1
|
Hu Y, Jiang Y, Duan L, Yang S, Tuniyazi S, Zou J, Ma R, Muhemaitibieke G, Amuti X, Guo Y. IGF-1 levels in the general population, heart failure patients, and individuals with acromegaly: differences and projections from meta-analyses-a dual perspective. Front Cardiovasc Med 2024; 11:1379257. [PMID: 39544311 PMCID: PMC11560899 DOI: 10.3389/fcvm.2024.1379257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Background The complex relationship between insulin-like growth factor 1 (IGF-1) levels and heart failure (HF) is not fully understood, particularly across different populations and conditions. This meta-analysis aims to elucidate the dual perspectives of IGF-1 levels in the general population, HF patients, and individuals with treatment-naïve acromegaly, highlighting IGF-1 as a biomarker and potential therapeutic target in HF management. Methods Studies were searched across multiple electronic databases up to January 2024 and independently identified by reviewers. The outcomes were analyzed using RevMan 5.4 and STATA 15. Results A total of 25 articles were ultimately included in the analysis. Six studies compared IGF-1 levels between HF patients and non-HF controls, revealing significantly lower IGF-1 levels in HF patients (mean difference -20.93; 95% CI -37.88 to -3.97; p = 0.02). This reduction was consistent across various HF subtypes and severities. In addition, individuals with intermediate IGF-1 levels had a lower risk of developing HF [risk ratio (RR) 0.78; 95% CI 0.74-0.83; p < 0.01] and HF-related mortality (RR 0.98; 95% CI 0.97, 0.99; p < 0.01) compared to those with low IGF-1 levels, suggesting a protective role for maintaining adequate IGF-1 levels. Conversely, treatment-naïve acromegaly patients, characterized by excessively high IGF-1 levels, showed a significantly higher incidence of both diastolic HF [odds ratio (OR) 9.08; 95% CI 6.20-13.29; p < 0.01] and systolic HF (OR 13.1; 95% CI 6.64-25.84; p < 0.01), implicating supraphysiological IGF-1 levels in adverse cardiac outcomes. Conclusions Our meta-analysis highlights the complex interplay between IGF-1 levels and HF. We found that reduced IGF-1 levels are commonly observed in HF patients and are associated with an increased risk of HF and higher HF-related mortality. Conversely, excessively high levels, as observed in acromegaly, are linked to a higher incidence of HF. Based on these results, it is recommended that cardiac function be closely monitored in patients with reduced IGF-1 levels and in those with acromegaly. These findings suggest that IGF-1 could hold potential prognostic value for risk stratification in HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yanying Guo
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| |
Collapse
|
2
|
Liu T, Li F, Fei Y, Sun F, Chen M, Tian X, Zheng W, Zhu Z, Wang W. Serum insulin-like growth factor-1 as a potential prognostic biomarker for heart failure with reduced ejection fraction: a meta-analysis. Front Cardiovasc Med 2024; 11:1415238. [PMID: 39355348 PMCID: PMC11442213 DOI: 10.3389/fcvm.2024.1415238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
Background Most studies have indicated that peripheral insulin-like growth levels factor-1 (IGF-1) is valuable in diagnosing heart failure, although the results have been inconsistent. To help solve the debate, we performed a meta-analysis to explore the relationship between IGF-1 and heart failure (HF). Methods We conducted an extensive search across various databases such as Embase, Cochrane Library, Pubmed, Medline, and Web of Science on May 30, 2023. From the extensive pool of studies, we selected 16 relevant articles, encompassing a total of 1,380 cases and 1,153 controls, to conduct a rigorous meta-analysis. Results The total results indicated that there is an association between lower IGF-1 level and HF. The random-effects model yielded a pooled standardized mean difference (SMD) of -0.598 (95% CI: -1.081 to -0.116, P = 0.015). Further subgroup analysis also showed that IGF-1 levels were associated with HF in the age difference ≥5 years subgroup and body mass index difference >1 subgroup. Additionally, significant association between IGF-1 levels and HF were detected in the "serum" samples and "Europe" subgroups. Importantly, we observed IGF-1 showed significant lower levels in patients with reduced ejection fraction (HFrEF) compared to the controls, not in patients with preserved ejection fraction (HFpEF). The Begg's and Egger's tests revealed no indication of publication bias. Conclusions Our meta-analysis has provided evidence suggesting a substantial correlation between reduced levels of IGF-1 and the occurrence of HF. Further prospective studies are necessary to ascertain the use of IGF-1 as a reliable biomarker for diagnosing HF, especially for HFrEF. But the diagnosis of HFpEF should be cautious.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yihuan Fei
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Mengqi Chen
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Tian
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenrong Zheng
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zixin Zhu
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
3
|
Szyszkowska A, Olesiewicz T, Płońska-Korabiewska I, Tarasiuk E, Olesiewicz B, Knapp M, Śledziewski R, Sobkowicz B, Lisowska A. The Importance of Lung Ultrasound and IGFBP7 (Insulin-like Growth Factor Binding Protein 7) Assessment in Diagnosing Patients with Heart Failure. J Clin Med 2024; 13:2220. [PMID: 38673493 PMCID: PMC11051327 DOI: 10.3390/jcm13082220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background: In daily practice, there are problems with adequately diagnosing the cause of dyspnea in patients with heart failure with preserved and mildly reduced ejection fractions (HFpEF and HFmrEF). This study aimed to assess the usefulness of lung ultrasound in diagnosing HFpEF and HFmrEF and determine its correlation with IGFBP7 (insulin-like growth factor binding protein 7), NTproBNP (N-terminal pro-B-type natriuretic peptide), and echocardiographic markers. Methods: The research was conducted on 143 patients hospitalized between 2018 and 2020, admitted due to dyspnea, and diagnosed with HFpEF and HFmrEF. Venous blood was collected from all participants to obtain basic biochemical parameters, NTproBNP, and IGFBP7. Moreover, all participants underwent echocardiography and transthoracic lung ultrasound. Two years after hospitalization a follow-up telephone visit was performed. Results: The number of B-lines in the LUS ≥ 16 was determined with a sensitivity of-73% and specificity of-62%, indicating exacerbation of heart failure symptoms on admission. The number of B-lines ≥ 14 on admission was determined as a cut-off point, indicating an increased risk of death during the 2-year follow-up period. The factors that significantly impacted mortality in the study patient population were age and the difference between the number of B-lines on ultrasound at admission and at hospital discharge. IGFBP7 levels had no significant effect on the duration of hospitalization, risk of rehospitalization, or mortality during follow-up. Conclusions: Lung ultrasonography provides additional diagnostic value in patients with HFpEF or HFmrEF and exacerbation of heart failure symptoms. The number of B-lines ≥ 14 may indicate an increased risk of death.
Collapse
Affiliation(s)
- Anna Szyszkowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Tomasz Olesiewicz
- Department of Cardiology, Hospital in Ostrów Mazowiecka, 07-300 Ostrów Mazowiecka, Poland; (T.O.); (B.O.)
| | - Izabela Płońska-Korabiewska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Barbara Olesiewicz
- Department of Cardiology, Hospital in Ostrów Mazowiecka, 07-300 Ostrów Mazowiecka, Poland; (T.O.); (B.O.)
| | - Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Rafał Śledziewski
- Department of Radiology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Bożena Sobkowicz
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Anna Lisowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| |
Collapse
|
4
|
Dong G. Development and Challenges of Pre-Heart Failure with Preserved Ejection Fraction. Rev Cardiovasc Med 2023; 24:274. [PMID: 39076392 PMCID: PMC11270127 DOI: 10.31083/j.rcm2409274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2024] Open
Abstract
Pre-heart failure with preserved ejection fraction (Pre-HFpEF) is a critical link to the development of heart failure with preserved ejection fraction (HFpEF). Early recognition and early intervention of pre-HFpEF will halt the progression of HFpEF. This article addresses the concept proposal, development, and evolution of pre-HFpEF, the mechanisms and risks of pre-HFpEF, the screening methods to recognize pre-HFpEF, and the treatment of pre-HFpEF. Despite the challenges, we believe more focus on the topic will resolve more problems.
Collapse
Affiliation(s)
- Guoju Dong
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese
Academy of Traditional Chinese Medicine, 100091 Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan
Hospital, Chinese Academy of Traditional Chinese Medicine, 100091 Beijing, China
| |
Collapse
|
5
|
Tan ESJ, Chan SP, Choi YC, Pemberton CJ, Troughton R, Poppe K, Lund M, Devlin G, Doughty RN, Richards AM. Regional Handling and Prognostic Performance of Circulating Insulin-Like Growth Factor Binding Protein-7 in Heart Failure. JACC. HEART FAILURE 2023; 11:662-674. [PMID: 37286261 DOI: 10.1016/j.jchf.2023.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Regional handling and the prognostic performance of insulin-like growth factor binding protein (IGFBP)-7, in contrast or in combination with other candidate biomarkers, in chronic heart failure (CHF) remain uncertain. OBJECTIVES The authors investigated the regional handling of plasma IGFBP-7 and its association with long-term outcomes in CHF in comparison with selected circulating biomarkers. METHODS Plasma concentrations of IGFBP-7, N-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity troponin-T, growth differentiation factor-15, and high-sensitivity C-reactive protein were measured prospectively in a cohort with CHF (n = 863). The primary outcome was the composite of heart failure (HF) hospitalization or all-cause mortality. In a separate non-HF cohort (n = 66) undergoing cardiac catheterization, transorgan gradients of plasma IGFBP-7 concentrations were evaluated. RESULTS Among 863 patients (age 69 ± 14 years, 30% female, 36% HF with preserved ejection fraction), IGFBP-7 (median: 121 [IQR: 99-156] ng/mL) related inversely to left ventricular volumes but directly to diastolic function. Above the optimal cutoff, IGFBP-7 ≥110 ng/mL was independently associated with 32% increased hazard of the primary outcome: 1.32 (95% CI: 1.06-1.64). Among the 5 markers, IGFBP-7 had the highest hazard for a proportional increment in plasma concentrations independent of HF phenotype in single- and double-biomarker models, and provided incremental prognostic value beyond clinical predictors plus NT-proBNP, high-sensitivity troponin-T, and high-sensitivity C-reactive protein (P < 0.05). Assessment of regional concentrations indicated renal secretion of IGFBP-7 in contrast to renal extraction of NT-proBNP, possible cardiac extraction of IGFBP-7 in contrast to secretion of NT-proBNP, and common hepatic extraction of both peptides. CONCLUSIONS Transorgan regulation of IGFBP-7 is distinct from NT-proBNP. Circulating IGFBP-7 independently predicts adverse outcomes in CHF with a strong prognostic performance when compared with other well-recognized cardiac-specific or noncardiac prognostic markers.
