2023; 164:112388. [PMID: 36737973 DOI: 10.1016/j.foodres.2022.112388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Jujube fruit (Ziziphus jujuba Mill.) is extremely susceptible to mechanical injury by extrusion and collision during storage, transportation and processing. In this study, we examined the morphology and endogenous metabolism of jujubes at three developmental stages after applying partial compression (PC) to mimic mechanical injury. Generally, PC did not affect the total soluble solids content, but increased the acidity and decreased the amount of phenolics in the jujube fruit. Targeted metabolomics analysis further confirmed that acid and phenolics content were differentially altered in response to PC. To our knowledge, this is the first study to characterize metabolic variations in ready-to-eat fruit that occur in response to physical damage. The results will provide insight into the understanding the consequences of mechanical injury on fruit nutrition and health benefits.
Collapse
|
13
|
Liu L, Zheng S, Yang D, Zheng J. Genome-wide in silico identification of glutathione S-transferase (GST) gene family members in fig ( Ficus carica L.) and expression characteristics during fruit color development. PeerJ 2023; 11:e14406. [PMID: 36718451 PMCID: PMC9884035 DOI: 10.7717/peerj.14406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Glutathione S-transferase (GSTs), a large and diverse group of multi-functional enzymes (EC 2.5.1.18), are associated with cellular detoxification, various biotic and abiotic stress responses, as well as secondary metabolites transportation. Here, 53 members of the FcGST gene family were screened from the genome database of fig (Ficus carica), which were further classified into five subfamilies, and the tau and phi were the major subfamilies. These genes were unevenly distributed over all the 13 chromosomes, and 12 tandem and one segmental duplication may contribute to this family expansion. Syntenic analysis revealed that FcGST shared closer genetic evolutionary origin relationship with species from the Ficus genus of the Moraceae family, such as F. microcarpa and F. hispida. The FcGST members of the same subfamily shared similar gene structure and motif distribution. The α helices were the chief structure element in predicted secondary and tertiary structure of FcGSTs proteins. GO and KEGG indicated that FcGSTs play multiple roles in glutathione metabolism and stress reactions as well as flavonoid metabolism. Predictive promoter analysis indicated that FcGSTs gene may be responsive to light, hormone, stress stimulation, development signaling, and regulated by MYB or WRKY. RNA-seq analysis showed that several FcGSTs that mainly expressed in the female flower tissue and peel during 'Purple-Peel' fig fruit development. Compared with 'Green Peel', FcGSTF1, and FcGSTU5/6/7 exhibited high expression abundance in the mature fruit purple peel. Additionally, results of phylogenetic sequences analysis, multiple sequences alignment, and anthocyanin content together showed that the expression changes of FcGSTF1, and FcGSTU5/6/7 may play crucial roles in fruit peel color alteration during fruit ripening. Our study provides a comprehensive overview of the GST gene family in fig, thus facilitating the further clarification of the molecular function and breeding utilization.
Collapse
Affiliation(s)
- Longbo Liu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Shuxuan Zheng
- Xiayi Branch of Henan Agricultural Radio and Television School, Shangqiu, Henan, China
| | - Dekun Yang
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Jie Zheng
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
14
|
Primary Investigation of Phenotypic Plasticity in Fritillaria cirrhosa Based on Metabolome and Transcriptome Analyses. Cells 2022; 11:cells11233844. [PMID: 36497104 PMCID: PMC9736200 DOI: 10.3390/cells11233844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/06/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Phenotypic plasticity refers to the adaptability of an organism to a heterogeneous environment. In this study, the differential gene expression and compositional changes in Fritillaria cirrhosa during phenotypic plasticity were evaluated using transcriptomic and metabolomic analyses. The annotation profiles of 1696 differentially expressed genes from the transcriptome between abnormal and normal phenotypes revealed that the main annotation pathways were related to the biosynthesis of amino acids, ABC transporters, and plant-pathogen interactions. According to the metabolome, the abnormal phenotype had 36 upregulated amino acids, including tryptophan, proline, and valine, which had a 3.77-fold higher relative content than the normal phenotype. However, saccharides and vitamins were found to be deficient in the abnormal phenotypes. The combination profiles demonstrated that phenotypic plasticity may be an effective strategy for overcoming potential stress via the accumulation of amino acids and regulation of the corresponding genes and transcription factors. In conclusion, a pathogen attack on F. cirrhosa may promote the synthesis of numerous amino acids and transport them into the bulbs through ABC transporters, which may further result in phenotypic variation. Our results provide new insights into the potential mechanism of phenotypic changes.