Collapse
Affiliation(s)
- Eugene S J Tan
- Department of Cardiology, National University Heart Centre, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Siew-Pang Chan
- Department of Cardiology, National University Heart Centre, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Yeunhyang C Choi
- Section of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Chris J Pemberton
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Richard Troughton
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Katrina Poppe
- Heart Health Research Group, University of Auckland, Auckland, New Zealand; Greenlane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - Mayanna Lund
- Department of Cardiology, Middlemore Hospital, Auckland, New Zealand
| | - Gerry Devlin
- Department of Cardiology, Gisborne Hospital, Gisborne, New Zealand
| | - Robert N Doughty
- Heart Health Research Group, University of Auckland, Auckland, New Zealand; Greenlane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - A Mark Richards
- Department of Cardiology, National University Heart Centre, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore; Section of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Auckland, New Zealand; Cardiovascular Research Institute, National University Health System, Singapore.
| |
Collapse
|
6
|
Puar P, Mistry N, Connelly KA, Yan AT, Quan A, Teoh H, Pan Y, Verma R, Hess DA, Verma S, Mazer CD. IGFBP7 and left ventricular mass regression: a sub-analysis of the EMPA-HEART CardioLink-6 randomized clinical trial. ESC Heart Fail 2023; 10:2113-2119. [PMID: 37038626 DOI: 10.1002/ehf2.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/31/2022] [Accepted: 02/12/2023] [Indexed: 04/12/2023] Open
Abstract
AIMS Given recent suggestions that serum levels of insulin-like growth factor-binding protein 7 (IGFBP7) may identify patients who derive greater cardiorenal benefits from treatment with sodium-glucose transport 2 inhibitors (SGLT2i), this exploratory sub-analysis of the EMPA-HEART CardioLink-6 randomized controlled trial evaluated the association between serum levels of IGFBP7 and empagliflozin-mediated left ventricular mass regression. METHODS AND RESULTS The EMPA-HEART CardioLink-6 trial used gold-standard cardiac magnetic resonance imaging to detect change in left ventricular mass indexed to body surface area (LVMi) following 6 months of treatment with empagliflozin or matching placebo in 97 patients with type 2 diabetes and coronary artery disease. Serum samples were collected at baseline and analysed for IGFBP7 using an enzyme-linked immunosorbent assay. A multivariate linear regression model was used to assess the association between IGFBP7 and baseline LVMi. A linear model adjusting for baseline differences in LVMi was used to test the relationship between baseline IGFBP7 level, change in LVMi over 6 months, and treatment arm. Of the 97 patients enrolled, 74 had complete covariate data and were included in our analysis. No association between baseline IGFBP7 and baseline LVMi was found [baseline LVMi: 0.14 g/m2 (95% CI: -0.29 g/m2 to 0.57 g/m2 ) per 1 ng/mL higher baseline IGFBP7]. In addition, no difference between patients treated with empagliflozin versus matching placebo was found when evaluating the association between serum IGFBP7, 6 month change in LVMi, and treatment arm [empagliflozin 6 month change in LVMi: 0.25 g/m2 (95% CI: -0.17 g/m2 to 0.67 g/m2 ) per 1 ng/mL higher IGFBP7 vs. matching placebo 6 month change in LVMi: 0.07 g/m2 (95% CI: -0.21 g/m2 to 0.35 g/m2 ) per 1 ng/mL higher IGFBP7; Pinteraction = 0.49]. Additional sensitivity analysis assessing IGFBP7 as a categorical variable (above/below the median) showed no significant association between IGFBP7, 6 month change in LVMi, and treatment arm. CONCLUSIONS Our study provides insight into the generalizability of IGFBP7 as a surrogate marker of cardiac remodelling in patients with type 2 diabetes and coronary artery disease. Our results suggest that SGLT2i-mediated reverse cardiac remodelling may be independent of IGFBP7 levels. Further investigations evaluating the association between IGFBP7 and SGLT2i are suggested to understand if and how IGFBP7 levels may modulate benefits received from SLGT2i.
Collapse
Affiliation(s)
- Pankaj Puar
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nikhil Mistry
- Department of Anesthesia, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Yan
- Division of Cardiology, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yi Pan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Raj Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David A Hess
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Anesthesia, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Pham TK, Nguyen THT, Yi JM, Kim GS, Yun HR, Kim HK, Won JC. Evogliptin, a DPP-4 inhibitor, prevents diabetic cardiomyopathy by alleviating cardiac lipotoxicity in db/db mice. Exp Mol Med 2023; 55:767-778. [PMID: 37009790 PMCID: PMC10167305 DOI: 10.1038/s12276-023-00958-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are glucose-lowering drugs for type 2 diabetes mellitus (T2DM). We investigated whether evogliptin® (EVO), a DPP-4 inhibitor, could protect against diabetic cardiomyopathy (DCM) and the underlying mechanisms. Eight-week-old diabetic and obese db/db mice were administered EVO (100 mg/kg/day) daily by oral gavage for 12 weeks. db/db control mice and C57BLKS/J as wild-type (WT) mice received equal amounts of the vehicle. In addition to the hypoglycemic effect, we examined the improvement in cardiac contraction/relaxation ability, cardiac fibrosis, and myocardial hypertrophy by EVO treatment. To identify the mechanisms underlying the improvement in diabetic cardiomyopathy by EVO treatment, its effect on lipotoxicity and the mitochondrial damage caused by lipid droplet accumulation in the myocardium were analyzed. EVO lowered the blood glucose and HbA1c levels and improved insulin sensitivity but did not affect the body weight or blood lipid profile. Cardiac systolic/diastolic function, hypertrophy, and fibrosis were improved in the EVO-treated group. EVO prevented cardiac lipotoxicity by reducing the accumulation of lipid droplets in the myocardium through suppression of CD36, ACSL1, FABP3, PPARgamma, and DGAT1 and enhancement of the phosphorylation of FOXO1, indicating its inhibition. The EVO-mediated improvement in mitochondrial function and reduction in damage were achieved through activation of PGC1a/NRF1/TFAM, which activates mitochondrial biogenesis. RNA-seq results for the whole heart confirmed that EVO treatment mainly affected the differentially expressed genes (DEGs) related to lipid metabolism. Collectively, these findings demonstrate that EVO improves cardiac function by reducing lipotoxicity and mitochondrial injury and provides a potential therapeutic option for DCM.
Collapse
Affiliation(s)
- Trong Kha Pham
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea
- Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
- University of Science, Vietnam National University, Hanoi, Vietnam
| | - To Hoai T Nguyen
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea
- Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, South Korea
| | - Gwang Sil Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University, Seoul, South Korea
| | - Hyeong Rok Yun
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea.
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Seoul, South Korea
| |
Collapse
|
8
|
Wang W, Yu K, Zhao SY, Mo DG, Liu JH, Han LJ, Li T, Yao HC. The impact of circulating IGF-1 and IGFBP-2 on cardiovascular prognosis in patients with acute coronary syndrome. Front Cardiovasc Med 2023; 10:1126093. [PMID: 36970368 PMCID: PMC10036580 DOI: 10.3389/fcvm.2023.1126093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundWhile insulin-like growth factor 1 (IGF-1) exerts a cardioprotective effect in the setting of atherosclerosis, insulin-like growth factor binding protein 2 (IGFBP-2) is involved in metabolic syndrome. Although IGF-1 and IGFBP-2 are known to be predictors for mortality in patients with heart failure, their use in clinic as prognostic biomarkers for acute coronary syndrome (ACS) requires investigation. We evaluated the relationship between IGF-1 and IGFBP-2 levels at admission and the risk of major adverse cardiovascular events (MACEs) in patients with ACS.MethodsA total of 277 ACS patients and 42 healthy controls were included in this prospective cohort study. Plasma samples were obtained and analyzed at admission. Patients were followed for MACEs after hospitalization.ResultsAmong patients who suffered acute myocardial infarction, plasma levels of IGF-1 and IGFBP-2 were lower and higher, respectively, as compared to healthy controls (both p < 0.05). The mean follow-up period was 5.22 (1.0–6.0) months and MACEs incidence was 22.4% (62 of 277 patients). Kaplan–Meier survival analysis revealed that patients with low IGFBP-2 levels had a greater event-free survival rate than patients with high IGFBP-2 levels (p < 0.001). Multivariate Cox proportional hazards analysis revealed IGFBP-2, but not IGF-1, to be a positive predictor of MACEs (hazard ratio 2.412, 95% CI 1.360–4.277; p = 0.003).ConclusionOur findings suggest that high IGFBP-2 levels are associated with the development of MACEs following ACS. Moreover, IGFBP-2 is likely an independent predictive marker of clinical outcomes in ACS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People's Hospital, Shandong University, Jinan, China
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Kang Yu
- Department of Laboratory Medicine, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Shou-Yong Zhao
- Department of Laboratory Medicine, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - De-Gang Mo
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jia-Hui Liu
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Li-Jinn Han
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Tai Li
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng, China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital, Shandong University, Jinan, China
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
- Correspondence: Heng-Chen Yao
| |
Collapse
|
9
|
IGFBP-7 and Outcomes in Heart Failure With Reduced Ejection Fraction: Findings From DAPA-HF. JACC. HEART FAILURE 2023; 11:291-304. [PMID: 36592046 DOI: 10.1016/j.jchf.2022.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Insulin-like growth factor-binding protein-7 (IGFBP-7) has been proposed as a potential prognostic biomarker in heart failure (HF), but the association between elevation in IGFBP-7 and HF outcomes in ambulant patients with heart failure with reduced ejection fraction (HFrEF) is unknown. OBJECTIVES The authors addressed this question in a post hoc analysis of the DAPA-HF (Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure) trial. METHODS The primary outcome was a composite of cardiovascular death or a worsening HF event. The risk of adverse outcome was compared across tertiles of IGFBP-7 concentration by means of Cox proportional hazard models adjusted for N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity troponin T (hsTnT). The efficacy of randomized treatment across IGFBP-7 tertiles was assessed. Change in IGFBP-7 at 12 months was compared with the use of geometric means. RESULTS A total of 3,158 patients had IGFBP-7 measured at baseline, and 2,493 had a repeated measure at 12 months. Patients in the highest tertile of IGFBP-7 had evidence of more advanced HFrEF. The adjusted HR for the primary endpoint in tertile 3, compared with tertile 1, was 1.48 (95% CI: 1.17-1.88). There was no modification of the benefit of dapagliflozin by baseline IGFBP-7 (P interaction = 0.34). Dapagliflozin did not change IGFBP-7 levels over 1 year (P = 0.34). CONCLUSIONS Higher IGFBP-7 in patients with HFrEF was associated with worse clinical profile and an increased risk of adverse clinical outcomes. IGFBP-7 provided prognostic information incremental to clinical variables, NT-proBNP, and hsTnT. The benefit of dapagliflozin was not modulated by IGFBP-7 level. (Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure or Cardiovascular Death in Patients With Chronic Heart Failure [DAPA-HF]; NCT03036124).
Collapse
|
10
|
Sabzikarian M, Mahmoudi T, Tabaeian SP, Rezamand G, Asadi A, Farahani H, Nobakht H, Dabiri R, Mansour-Ghanaei F, Derakhshan F, Zali MR. The common variant of rs6214 in insulin like growth factor 1 ( IGF1) gene: a potential protective factor for non-alcoholic fatty liver disease. Arch Physiol Biochem 2023; 129:10-15. [PMID: 32654522 DOI: 10.1080/13813455.2020.1791187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Regarding the central role of insulin resistance in NAFLD, we explored whether insulin-like growth factor 1 (IGF1) and insulin-like growth factor-binding protein 3 (IGFBP3) gene variants were associated with NAFLD susceptibility. METHODS IGF1 (rs6214) and IGFBP3 (rs3110697) gene variants were genotyped in 154 cases with biopsy-proven NAFLD and 156 controls using PCR-RFLP method. RESULTS The IGF1 rs6214 "AA + AG" genotype compared with the "GG" genotype appeared to be a marker of decreased NAFLD susceptibility (p = .006; OR = 0.47, 95%CI = 0.28-0.80). Furthermore, the IGF1 rs6214 "A" allele was underrepresented in the cases than controls (p = .024; OR = 0.61, 95%CI = 0.40-0.94). However, we observed no significant difference in genotype or allele frequencies between the cases and controls for IGFBP3 gene. CONCLUSIONS To our knowledge, these findings suggest, for the first time, that the IGF1 rs6214 "A" allele and "AA + AG" genotype have protective effects for NAFLD susceptibility. Nonetheless, further studies are needed to validate our findings.
Collapse
Affiliation(s)
| | - Touraj Mahmoudi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gholamreza Rezamand
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hamid Farahani
- Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hossein Nobakht
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Reza Dabiri
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Fariborz Mansour-Ghanaei
- Division of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center (GLDRC), Guilan University of Medical Sciences, Rasht, Iran
| | - Faramarz Derakhshan
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhang L, Smyth D, Al-Khalaf M, Blet A, Du Q, Bernick J, Gong M, Chi X, Oh Y, Roba-Oshin M, Coletta E, Feletou M, Gramolini AO, Kim KH, Coutinho T, Januzzi JL, Tyl B, Ziegler A, Liu PP. Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1195-1214. [PMID: 39196168 PMCID: PMC11358005 DOI: 10.1038/s44161-022-00181-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2022] [Indexed: 08/29/2024]
Abstract
Heart failure (HF) is a rising global cardiovascular epidemic driven by aging and chronic inflammation. As elderly populations continue to increase, precision treatments for age-related cardiac decline are urgently needed. Here we report that cardiac and blood expression of IGFBP7 is robustly increased in patients with chronic HF and in an HF mouse model. In a pressure overload mouse HF model, Igfbp7 deficiency attenuated cardiac dysfunction by reducing cardiac inflammatory injury, tissue fibrosis and cellular senescence. IGFBP7 promoted cardiac senescence by stimulating IGF-1R/IRS/AKT-dependent suppression of FOXO3a, preventing DNA repair and reactive oxygen species (ROS) detoxification, thereby accelerating the progression of HF. In vivo, AAV9-shRNA-mediated cardiac myocyte Igfbp7 knockdown indicated that myocardial IGFBP7 directly regulates pathological cardiac remodeling. Moreover, antibody-mediated IGFBP7 neutralization in vivo reversed IGFBP7-induced suppression of FOXO3a, restored DNA repair and ROS detoxification signals and attenuated pressure-overload-induced HF in mice. Consequently, selectively targeting IGFBP7-regulated senescence pathways may have broad therapeutic potential for HF.
Collapse
Affiliation(s)
- Liyong Zhang
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Smyth
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Alice Blet
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Qiujiang Du
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jordan Bernick
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Michael Gong
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Xu Chi
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Michel Feletou
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Anthony O Gramolini
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Thais Coutinho
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, MA, USA
| | - Benoit Tyl
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Andre Ziegler
- Roche Diagnostics International, Ltd., Rotkreuz, Switzerland
| | - Peter P Liu
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Moita MR, Silva MM, Diniz C, Serra M, Hoet RM, Barbas A, Simão D. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis. Front Cardiovasc Med 2022; 9:1015473. [PMID: 36531712 PMCID: PMC9751336 DOI: 10.3389/fcvm.2022.1015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Activated cardiac fibroblasts (CF) play a central role in cardiac fibrosis, a condition associated with most cardiovascular diseases. Conversion of quiescent into activated CF sustains heart integrity upon injury. However, permanence of CF in active state inflicts deleterious heart function effects. Mechanisms underlying this cell state conversion are still not fully disclosed, contributing to a limited target space and lack of effective anti-fibrotic therapies. MATERIALS AND METHODS To prioritize targets for drug development, we studied CF remodeling upon activation at transcriptomic and proteomic levels, using three different cell sources: primary adult CF (aHCF), primary fetal CF (fHCF), and induced pluripotent stem cells derived CF (hiPSC-CF). RESULTS All cell sources showed a convergent response upon activation, with clear morphological and molecular remodeling associated with cell-cell and cell-matrix interactions. Quantitative proteomic analysis identified known cardiac fibrosis markers, such as FN1, CCN2, and Serpine1, but also revealed targets not previously associated with this condition, including MRC2, IGFBP7, and NT5DC2. CONCLUSION Exploring such targets to modulate CF phenotype represents a valuable opportunity for development of anti-fibrotic therapies. Also, we demonstrate that hiPSC-CF is a suitable cell source for preclinical research, displaying significantly lower basal activation level relative to primary cells, while being able to elicit a convergent response upon stimuli.
Collapse
Affiliation(s)
- Maria Raquel Moita
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta M. Silva
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Cláudia Diniz
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - René M. Hoet
- Department of Pathology, CARIM - School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | - Daniel Simão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
13
|
Hu Z, Mao L, Wang L. Levels of Serum IGF-1, HCY, and Plasma BNP in Patients with Chronic Congestive Heart Failure and Their Relationship with Cardiac Function and Short-Term Prognosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4118976. [PMID: 36051497 PMCID: PMC9427243 DOI: 10.1155/2022/4118976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022]
Abstract
Objective To investigate the levels of serum insulin like growth factor-1 (IGF-1), homocysteine (HCY), and plasma brain natriuretic peptide (BNP) in patients with chronic congestive heart failure (CCHF) and their relationship with cardiac function and short-term prognosis. Methods A total of 95 patients with CCHF admitted to our hospital from October 2017 to December 2018 were selected as the observation group. Patients conform to grade II∼IV of the New York Heart Association (NYHA) heart function class. At the same time, the people with normal physical examination results were selected as a control group. Serum IGF-1, HCY, and plasma BNP levels were detected in the two groups, and left ventricular end-diastolic diameter (LVDd) and left ventricular ejection fraction (LVEF) were detected in the observation group. According to the follow-up results, the observation group was divided into the subgroup with good prognosis and the subgroup with poor prognosis. The relationship between the levels of serum IGF-1, HCY, and plasma BNP among cardiac function and short-term prognosis were analyzed. Results The serum IGF-1 level of the observation group was lower than that of the control group, and the serum HCY and plasma BNP levels were higher than those of the control group (P < 0.05). Serum IGF-1 level in grade III of NYHA was lower than that in grade II, and serum HCY and plasma BNP levels were higher than those in grade II. Serum IGF-1 level in grade IV was lower than that in grade II and grade III, and serum HCY and plasma BNP levels were higher than those in grade II and grade III (P < 0.05). Serum IGF-1 level was negatively correlated with LVDd and positively correlated with LVEF. Serum HCY and plasma BNP levels were positively correlated with LVDd and negatively correlated with LVEF (P < 0.05). There were 42 patients with poor prognoses (44.21%). Serum IGF-1 levels of patients with poor prognosis were lower than those with good prognosis, and serum HCY and plasma BNP levels were higher than those with good prognosis (P < 0.05). Conclusion The serum IGF-1 level in patients with CCHF decreased, and serum HCY and plasma BNP levels increased. Serum IGF-1, HCY, and plasma BNP were correlated with cardiac function and have some clinical value for short-term prognosis.
Collapse
Affiliation(s)
- Zhengyi Hu
- Ethics Office, Henan Provincial Chest Hospital, Zhengzhou 450003, Henan, China
| | - Leifang Mao
- Department of Rehabilitation, Henan Provincial Chest Hospital, Zhengzhou 450003, Henan, China
| | - Ling Wang
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou 450003, Henan, China
| |
Collapse
|
14
|
Bayes-Genis A, Cediel G, Domingo M, Codina P, Santiago E, Lupón J. Biomarkers in Heart Failure with Preserved Ejection Fraction. Card Fail Rev 2022; 8:e20. [PMID: 35815256 PMCID: PMC9253965 DOI: 10.15420/cfr.2021.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous disorder developing from multiple aetiologies with overlapping pathophysiological mechanisms. HFpEF diagnosis may be challenging, as neither cardiac imaging nor physical examination are sensitive in this situation. Here, we review biomarkers of HFpEF, of which the best supported are related to myocardial stretch and injury, including natriuretic peptides and cardiac troponins. An overview of biomarkers of inflammation, extracellular matrix derangements and fibrosis, senescence, vascular dysfunction, anaemia/iron deficiency and obesity is also provided. Finally, novel biomarkers from -omics technologies, including plasma metabolites and circulating microRNAs, are outlined briefly. A cardiac-centred approach to HFpEF diagnosis using natriuretic peptides seems reasonable at present in clinical practice. A holistic approach including biomarkers that provide information on the non-cardiac components of the HFpEF syndrome may enrich our understanding of the disease and may be useful in classifying HFpEF phenotypes or endotypes that may guide patient selection in HFpEF trials.
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Germán Cediel
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Domingo
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Pau Codina
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Evelyn Santiago
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Lupón
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Yoo EJ, Hahn VS. Tackling the Heterogeneity of Heart Failure with Preserved Ejection Fraction Using Proteomic Profiling. J Card Fail 2022; 28:947-949. [PMID: 35470058 DOI: 10.1016/j.cardfail.2022.03.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Edwin J Yoo
- Johns Hopkins University School of Medicine, Division of Cardiology, Baltimore, MD
| | | |
Collapse
|
16
|
Szyszkowska A, Barańska S, Sawicki R, Tarasiuk E, Dubatówka M, Kondraciuk M, Sawicka-Śmiarowska E, Knapp M, Głowiński J, Kamiński K, Lisowska A. Insulin-Like Growth Factor-Binding Protein 7 (IGFBP-7)-New Diagnostic and Prognostic Marker in Symptomatic Peripheral Arterial Disease?-Pilot Study. Biomolecules 2022; 12:712. [PMID: 35625639 PMCID: PMC9138972 DOI: 10.3390/biom12050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of our study was to evaluate the importance of insulin-like growth-factor-binding protein 7 (IGFBP-7) as a potential marker of symptomatic peripheral artery disease (PAD) occurrence. The study group consisted of 145 patients with diagnosed PAD, who qualified for the invasive treatment. The control group consisted of 67 individuals representing the local population and an ischemic heart disease (IHD) group of 88 patients after myocardial infarction or percutaneous coronary intervention. Patients with PAD had significantly higher IGFBP-7 concentrations than control group (1.80 ± 1.62 vs. 1.41 ± 0.45 ng/mL, p = 0.04). No significant differences between PAD patients and IHD patients were found (1.80 ± 1.62 vs. 1.76 ± 1.04 ng/mL, p = 0.783). Patients with multilevel PAD presented significantly higher IGFBP-7 concentrations than patients with aortoiliac PAD-median 1.18 (IQR 0.48-2.23) vs. 1.42 ng/mL (0.71-2.63), p = 0.035. In the group of patients who died or had a major adverse cardiovascular event (MACE) during six months of follow-up, a statistically significant higher IGFBP-7 concentration was found (median 2.66 (IQR 1.80-4.93) vs. 1.36 ng/mL (IQR 0.65-2.34), p = 0.004). It seems that IGFBP-7 is elevated in patients with atherosclerotic lesions-regardless of their locations. Further research should be conducted to verify IGFBP-7 usefulness as a predictor of MACE or death.