Collapse
|
15
|
Xia X, Gong R, Zhang C. Integrative analysis of transcriptome and metabolome reveals flavonoid biosynthesis regulation in Rhododendron pulchrum petals. BMC PLANT BIOLOGY 2022; 22:401. [PMID: 35974307 PMCID: PMC9380304 DOI: 10.1186/s12870-022-03762-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/15/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Color is the major ornamental feature of the Rhododendron genus, and it is related to the contents of flavonoid in petals. However, the regulatory mechanism of flavonoid biosynthesis in Rhododendron pulchrum remains unknown. The transcriptome and metabolome analysis of Rhododendron pulchrum with white, pink and purple color in this study aimed to reveal the mechanism of flavonoid biosynthesis and to provide insight for improving the petal color. RESULTS Flavonoids and flavonols are the major components of flavonoid metabolites in R.pulchrum, such as laricitrin, apigenin, tricin, luteolin, isoorientin, isoscutellarein, diosmetin and their glycosides derivatives. With transcriptome and metabolome analysis, we found CHS, FLS, F3'H, F3'5'H, DFR, ANS, GT, FNS, IFR and FAOMT genes showed significantly differential expression in cultivar 'Zihe'. FNS and IFR were discovered to be associated with coloration in R.pulchrum for the first time. The FNS gene existed in the form of FNSI. The IFR gene and its related metabolites of medicarpin derivatives were highly expressed in purple petal. In cultivar 'Fenhe', up-regulation of F3'H and F3'5'H and down-regulation of 4CL, DFR, ANS, and GT were associated with pink coloration. With the transcription factor analysis, a subfamily of DREBs was found to be specifically enriched in pink petals. This suggested that the DREB family play an important role in pink coloration. In cultivars 'Baihe', flavonoid biosynthesis was inhibited by low expression of CHS, while pigment accumulation was inhibited by low expression of F3'5'H, DFR, and GT, which led to a white coloration. CONCLUSIONS By analyzing the transcriptome and metabolome of R.pulchrum, principal differential expression genes and metabolites of flavonoid biosynthesis pathway were identified. Many novel metabolites, genes, and transcription factors associated with coloration have been discovered. To reveal the mechanism of the coloration of different petals, a model of the flavonoid biosynthesis pathway of R.pulchrum was constructed. These results provide in depth information regarding the coloration of the petals and the flavonoid metabolism of R.pulcherum. The study of transcriptome and metabolome profiling gains insight for further genetic improvement in Rhododendron.
Collapse
Affiliation(s)
- Xi Xia
- Shanghai Urban Plant Resources Development and Application Engineering Research Center, Shanghai Botanical Garden, Shanghai, China
| | - Rui Gong
- Shanghai Urban Plant Resources Development and Application Engineering Research Center, Shanghai Botanical Garden, Shanghai, China
| | - Chunying Zhang
- Shanghai Urban Plant Resources Development and Application Engineering Research Center, Shanghai Botanical Garden, Shanghai, China.
| |
Collapse
|
16
|
Wu M, Yin C, Jiang X, Sun Q, Xu X, Ma Y, Liu X, Niu N, Chen L. Biocompatible Abscisic Acid-Sensing Supramolecular Hybridization Probe for Spatiotemporal Fluorescence Imaging in Plant Tissues. Anal Chem 2022; 94:8999-9008. [PMID: 35707963 DOI: 10.1021/acs.analchem.2c01050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Achieving detection of the phytohormone abscisic acid (ABA) is of critical importance for understanding plant growth and development. We report a hybrid supramolecular fluorescent probe that uses bovine serum albumin (BSA) as a host. Aggregation-induced emission of fluorescent chromophores (AIEgens) enables luminescence in the presence of BSA. ABA and its aptamer act as a switch to trigger this fluorescent system, the strategy that exhibits high sensitivity to abscisic acid with a detection limit of 0.098 nM. The probe test strip also enables visualization of ABA content from plants by colorimetric observation with the naked eye. In particular, the high biocompatibility and small molecular size of the prepared fluorescent probe allow for effective monitoring of ABA in plant tissues by fluorescence imaging. This strategy provides a new perspective to achieve the detection of endogenous and exogenous ABA in plants and has important implications for plant biology research.
Collapse
Affiliation(s)
- Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenhui Yin
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xinxin Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoyu Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yanmei Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xinjian Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
17
|
Han G, Li Y, Qiao Z, Wang C, Zhao Y, Guo J, Chen M, Wang B. Advances in the Regulation of Epidermal Cell Development by C2H2 Zinc Finger Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:754512. [PMID: 34630497 PMCID: PMC8497795 DOI: 10.3389/fpls.2021.754512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 05/31/2023]
Abstract
Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.
Collapse
|