Collapse
Affiliation(s)
- Anna Szyszkowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Sylwia Barańska
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, 15-276 Bialystok, Poland; (S.B.); (J.G.)
| | - Robert Sawicki
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Marlena Dubatówka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.K.)
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.K.)
| | - Emilia Sawicka-Śmiarowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Jerzy Głowiński
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, 15-276 Bialystok, Poland; (S.B.); (J.G.)
| | - Karol Kamiński
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.K.)
| | - Anna Lisowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| |
Collapse
|
17
|
Thanaj M, Mielke J, McGurk KA, Bai W, Savioli N, de Marvao A, Meyer HV, Zeng L, Sohler F, Lumbers RT, Wilkins MR, Ware JS, Bender C, Rueckert D, MacNamara A, Freitag DF, O’Regan DP. Genetic and environmental determinants of diastolic heart function. NATURE CARDIOVASCULAR RESEARCH 2022; 1:361-371. [PMID: 35479509 PMCID: PMC7612636 DOI: 10.1038/s44161-022-00048-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/08/2022] [Indexed: 01/14/2023]
Abstract
Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wide association study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomeric function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent predictors of diastolic function and we found a causal relationship between genetically-determined ventricular stiffness and incident heart failure. Our results provide insights into the genetic and environmental factors influencing diastolic function that are relevant for identifying causal relationships and potential tractable targets.
Collapse
Affiliation(s)
- Marjola Thanaj
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Johanna Mielke
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Kathryn A. McGurk
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Wenjia Bai
- Department of Computing, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London
| | - Nicolò Savioli
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Antonio de Marvao
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Hannah V. Meyer
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, USA
| | - Lingyao Zeng
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Florian Sohler
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | | | - Martin R. Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - James S. Ware
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Christian Bender
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
- Institute for Artificial Intelligence and Informatics, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Aidan MacNamara
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Daniel F. Freitag
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Declan P. O’Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
18
|
IGFBP7 Concentration May Reflect Subclinical Myocardial Damage and Kidney Function in Patients with Stable Ischemic Heart Disease. Biomolecules 2022; 12:biom12020274. [PMID: 35204773 PMCID: PMC8961623 DOI: 10.3390/biom12020274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to determine the associations between insulin-like growth-factor-binding protein 7(IGFBP7) concentrations and concentrations of troponin T(TnT), N-terminal pro-B-type natriuretic peptide(NT-proBNP) and the parameters of kidney function in patients with stable ischemic heart disease(IHD). The IHD group consisted of 88 patients, and the population group comprised 66 subjects without a history of IHD. IGFBP7, TnT and NTproBNP concentrations were measured. The IGFBP7 value was considerably higher in the IHD group (1.76 ± 1 ng/mL vs. 1.43 ± 0.44 ng/mL, respectively, p = 0.019). Additionally, IHD subjects had a significantly higher concentration of TnT and NTproBNP. In both groups there was a significant correlation between IGFBP7 and serum parameters of kidney function (creatinine concentration: population gr. r = 0.45, p < 0.001, IHD gr. r = 0.86, p < 0.0001; urea concentration: population gr. r = 0.51, p < 0.0001, IHD gr. r = 0.71, p < 0.00001). No correlation between IGFBP7 and microalbuminuria or the albumin to creatinine ratio in urine was found. Moreover, there was a significant correlation between IGFBP7 concentration and markers of heart injury/overload-TnT and NT-BNP(r = 0.76, p < 0.001 and r = 0.72, p < 0.001, respectively). Multivariate regression analysis in joint both revealed that the IGFBP7 concentration is independently associated with urea, creatinine and TnT concentrations (R2 for the model 0.76). IHD patients presented significantly higher IGFBP7 concentrations than the population group. Elevated IGFBP7 levels are associated predominantly with markers of kidney function and myocardial damage or overload.
Collapse
|
19
|
Guo S, Gong M, Tse G, Li G, Chen KY, Liu T. The Value of IGF-1 and IGFBP-1 in Patients With Heart Failure With Reduced, Mid-range, and Preserved Ejection Fraction. Front Cardiovasc Med 2022; 8:772105. [PMID: 35127852 PMCID: PMC8814096 DOI: 10.3389/fcvm.2021.772105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Previous studies have reported inconsistent results regarding the implications of deranged insulin-like growth factor 1 (IGF-1)/insulin-like growth factor-binding protein 1 (IGFBP-1) axis in patients with heart failure (HF). This study evaluates the roles of IGF1/IGFBP-1 axis in patients with HF with reduced ejection fraction (HFrEF), mid-range ejection fraction (HFmrEF), or preserved ejection fraction (HFpEF). METHODS Consecutive patients with HFrEF, HFmrEF, and HFpEF who underwent comprehensive cardiac assessment were included. The primary endpoint was the composite endpoint of all-cause death and HF rehospitalization at one year. RESULTS A total of 151 patients with HF (HFrEF: n = 51; HFmrEF: n = 30; HFpEF: n = 70) and 50 control subjects were included. The concentrations of IGFBP-1 (p < 0.001) and IGFBP-1/IGF-1 ratio (p < 0.001) were significantly lower in patients with HF compared to controls and can readily distinguish patients with and without HF (IGFBP-1: areas under the curve (AUC): 0.725, p < 0.001; IGFBP-1/IGF-1 ratio: AUC:0.755, p < 0.001; respectively). The concentrations of IGF-1, IGFBP-1, and IGFBP-1/IGF-1 ratio were similar among HFpEF, HFmrEF, and HFrEF patients. IGFBP-1 and IGFBP-1/IGF-1 ratio positively correlated with N-terminal probrain natriuretic peptide (NT-proBNP) levels (r = 0.255, p = 0.002; r = 0.224, p = 0.007, respectively). IGF-1, IGFBP-1, and IGFBP-1/IGF-1 ratio did not predict the primary endpoint at 1 year for the whole patients with HF and HF subtypes on both univariable and multivariable Cox regression. CONCLUSION The concentrations of plasma IGFBP-1 and IGFBP-1/IGF-1 ratio can distinguish patients with and without HF. In HF, IGFBP-1 and IGFBP-1/IGF-1 ratio positively correlated with NT-proBNP levels.
Collapse
Affiliation(s)
- Shaohua Guo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, Canterbury, United Kingdom
- Heart Failure and Structural Heart Disease Unit, Cardiovascular Analytics Group, Hong Kong, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kang-Yin Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Al-Sadawi M, Saad M, Ayyadurai P, Shah NN, Bhandari M, Vittorio TJ. Biomarkers in Acute Heart Failure Syndromes: An Update. Curr Cardiol Rev 2022; 18:e090921196330. [PMID: 34503430 PMCID: PMC9615213 DOI: 10.2174/1573403x17666210909170415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Abstract
Heart failure is one of the leading healthcare problems in the world. Clinical data lacks sensitivity and specificity in the diagnosis of heart failure. Laboratory biomarkers are a non-invasive method of assessing suspected decompensated heart failure. Biomarkers such as natriuretic peptides have shown promising results in the management of heart failure. The literature does not provide comprehensive guidance in the utilization of biomarkers in the setting of acute heart failure syndrome. Many conditions that manifest with similar pathophysiology as acute heart failure syndrome may demonstrate positive biomarkers. The following is a review of biomarkers in heart failure, enlightening their role in diagnosis, prognosis and management of heart failure.
Collapse
Affiliation(s)
- Mohammed Al-Sadawi
- Cardiovascular Medicine Department, SUNY Stony Brook Medicine, Stony Brook, NY, USA
| | - Muhammad Saad
- Division of Internal Medicine, Bronx Care Hospital Center, Bronx, NY, USA
| | | | - Niel N. Shah
- Division of Internal Medicine, Bronx Care Hospital Center, Bronx, NY, USA
| | - Manoj Bhandari
- Division of Cardiology, Bronx Care Hospital Center, Bronx, NY, USA
| | | |
Collapse
|
21
|
Haddad F, Ataam JA, Amsallem M, Cauwenberghs N, Kuznetsova T, Rosenberg-Hasson Y, Zamanian RT, Karakikes I, Horne BD, Muhlestein JB, Kwee L, Shah S, Maecker H, Knight S, Knowlton K. Insulin Growth Factor Phenotypes in Heart Failure with Preserved Ejection Fraction, an INSPIRE Registry and CATHGEN Study: IGF axis in HFpEF. J Card Fail 2021; 28:935-946. [PMID: 34979242 DOI: 10.1016/j.cardfail.2021.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND The insulin like growth factor (IGF) axis emerged as an important pathway in heart failure with preserved ejection (HFpEF). We aimed to identify IGF phenotypes associated with HFpEF in the context high-dimensional proteomic profiling. METHODS From the Intermountain INSPIRE Registry, we identified 96 patients with HFpEF and matched controls. We performed targeted proteomics including IGF-1,2, IGF binding proteins (IGFBP) 1-7 and 111 other proteins (EMD Millipore and ELISA). We used partial least square discriminant analysis (PLS-DA) to identify a set of proteins associated with prevalent HFpEF, pulmonary hypertension (PH) and 5-year-all-cause mortality. K-mean clustering was used to identify IGF phenotypes. RESULTS Patients with HFpEF had a high prevalence of systemic hypertension (95%) and coronary artery disease (74%). Using PLS-DA, we identified a set of biomarkers including IGF1,2 and IGFBP-1,2,7 that provided a strong discrimination of HFPEF, PH and mortality with an AUC of 0.91, 0.77 and 0.83, respectively. Using K mean clustering, we identified three IGF phenotypes that were independently associated with all-cause 5-year mortality after adjustment for age, NT-proBNP and kidney disease (p=0.004). Multivariable analysis validated the prognostic value of IGFBP-1 and 2 in the CATHGEN biorepository. CONCLUSION IGF phenotypes were associated with PH and mortality in HFpEF.
Collapse
Affiliation(s)
- Francois Haddad
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jennifer Arthur Ataam
- Division of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Myriam Amsallem
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Cauwenberghs
- Research Unit of Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Tatiana Kuznetsova
- Research Unit of Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Yael Rosenberg-Hasson
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Roham T Zamanian
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin D Horne
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Intermountain Medical Center, Heart Institute, Salt Lake City, UT, USA
| | | | - Lydia Kwee
- Department of Internal Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina and Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Svati Shah
- Department of Internal Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina and Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacey Knight
- Intermountain Medical Center, Heart Institute, Salt Lake City, UT, USA
| | - Kirk Knowlton
- Intermountain Medical Center, Heart Institute, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Bauer S, Strack C, Ücer E, Wallner S, Hubauer U, Luchner A, Maier LS, Jungbauer C. Evaluation of a multimarker panel in chronic heart failure: a 10-year follow-up. Biomark Med 2021; 15:1709-1719. [PMID: 34783584 DOI: 10.2217/bmm-2020-0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We assessed the 10-year prognostic role of 11 biomarkers with different pathophysiological backgrounds. Materials & methods/results: Blood samples from 144 patients with heart failure were analyzed. After 10 years of follow-up (median follow-up was 104 months), data regarding all-cause mortality were acquired. Regarding Kaplan-Meier analysis, all markers, except TIMP-1 and GDF-15, were significant predictors for all-cause mortality. We created a multimarker model with nt-proBNP, hs-TnT and IGF-BP7 and found that patients in whom all three markers were elevated had a significantly worse long-time prognosis than patients without elevated markers. Conclusion: In a 10-year follow-up, a combination of three biomarkers (NT-proBNP, hs-TnT, IGF-BP7) identified patients with a high risk of mortality.
Collapse
Affiliation(s)
- Susanne Bauer
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Christina Strack
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Ekrem Ücer
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Stefan Wallner
- University Hospital Regensburg, Department for Clinical Chemistry and Laboratory Medicine, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Ute Hubauer
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Andreas Luchner
- Hospital Barmherzige Brüder, Department for Cardiology, Prüfeninger Straße 86, Regensburg, 93049, Germany
| | - Lars Siegfried Maier
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Carsten Jungbauer
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| |
Collapse
|
23
|
De Luca M, Crisci G, Giardino F, Valente V, Amaranto I, Iacono O, D'Assante R, Giallauria F, Marra AM. Anabolic hormones and heart failure with preserved ejection fraction: looking for Ariadne's thread. Monaldi Arch Chest Dis 2021; 92. [PMID: 34351104 DOI: 10.4081/monaldi.2021.1743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome that accounts for more than half of all heart failure patients. Identification, early diagnosis and management of patients are still complex, and no targeted treatment is available, since all tested drugs were not able to lower hard clinical outcomes. A multi-hormonal deficiency syndrome has been described in HFpEF patients suggesting that different hormones may represent new biomarkers of the disease, but their clinical utility is still debated. The natriuretic peptides are the cornerstone biomarker in heart failure, predicting cardiovascular death and heart failure hospitalization. Testosterone and DHEA-S deficiencies have been reported in HFpEF and associated with right ventricular impairment and diastolic dysfunction. IGFBP-1/IGF-1 axis correlates with echocardiographic parameters of HFpEF patients and with several prognostic biomarkers including NT-proBNP and C reactive protein. Low triiodothyronine syndrome is frequently found in HFpEF and thyroid hormones should represent a potential biomarker of risk stratification and prognosis.
Collapse
Affiliation(s)
| | - Giulia Crisci
- Department of Translational Medical Sciences, "Federico II" University, Naples.
| | - Federica Giardino
- Department of Translational Medical Sciences, "Federico II" University, Naples.
| | - Valeria Valente
- Department of Translational Medical Sciences, "Federico II" University, Naples.
| | - Ilaria Amaranto
- Department of Translational Medical Sciences, "Federico II" University, Naples.
| | - Olimpia Iacono
- Department of Translational Medical Sciences, "Federico II" University, Naples.
| | - Roberta D'Assante
- Department of Translational Medical Sciences, "Federico II" University, Naples.
| | | | - Alberto M Marra
- Department of Translational Medical Sciences, "Federico II" University, Naples.
| |
Collapse
|
24
|
Meessen JMTA, Cesaroni G, Mureddu GF, Boccanelli A, Wienhues-Thelen UH, Kastner P, Ojeda-Fernandez L, Novelli D, Bazzoni G, Mangiavacchi M, Agabiti N, Masson S, Staszewsky L, Latini R. IGFBP7 and GDF-15, but not P1NP, are associated with cardiac alterations and 10-year outcome in an elderly community-based study. BMC Cardiovasc Disord 2021; 21:328. [PMID: 34217226 PMCID: PMC8254994 DOI: 10.1186/s12872-021-02138-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Little is known about the clinical value of Insulin-like growth factor-binding protein-7 (IGFBP7), a cellular senescence marker, in an elderly general population with multiple co-morbidities and high prevalence of asymptomatic cardiovascular ventricular dysfunction. Inflammation and fibrosis are hallmarks of cardiac aging and remodelling. Therefore, we assessed the clinical performance of IGFBP7 and two other biomarkers reflecting these pathogenic pathways, the growth differentiation factor-15 (GFD-15) and amino-terminal propeptide of type I procollagen (P1NP), for their association with cardiac phenotypes and outcomes in the PREDICTOR study. Methods 2001 community-dwelling subjects aged 65–84 years who had undergone centrally-read echocardiography, were selected through administrative registries. Atrial fibrillation (AF) and 4 echocardiographic patterns were assessed: E/e’ (> 8), enlarged left atrial area, left ventricular hypertrophy (LVH) and reduced midwall circumference shortening (MFS). All-cause and cardiovascular mortality and hospitalization were recorded over a median follow-up of 10.6 years. Results IGFBP7 and GDF-15, but not P1NP, were independently associated with prevalent AF and echocardiographic variables after adjusting for age and sex. After adjustment for clinical risk factors and cardiac patterns or NT-proBNP and hsTnT, both IGFBP7 and GDF-15 independently predicted all-cause mortality, hazard ratios 2.13[1.08–4.22] and 2.03[1.62–2.56] per unit increase of Ln-transformed markers, respectively. Conclusions In a community-based elderly cohort, IGFBP7 and GDF-15 appear associated to cardiac alterations as well as to 10-year risk of all-cause mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02138-8.
Collapse
Affiliation(s)
- Jennifer M T A Meessen
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Gian F Mureddu
- Department of Cardiovascular Diseases, S Giovanni-Addolorata Hospital, Rome, Italy
| | | | | | | | - Luisa Ojeda-Fernandez
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Deborah Novelli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianfranco Bazzoni
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Nera Agabiti
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Serge Masson
- Roche Diagnostics International, Rotkreuz, Switzerland
| | - Lidia Staszewsky
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | | |
Collapse
|
25
|
Bauer Y, de Bernard S, Hickey P, Ballard K, Cruz J, Cornelisse P, Chadha-Boreham H, Distler O, Rosenberg D, Doelberg M, Roux S, Nayler O, Lawrie A. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: machine learning on proteomics from the DETECT cohort. Eur Respir J 2021; 57:13993003.02591-2020. [PMID: 33334933 PMCID: PMC8276065 DOI: 10.1183/13993003.02591-2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating complication of systemic sclerosis (SSc). Screening for PAH in SSc has increased detection, allowed early treatment for PAH and improved patient outcomes. Blood-based biomarkers that reliably identify SSc patients at risk of PAH, or with early disease, would significantly improve screening, potentially leading to improved survival, and provide novel mechanistic insights into early disease. The main objective of this study was to identify a proteomic biomarker signature that could discriminate SSc patients with and without PAH using a machine learning approach and to validate the findings in an external cohort. Serum samples from patients with SSc and PAH (n=77) and SSc without pulmonary hypertension (non-PH) (n=80) were randomly selected from the clinical DETECT study and underwent proteomic screening using the Myriad RBM Discovery platform consisting of 313 proteins. Samples from an independent validation SSc cohort (PAH n=22 and non-PH n=22) were obtained from the University of Sheffield (Sheffield, UK). Random forest analysis identified a novel panel of eight proteins, comprising collagen IV, endostatin, insulin-like growth factor binding protein (IGFBP)-2, IGFBP-7, matrix metallopeptidase-2, neuropilin-1, N-terminal pro-brain natriuretic peptide and RAGE (receptor for advanced glycation end products), that discriminated PAH from non-PH in SSc patients in the DETECT Discovery Cohort (average area under the receiver operating characteristic curve 0.741, 65.1% sensitivity/69.0% specificity), which was reproduced in the Sheffield Confirmatory Cohort (81.1% accuracy, 77.3% sensitivity/86.5% specificity). This novel eight-protein biomarker panel has the potential to improve early detection of PAH in SSc patients and may provide novel insights into the pathogenesis of PAH in the context of SSc. Early screening for pulmonary arterial hypertension in patients with systemic sclerosis improves patient outcome. This study identified a novel eight-protein biomarker panel that has the potential to assist early detection of PAH in this patient group.https://bit.ly/373BNkL
Collapse
Affiliation(s)
- Yasmina Bauer
- Galapagos GmbH, Basel, Switzerland.,Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Peter Hickey
- Dept of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | | - Oliver Distler
- Dept of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Remmelzwaal S, van Ballegooijen AJ, Schoonmade LJ, Dal Canto E, Handoko ML, Henkens MTHM, van Empel V, Heymans SRB, Beulens JWJ. Natriuretic peptides for the detection of diastolic dysfunction and heart failure with preserved ejection fraction-a systematic review and meta-analysis. BMC Med 2020; 18:290. [PMID: 33121502 PMCID: PMC7599104 DOI: 10.1186/s12916-020-01764-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND An overview of the diagnostic performance of natriuretic peptides (NPs) for the detection of diastolic dysfunction (DD) and heart failure with preserved ejection fraction (HFpEF), in a non-acute setting, is currently lacking. METHODS We performed a systematic literature search in PubMed and Embase.com (May 13, 2019). Studies were included when they (1) reported diagnostic performance measures, (2) are for the detection of DD or HFpEF in a non-acute setting, (3) are compared with a control group without DD or HFpEF or with patients with heart failure with reduced ejection fraction, (4) are in a cross-sectional design. Two investigators independently assessed risk of bias of the included studies according to the QUADAS-2 checklist. Results were meta-analysed when three or more studies reported a similar diagnostic measure. RESULTS From 11,728 titles/abstracts, we included 51 studies. The meta-analysis indicated a reasonable diagnostic performance for both NPs for the detection of DD and HFpEF based on AUC values of approximately 0.80 (0.73-0.87; I2 = 86%). For both NPs, sensitivity was lower than specificity for the detection of DD and HFpEF: approximately 65% (51-85%; I2 = 95%) versus 80% (70-90%; I2 = 97%), respectively. Both NPs have adequate ability to rule out DD: negative predictive value of approximately 85% (78-93%; I2 = 95%). The ability of both NPs to prove DD is lower: positive predictive value of approximately 60% (30-90%; I2 = 99%). CONCLUSION The diagnostic performance of NPs for the detection of DD and HFpEF is reasonable. However, they may be used to rule out DD or HFpEF, and not for the diagnosis of DD or HFpEF.
Collapse
Affiliation(s)
- Sharon Remmelzwaal
- Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, VU University Medical Centre, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands.
| | - Adriana J van Ballegooijen
- Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, VU University Medical Centre, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands.,Department of Nephrology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Elisa Dal Canto
- Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, VU University Medical Centre, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands
| | - M Louis Handoko
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michiel T H M Henkens
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Joline W J Beulens
- Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, VU University Medical Centre, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands.,Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
27
|
Gyöngyösi M, Lukovic D, Zlabinger K, Spannbauer A, Gugerell A, Pavo N, Traxler D, Pils D, Maurer G, Jakab A, Riesenhuber M, Pircher A, Winkler J, Bergler-Klein J. Liposomal doxorubicin attenuates cardiotoxicity via induction of interferon-related DNA damage resistance. Cardiovasc Res 2020; 116:970-982. [PMID: 31346605 DOI: 10.1093/cvr/cvz192] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/17/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
AIMS The clinical application of doxorubicin (DOX) is severely compromised by its cardiotoxic effects, which limit the therapeutic index and the cumulative dose. Liposomal encapsulation of DOX (Myocet®) provides a certain protective effect against cardiotoxicity by reducing myocardial drug accumulation. We aimed to evaluate transcriptomic responses to anthracyclines with different cardiotoxicity profiles in a translational large animal model for identifying potential alleviation strategies. METHODS AND RESULTS We treated domestic pigs with either DOX, epirubicin (EPI), or liposomal DOX and compared the cardiac, laboratory, and haemodynamic effects with saline-treated animals. Cardiotoxicity was encountered in all groups, reflected by an increase of plasma markers N-terminal pro-brain-natriuretic peptide and Troponin I and an impact on body weight. High morbidity of EPI-treated animals impeded further evaluation. Cardiac magnetic resonance imaging with gadolinium late enhancement and transthoracic echocardiography showed stronger reduction of the left and right ventricular systolic function and stronger myocardial fibrosis in DOX-treated animals than in those treated with the liposomal formulation. Gene expression profiles of the left and right ventricles were analysed by RNA-sequencing and validated by qPCR. Interferon-stimulated genes (ISGs), linked to DNA damage repair and cell survival, were downregulated by DOX, but upregulated by liposomal DOX in both the left and right ventricle. The expression of cardioprotective translocator protein (TSPO) was inhibited by DOX, but not its liposomal formulation. Cardiac fibrosis with activation of collagen was found in all treatment groups. CONCLUSIONS All anthracycline-derivatives resulted in transcriptional activation of collagen synthesis and processing. Liposomal packaging of DOX-induced ISGs in association with lower cardiotoxicity, which is of high clinical importance in anticancer treatment. Our study identified potential mechanisms for rational development of strategies to mitigate anthracycline-induced cardiomyopathy.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Alfred Gugerell
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Denise Traxler
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Dietmar Pils
- Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), and Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Gerald Maurer
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Andras Jakab
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.,Center for MR-Research, University Children's Hospital Zurich, Steinwiesstraße 75, 8032 Zurich, Switzerland
| | - Martin Riesenhuber
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Andreas Pircher
- Division of Hematology and Oncology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Jutta Bergler-Klein
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
28
|
Henkens MTHM, Remmelzwaal S, Robinson EL, van Ballegooijen AJ, Barandiarán Aizpurua A, Verdonschot JAJ, Raafs AG, Weerts J, Hazebroek MR, Sanders-van Wijk S, Handoko ML, den Ruijter HM, Lam CSP, de Boer RA, Paulus WJ, van Empel VPM, Vos R, Brunner-La Rocca HP, Beulens JWJ, Heymans SRB. Risk of bias in studies investigating novel diagnostic biomarkers for heart failure with preserved ejection fraction. A systematic review. Eur J Heart Fail 2020; 22:1586-1597. [PMID: 32592317 PMCID: PMC7689920 DOI: 10.1002/ejhf.1944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022] Open
Abstract
Aim Diagnosing heart failure with preserved ejection fraction (HFpEF) in the non‐acute setting remains challenging. Natriuretic peptides have limited value for this purpose, and a multitude of studies investigating novel diagnostic circulating biomarkers have not resulted in their implementation. This review aims to provide an overview of studies investigating novel circulating biomarkers for the diagnosis of HFpEF and determine their risk of bias (ROB). Methods and results A systematic literature search for studies investigating novel diagnostic HFpEF circulating biomarkers in humans was performed up until 21 April 2020. Those without diagnostic performance measures reported, or performed in an acute heart failure population were excluded, leading to a total of 28 studies. For each study, four reviewers determined the ROB within the QUADAS‐2 domains: patient selection, index test, reference standard, and flow and timing. At least one domain with a high ROB was present in all studies. Use of case‐control/two‐gated designs, exclusion of difficult‐to‐diagnose patients, absence of a pre‐specified cut‐off value for the index test without the performance of external validation, the use of inappropriate reference standards and unclear timing of the index test and/or reference standard were the main bias determinants. Due to the high ROB and different patient populations, no meta‐analysis was performed. Conclusion The majority of current diagnostic HFpEF biomarker studies have a high ROB, reducing the reproducibility and the potential for clinical care. Methodological well‐designed studies with a uniform reference diagnosis are urgently needed to determine the incremental value of circulating biomarkers for the diagnosis of HFpEF.
Collapse
Affiliation(s)
- Michiel T H M Henkens
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Sharon Remmelzwaal
- Department of Epidemiology and Biostatistics, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma L Robinson
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Adriana J van Ballegooijen
- Department of Epidemiology and Biostatistics, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne G Raafs
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Jerremy Weerts
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Mark R Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Sandra Sanders-van Wijk
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - M Louis Handoko
- Department of Cardiology, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carolyn S P Lam
- National Heart Centre Singapore, Singapore, Singapore.,Duke-National University of Singapore, Singapore, Singapore.,Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter J Paulus
- Department of Physiology, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Rein Vos
- Department of Methodology and Statistics, Maastricht University, Maastricht, The Netherlands
| | - Hans-Peter Brunner-La Rocca
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Biostatistics, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands.,Department of Cardiovascular Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Kramer F, Butler J, Shah SJ, Jung C, Nodari S, Rosenkranz S, Senni M, Bamber L, Cichos S, Dori C, Karakoyun T, Köhler GJ, Patel K, Piraino P, Viethen T, Chennuru P, Paydar A, Sims J, Clark R, van Lummel R, Müller A, Gwaltney C, Smajlovic S, Düngen HD, Dinh W. Real-Life Multimarker Monitoring in Patients with Heart Failure: Continuous Remote Monitoring of Mobility and Patient-Reported Outcomes as Digital End Points in Future Heart-Failure Trials. Digit Biomark 2020; 4:45-59. [PMID: 33083685 DOI: 10.1159/000507696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Aims Heart failure (HF) affects approximately 26 million people worldwide. With an aging global population, innovative approaches to HF evaluation and management are needed to cope with the worsening HF epidemic. The aim of the Real-Life Multimarker Monitoring in Patients with Heart Failure (REALIsM-HF) study (NCT03507439) is to evaluate a composite instrument comprising remote, real-time, activity-monitoring devices combined with daily electronic patient-reported outcome (ePRO) items in patients who have been hospitalized for HF and are undergoing standard HF assessment (e.g., 6-min walking distance [6MWD], blood biomarkers, Kansas City Cardiomyopathy Questionnaire [KCCQ], and echocardiography). Methods REALIsM-HF is an ongoing, 12-week, observational study enrolling 80-100 patients aged ≥45 years with HF with preserved ejection fraction (HFpEF; EF ≥45%) or reduced EF (HFrEF; EF ≤35%). Statistical analyses will include examining the association between data from wearables (the AVIVO© mobile patient management patch or VitalPatch© biosensor, and the DynaPort MoveMonitor©), daily ePROs, and conventional HF metrics (e.g., serum/plasma biomarkers, 6MWD, KCCQ, and echocardiographic parameters). The feasibility of and patient compliance with at-home devices will be documented, and the data captured for the purpose of establishing reference values in patients with HFpEF or HFrEF will be summarized. Conclusions The REALIsM-HF study is to evaluate the longitudinal daily activity profiles of patients with HF and correlate these with changes in serum/plasma biomarker profiles, symptoms, quality of life, and cardiac function and morphology to inform the use of wearable activity monitors for developing novel therapies and managing patients.
Collapse
Affiliation(s)
- Frank Kramer
- Bayer AG, Medical Devices & eHealth Clinical, Wuppertal, Germany
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sanjiv J Shah
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christian Jung
- Division of Cardiology, Pulmonary Diseases and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Savina Nodari
- Cardiology Department, University and Spedali Civili of Brescia, Brescia, Italy
| | - Stephan Rosenkranz
- Department of Cardiology, Heart Center at the University Hospital Cologne and Cologne Cardiovascular Research Center, Cologne, Germany
| | - Michele Senni
- Division of Cardiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Luke Bamber
- Bayer AG, Health Economics and Outcomes Research, Wuppertal, Germany
| | - Stephan Cichos
- Bayer AG, Clinical Sciences Data Management, Wuppertal, Germany
| | - Chrysanthi Dori
- Bayer US, LLC, Bayer HealthCare Pharmaceuticals Inc., Global Clinical Information and Analytics, Data Acquisition Technology Integration, Whippany, New Jersey, USA
| | - Toeresin Karakoyun
- Bayer Business Services GmbH, IT BP Pharmaceuticals, Clinical, Wuppertal, Germany
| | | | - Kinjal Patel
- Bayer US, LLC, Bayer HealthCare Pharmaceuticals Inc., Global Project Management, Whippany, New Jersey, USA
| | - Paolo Piraino
- Bayer AG, Research and Early Development Statistics, Berlin, Germany
| | - Thomas Viethen
- Bayer AG, Medical Experts Cardiology and Coagulation, Wuppertal, Germany
| | | | - Ayse Paydar
- SAP AG, SAP Digital Business Services - EMEA, SAP Deutschland SE & Co. KG, Walldorf, Germany
| | - Jason Sims
- Medtronic, Mounds View, Minneapolis, Minnesota, USA
| | | | | | | | | | | | - Hans-Dirk Düngen
- Medical Department, Division of Cardiology, Charité Campus Virchow Clinic, Berlin University of Medicine, Berlin, Germany
| | - Wilfried Dinh
- Bayer AG, Experimental Medicine Cardiovascular/Hematology, Wuppertal, Germany
| |
Collapse
|
30
|
Kalayci A, Peacock WF, Nagurney JT, Hollander JE, Levy PD, Singer AJ, Shapiro NI, Cheng RK, Cannon CM, Blomkalns AL, Walters EL, Christenson RH, Chen-Tournoux A, Nowak RM, Lurie MD, Pang PS, Kastner P, Masson S, Gibson CM, Gaggin HK, Januzzi JL. Echocardiographic assessment of insulin-like growth factor binding protein-7 and early identification of acute heart failure. ESC Heart Fail 2020; 7:1664-1675. [PMID: 32406612 PMCID: PMC7373911 DOI: 10.1002/ehf2.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Aims Concentrations of insulin‐like growth factor binding protein‐7 (IGFBP7) have been linked to abnormal cardiac structure and function in patients with chronic heart failure (HF), but cardiovascular correlates of the biomarker in patients with more acute presentations are lacking. We aimed to determine the relationship between IGFBP7 concentrations and cardiac structure and to evaluate the impact of IGFBP7 on the diagnosis of acute HF among patients with acute dyspnoea. Methods and results In this pre‐specified subgroup analysis of the International Collaborative of N‐terminal pro‐B‐type Natriuretic Peptide Re‐evaluation of Acute Diagnostic Cut‐Offs in the Emergency Department (ICON‐RELOADED) study, we included 271 patients with and without acute HF. All patients presented to an emergency department with acute dyspnoea, had blood samples for IGFBP7 measurement, and detailed echocardiographic evaluation. Higher IGFBP7 concentrations were associated with numerous cardiac abnormalities, including increased left atrial volume index (LAVi; r = 0.49, P < 0.001), lower left ventricular ejection fraction (r = −0.27, P < 0.001), lower right ventricular fractional area change (r = −0.31, P < 0.001), and higher tissue Doppler E/e′ ratio (r = 0.44, P < 0.001). In multivariable linear regression analyses, increased LAVi (P = 0.01), lower estimated glomerular filtration rate (P = 0.008), higher body mass index (P = 0.001), diabetes (P = 0.009), and higher concentrations of amino‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP, P = 0.02) were independently associated with higher IGFBP7 concentrations regardless of other variables. Furthermore, IGFBP7 (odds ratio = 12.08, 95% confidence interval 2.42–60.15, P = 0.02) was found to be independently associated with the diagnosis of acute HF in the multivariable logistic regression analysis. Conclusions Among acute dyspnoeic patients with and without acute HF, increased IGFBP7 concentrations are associated with a range of cardiac structure and function abnormalities. Independent association with increased LAVi suggests elevated left ventricular filling pressure is an important trigger for IGFBP7 expression and release. IGFBP7 may enhance the diagnosis of acute HF.
Collapse
Affiliation(s)
- Arzu Kalayci
- Baim Institute for Clinical Research, Boston, MA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Frank Peacock
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA
| | - John T Nagurney
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Judd E Hollander
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Phillip D Levy
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Adam J Singer
- Department of Emergency Medicine, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard K Cheng
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Chad M Cannon
- Department of Emergency Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andra L Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth L Walters
- Department of Emergency Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert H Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Annabel Chen-Tournoux
- Division of Cardiology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Richard M Nowak
- Department of Emergency Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Mark D Lurie
- Division of Cardiology, Torrance Memorial Medical Center, Torrance, CA, USA
| | - Peter S Pang
- Department of Emergency Medicine, Indiana University School of Medicine & Indianapolis EMS, Indianapolis, Indiana, USA
| | | | - Serge Masson
- Roche Diagnostics International, Rotkreuz, Switzerland
| | - C Michael Gibson
- Baim Institute for Clinical Research, Boston, MA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hanna K Gaggin
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Yawkey 5984, 55 Fruit Street, Boston, MA, 02114, USA
| | - James L Januzzi
- Baim Institute for Clinical Research, Boston, MA, USA.,Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Yawkey 5984, 55 Fruit Street, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Lee WC, Russell B, Sobota RM, Ghaffar K, Howland SW, Wong ZX, Maier AG, Dorin-Semblat D, Biswas S, Gamain B, Lau YL, Malleret B, Chu C, Nosten F, Renia L. Plasmodium-infected erythrocytes induce secretion of IGFBP7 to form type II rosettes and escape phagocytosis. eLife 2020; 9:e51546. [PMID: 32066522 PMCID: PMC7048393 DOI: 10.7554/elife.51546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
In malaria, rosetting is described as a phenomenon where an infected erythrocyte (IRBC) is attached to uninfected erythrocytes (URBC). In some studies, rosetting has been associated with malaria pathogenesis. Here, we have identified a new type of rosetting. Using a step-by-step approach, we identified IGFBP7, a protein secreted by monocytes in response to parasite stimulation, as a rosette-stimulator for Plasmodium falciparum- and P. vivax-IRBC. IGFBP7-mediated rosette-stimulation was rapid yet reversible. Unlike type I rosetting that involves direct interaction of rosetting ligands on IRBC and receptors on URBC, the IGFBP7-mediated, type II rosetting requires two additional serum factors, namely von Willebrand factor and thrombospondin-1. These two factors interact with IGFBP7 to mediate rosette formation by the IRBC. Importantly, the IGFBP7-induced type II rosetting hampers phagocytosis of IRBC by host phagocytes.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Bruce Russell
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Radoslaw Mikolaj Sobota
- Systems Structural Biology Group, Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Institute of Medical Biology (IMB) Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Khairunnisa Ghaffar
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Shanshan W Howland
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Zi Xin Wong
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Alexander G Maier
- Biomedical Sciences and Biochemistry, Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Subhra Biswas
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Yee-Ling Lau
- Department of ParasitologyFaculty of Medicine, University of MalayaKuala LumpurMalaysia
| | - Benoit Malleret
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cindy Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Laurent Renia
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
32
|
Bruno C, Silvestrini A, Calarco R, Favuzzi AMR, Vergani E, Nicolazzi MA, d'Abate C, Meucci E, Mordente A, Landolfi R, Mancini A. Anabolic Hormones Deficiencies in Heart Failure With Preserved Ejection Fraction: Prevalence and Impact on Antioxidants Levels and Myocardial Dysfunction. Front Endocrinol (Lausanne) 2020; 11:281. [PMID: 32477267 PMCID: PMC7235369 DOI: 10.3389/fendo.2020.00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose: In heart failure with reduced ejection fraction, catabolic mechanisms have a strong negative impact on mortality and morbidity. The relationship between anabolic hormonal deficiency and heart failure with preserved ejection fraction (HFpEF) has still been poorly investigated. On the other hand, oxidative stress is recognized as a player in the pathogenesis of HFpEF. Therefore, we performed a cohort study in HFpEF aimed to (1) define the multi-hormonal deficiency prevalence in HFpEF patients; (2) investigate the relationships between hormonal deficiencies and echocardiographic indexes; (3) explore the modulatory activity of anabolic hormones on antioxidant systems. Methods: 84 patients with diagnosis of HFpEF were enrolled in the study. Plasma levels of N-terminal pro-brain natriuretic peptide, fasting glucose, insulin, lipid pattern, insulin-like growth factor-1, dehydroepiandrosterone-sulfate (DHEA-S), total testosterone (T, only in male subjects) were evaluated. Hormonal deficiencies were defined according to T.O.S.C.A. multi-centric study, as previously published. An echocardiographic evaluation was performed. Plasma total antioxidant capacity (TAC) was measured using the system metmyoglobin -H2O2 and the chromogen ABTS, whose radical form is spectroscopically revealed; latency time (LAG) in the appearance of ABTS• is proportional to antioxidants in sample. Results: Multiple deficiencies were discovered. DHEA-S deficiency in 87% of patients, IGF-1 in 67% of patients, T in 42%. Patients with DHEA-S deficiency showed lower levels of TAC expressed by LAG (mean ± SEM 91.25 ± 9.34 vs. 75.22 ± 4.38 s; p < 0.05). No differences between TAC in patients with or without IGF-1 deficiency were found. A trend toward high level of TAC in patients without hormonal deficiencies compared with patients with one or multiple deficiencies was found. Regarding echocardiographic parameters, Left Atrial and Left Atrial Volume Index were significantly higher in patients with low IGF-1 values (mean ± SD 90.84 ± 3.86 vs. 72.83 ± 3.78 mL; 51.03 ± 2.33 vs. 40.56 ± 2.46 mL/m2, respectively; p < 0.05). Conclusions: Our study showed high prevalence of anabolic deficiencies in HFpEF. DHEA-S seems to influence antioxidant levels; IGF-1 deficiency was associated with alteration in parameters of myocardial structure and dysfunction. These data suggest a role of anabolic hormones in the complex pathophysiological mechanisms of HFpEF and could represent the basis for longitudinal studies and investigations on possible benefits of replacement therapy.
Collapse
Affiliation(s)
- Carmine Bruno
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Andrea Silvestrini
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Andrea Silvestrini
| | - Rodolfo Calarco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Angela M. R. Favuzzi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Edoardo Vergani
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Maria Anna Nicolazzi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Claudia d'Abate
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Elisabetta Meucci
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alvaro Mordente
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Landolfi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Antonio Mancini
| |
Collapse
|
33
|
De Pascale MR, Della Mura N, Vacca M, Napoli C. Useful applications of growth factors for cardiovascular regenerative medicine. Growth Factors 2020; 38:35-63. [PMID: 33028111 DOI: 10.1080/08977194.2020.1825410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel advances for cardiovascular diseases (CVDs) include regenerative approaches for fibrosis, hypertrophy, and neoangiogenesis. Studies indicate that growth factor (GF) signaling could promote heart repair since most of the evidence is derived from preclinical models. Observational studies have evaluated GF serum/plasma levels as feasible biomarkers for risk stratification of CVDs. Noteworthy, two clinical interventional published studies showed that the administration of growth factors (GFs) induced beneficial effect on left ventricular ejection fraction (LVEF), myocardial perfusion, end-systolic volume index (ESVI). To date, large scale ongoing studies are in Phase I-II and mostly focussed on intramyocardial (IM), intracoronary (IC) or intravenous (IV) administration of vascular endothelial growth factor (VEGF) and fibroblast growth factor-23 (FGF-23) which result in the most investigated GFs in the last 10 years. Future data of ongoing randomized controlled studies will be crucial in understanding whether GF-based protocols could be in a concrete way effective in the clinical setting.
Collapse
Affiliation(s)
| | | | - Michele Vacca
- Division of Immunohematology and Transfusion Medicine, Cardarelli Hospital, Naples, Italy
| | - Claudio Napoli
- IRCCS Foundation SDN, Naples, Italy
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
34
|
Szyszkowska A, Knapp M, Kamiński K, Lisowska A. Insulin-like growth factor-binding protein 7 (IGFBP7): Novel, independent marker of cardiometabolic diseases? POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.6454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-binding protein 7 (IGFBP7) is a 30kDa modular secreted protein involved in many physiologic processes, including cell proliferation, adhesion, senescence and angiogenesis. It is expressed in many organs and specific cells. It can interact with insulin-like growth factor 1(IGF-1), as well as with insulin. By binding to IGF-1, it limits IGF-1 access to IGF- receptor (IGF-R) and consequently neutralizes IGF-1 activity. Moreover, due to its high affinity to insulin, it may interfere with biological response of insulin and, therefore, it may be involved in the development of diabetes and cardiovascular diseases. According to research, it could be a good biomarker of heart failure. Its elevated serum concentrations were found in patients with heart failure, both with reduced ejection fraction and preserved ejection fraction. Moreover, IGFBP7 could be useful in predicting the presence of atherosclerotic lesions in coronary vessels, although its concentration does not reflect a degree of coronary artery disease (CAD) advancement and it cannot be used as a marker of acute ischemia. Its concentration is also associated with insulin resistance and the risk of metabolic syndrome. What is more, together with tissue inhibitor of metalloproteinases-2, it is a novel marker of tubular damage and it can be used for an early detection of acute kidney injury (AKI) endangered patients, which could allow for subsequent adjustments in medical therapy and the prevention of AKI. IGFBP7 is also regarded as a potential tumor suppressor in various cancers. Its low expression is potentially correlated with increased cancer cell proliferation.
Collapse
Affiliation(s)
- Anna Szyszkowska
- Department of Cardiology, Medical University of Białystok, Poland
| | - Małgorzata Knapp
- Department of Cardiology, Medical University of Białystok, Poland
| | - Karol Kamiński
- Department of Cardiology, Medical University of Białystok, Poland
| | - Anna Lisowska
- Department of Cardiology, Medical University of Białystok, Poland
| |
Collapse
|
35
|
Yan H, Li T, Wang Y, Li H, Xu J, Lu X. Insulin-like growth factor binding protein 7 accelerates hepatic steatosis and insulin resistance in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol 2019; 46:1101-1110. [PMID: 31397492 DOI: 10.1111/1440-1681.13159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
An association between increased insulin-like growth factor binding protein-7 (IGFBP7) expression and insulin resistance in metabolic diseases has been reported. However, the role and molecular mechanism of IGFBP-7 in non-alcoholic fatty liver disease (NAFLD) remains largely unknown. Therefore, the potential function of IGFBP7 in the pathological progression of NAFLD was explored in this investigation. For in vivo experiments, an animal model of NAFLD was established in C57BL/6 mice by feeding a high-fat diet (HFD), and IGFBP7 was knocked down by injecting adeno-associated adenovirus (AAV)-mediated short-hairpin (sh)-IGFBP7 into the liver. We found that AAV-sh-IGFBP7 treatment significantly alleviated hepatocyte injury and inhibited hepatic lipid accumulation by reducing lipogenesis-associated gene expression. Furthermore, downregulation of IGFBP7 markedly ameliorated IR and restored impaired insulin signalling by elevating the phosphorylation levels of IRS-1, Akt and GSK3β in HFD-treated mice. Similar results were also confirmed by an in vitro study in a palmitic acid (PA)-stimulated HepG2 cell model. In conclusion, our study demonstrates that IGFBP7 contributes to hepatic steatosis and insulin resistance in NAFLD development, which might serve as a novel therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hua Yan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Gerontology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ting Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yatao Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaolan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Hage C, Bjerre M, Frystyk J, Gu HF, Brismar K, Donal E, Daubert JC, Linde C, Lund LH. Comparison of Prognostic Usefulness of Serum Insulin-Like Growth Factor-Binding Protein 7 in Patients With Heart Failure and Preserved Versus Reduced Left Ventricular Ejection Fraction. Am J Cardiol 2018; 121:1558-1566. [PMID: 29622288 DOI: 10.1016/j.amjcard.2018.02.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
We aimed to characterize of the role of insulin-like growth factor-binding protein 7 (IGFBP-7) in heart failure (HF) pathophysiology. IGFBP-7 has been associated with cardiac hypertrophy and diastolic dysfunction in HF. In 86 patients with HF with a preserved ejection fraction (HFpEF) (ejection fraction [EF] ≥45%) and 79 with HF with a reduced ejection fraction (HFrEF), we assessed concentrations of serum IGFBP-7, correlations between serum IGFBP-7 and clinical data, diastolic function, and associations with outcome. IGFBP-7 was lower in HFpEF than HFrEF (102 vs 152 µg/L, p <0.001) and correlated with New York Heart Association class (HFpEF: r = 0.25, p = 0.020; HFrEF: r = 0.26, p = 0.022), N-terminal pro-brain natriuretic peptide (NT-proBNP) (HFpEF: r = 0.53, p <0.001; HFrEF: r = 0.50, p <0.001), and estimated glomerular filtration rate (eGFR) (HFpEF: r = -0.47, p <0.001; HFrEF: r = -0.45, p <0.001). In HFpEF, IGFBP-7 correlated with E/e' (r = 0.31, p = 0.012) and E/A ratio (r = 0.31, p = 0.011). In HFrEF, but not HFpEF, IGFBP-7 correlated with age (r = 0.29, p = 0.009) and atrial fibrillation (r = 0.34, p = 0.002). IGFBP-7 predicted the outcome in HFpEF (hazard ratio 4.19 [1.01 to 17.35], p = 0.048]) but not in HFrEF (0.72 [0.24 to 2.14], p = 0.554). In conclusion in HFrEF, IGFBP-7 was elevated and associated with HF severity but not prognostic, suggesting a marker of risk. In HFpEF, IGFBP-7 was less elevated but associated with markers of diastolic dysfunction, HF severity, and prognosis. IGFBP-7 may contribute to the progression of HFpEF possibly through inflammation and oxidative stress.
Collapse
Affiliation(s)
- Camilla Hage
- Department of Medicine, Cardiology unit, Karolinska Institutet, Stockholm, Sweden.
| | - Mette Bjerre
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Jan Frystyk
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Harvest F Gu
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Erwan Donal
- Département de Cardiologie & CICIT1414, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Jean-Claude Daubert
- Département de Cardiologie & CICIT1414, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Cecilia Linde
- Department of Medicine, Cardiology unit, Karolinska Institutet, Stockholm, Sweden
| | - Lars H Lund
- Department of Medicine, Cardiology unit, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Marra AM, Bobbio E, D'Assante R, Salzano A, Arcopinto M, Bossone E, Cittadini A. Growth Hormone as Biomarker in Heart Failure. Heart Fail Clin 2018; 14:65-74. [PMID: 29153202 DOI: 10.1016/j.hfc.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The impairment of growth hormone (GH)/insulin growth factor-1(IGF-1) plays a crucial role in chronic heart failure (CHF). Several studies have shown that patients affected by this condition display a more aggressive disease, with impaired functional capacity and poor outcomes. Interestingly, GH replacement therapy represents a possible future therapeutic option in CHF. In this review, the authors focus on the assessment of the main abnormalities in GH/IGF-1 axis in CHF, the underlying molecular background, and their impact on disease progression and outcomes.
Collapse
Affiliation(s)
| | - Emanuele Bobbio
- Department of Translational Medical Sciences, Federico II University, Via Pansini, 5, 80131 Naples, Italy
| | | | - Andrea Salzano
- Department of Translational Medical Sciences, Federico II University, Via Pansini, 5, 80131 Naples, Italy; Department of Cardiovascular Sciences and NIHR Biomedical Research Centre, University of Leicester, Glenfield Hospital, Groby Road LE3 9QP, Leicester, UK
| | - Michele Arcopinto
- Department of Translational Medical Sciences, Federico II University, Via Pansini, 5, 80131 Naples, Italy
| | - Eduardo Bossone
- Heart Department, University Hospital Salerno, Via Enrico de Marinis, 84013 Cava de' Tirreni SA, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University, Via Pansini, 5, 80131 Naples, Italy; Interdisciplinary Research Centre in Biomedical Materials (CRIB), Via Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
38
|
Piek A, Du W, de Boer RA, Silljé HHW. Novel heart failure biomarkers: why do we fail to exploit their potential? Crit Rev Clin Lab Sci 2018; 55:246-263. [PMID: 29663841 DOI: 10.1080/10408363.2018.1460576] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasma biomarkers are useful tools in the diagnosis and prognosis of heart failure (HF). In the last decade, numerous studies have aimed to identify novel HF biomarkers that would provide superior and/or additional diagnostic, prognostic, or stratification utility. Although numerous biomarkers have been identified, their implementation in clinical practice has so far remained largely unsuccessful. Whereas cardiac-specific biomarkers, including natriuretic peptides (ANP and BNP) and high sensitivity troponins (hsTn), are widely used in clinical practice, other biomarkers have not yet proven their utility. Galectin-3 (Gal-3) and soluble suppression of tumorigenicity 2 (sST2) are the only novel HF biomarkers that are included in the ACC/AHA HF guidelines, but their clinical utility still needs to be demonstrated. In this review, we will describe natriuretic peptides, hsTn, and novel HF biomarkers, including Gal-3, sST2, human epididymis protein 4 (HE4), insulin-like growth factor-binding protein 7 (IGFBP-7), heart fatty acid-binding protein (H-FABP), soluble CD146 (sCD146), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), procalcitonin (PCT), adrenomedullin (ADM), microRNAs (miRNAs), and metabolites like 5-oxoproline. We will discuss the biology of these HF biomarkers and conclude that most of them are markers of general pathological processes like fibrosis, cell death, and inflammation, and are not cardiac- or HF-specific. These characteristics explain to a large degree why it has been difficult to relate these biomarkers to a single disease. We propose that, in addition to clinical investigations, it will be pivotal to perform comprehensive preclinical biomarker investigations in animal models of HF in order to fully reveal the potential of these novel HF biomarkers.
Collapse
Affiliation(s)
- Arnold Piek
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Weijie Du
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands.,b Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , China
| | - Rudolf A de Boer
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Herman H W Silljé
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
39
|
Abstract
Heart failure is a growing cardiovascular disease with significant epidemiological, clinical, and societal implications and represents a high unmet need. Strong efforts are currently underway by academic and industrial researchers to develop novel treatments for heart failure. Biomarkers play an important role in patient selection and monitoring in drug trials and in clinical management. The present review gives an overview of the role of available molecular, imaging, and device-derived digital biomarkers in heart failure drug development and highlights capabilities and limitations of biomarker use in this context.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Recognition of subclinical myocardial dysfunction offers clinicians and patients an opportunity for early intervention and prevention of symptomatic cardiovascular disease. We review the data on novel biomarkers in subclinical heart disease in the general population with a focus on pathophysiology, recent observational or trial data, and potential applicability and pitfalls for clinical use. RECENT FINDINGS High-sensitivity cardiac troponin and natriuretic peptide assays are powerful markers of subclinical cardiac disease. Elevated levels of these biomarkers signify subclinical cardiac injury and hemodynamic stress and portend an adverse prognosis. Novel biomarkers of myocardial inflammation, fibrosis, and abnormal contraction are gaining momentum as predictors for incident heart failure, providing new insight into pathophysiologic mechanisms of cardiac disease. There has been exciting growth in both traditional and novel biomarkers of subclinical cardiac injury in recent years. Many biomarkers have demonstrated associations with relevant cardiovascular outcomes and may enhance the diagnostic and prognostic power of more conventional biomarkers. However, their use in "prime time" to identify patients with or at risk for subclinical cardiac dysfunction in the general population remains an open question. Strategic investigation into their clinical applicability in the context of clinical trials remains an area of ongoing investigation.
Collapse
Affiliation(s)
- Kamal Shemisa
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8830, USA
| | - Anish Bhatt
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8830, USA
| | - Daniel Cheeran
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8830, USA
| | - Ian J Neeland
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8830, USA.
| |
Collapse
|
41
|
Insulin-like growth factor-1 signaling in cardiac aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1931-1938. [PMID: 28847512 DOI: 10.1016/j.bbadis.2017.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in most developed countries. Aging is associated with enhanced risk of CVD. Insulin-like growth factor-1 (IGF-1) binds to its cognate receptor, IGF-1 receptor (IGF-1R), and exerts pleiotropic effects on cell growth, differentiation, development, and tissue repair. Importantly, IGF-1/IGF-1R signaling is implicated in cardiac aging and longevity. Cardiac aging is an intrinsic process that results in cardiac dysfunction, accompanied by molecular and cellular changes. In this review, we summarize the current state of knowledge regarding the link between the IGF-1/IGF-1R system and cardiac aging. The biological effects of IGF-1R and insulin receptor will be discussed and compared. Furthermore, we describe data regarding how deletion of IGF-1R in cardiomyocytes of aged knockout mice may delay the development of senescence-associated myocardial pathologies. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
|