1
|
Wang D, Wang J, Yin Z, Gong K, Zhang S, Zha Z, Duan Y. Polyoxometalates Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease by Activating the AMPK Signaling Pathway. Int J Nanomedicine 2024; 19:10839-10856. [PMID: 39479173 PMCID: PMC11522013 DOI: 10.2147/ijn.s485084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent chronic liver disorder, has garnered increasing attention globally owing to its associated health complications. However, the lack of available therapeutic medications and inadequate management of complications in metabolic dysfunction-associated steatohepatitis (MASH) present significant challenges. There are little studies evaluating the effectiveness of POM in treating MASLD. In this study, we synthesized polyoxometalates (POM) for potential treatment of MASLD. Methods We induced liver disease in mice using two approaches: feeding a high-fat diet (HFD) to establish MASLD or feeding a methionine-choline deficient (MCD) diet to induce hepatic lipotoxicity and MASH. Various metabolic parameters were detected, and biochemical and histological evaluations were conducted on MASLD. Western blotting, qRT-PCR and immunofluorescence assays were used to elucidate the molecular mechanism of POM in the treatment of MASLD. Results POM therapy resulted in significant improvements in weight gain, dyslipidemia, liver injury, and hepatic steatosis in mice fed a HFD. Notably, in a more severe dietary-induced MASH model with MCD diet, POM significantly attenuated hepatic lipid accumulation, inflammation, and fibrosis. POM treatment effectively attenuated palmitic acid and oleic acid-induced lipid accumulation in HepG2 and Huh7 cells by targeting the AMPK pathway to regulate lipid metabolism, which was confirmed by AMPK inhibitor. Additionally, the activation of AMPK signaling by POM suppressed the expression of lipid synthesis genes, including sterol regulatory element-binding protein 1c (SREBP1c) and SREBP2, while concurrently upregulating the expression of sirtuin 1 (SIRT1) to promote fatty acid oxidation. Conclusion These findings suggest that POM is a promising therapeutic strategy with high efficacy in multiple MASLD models.
Collapse
Affiliation(s)
- Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, People’s Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Jingguo Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Ke Gong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Shuang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| |
Collapse
|
2
|
Cao Y, Fang X, Sun M, Zhang Y, Shan M, Lan X, Zhu D, Luo H. Preventive and therapeutic effects of natural products and herbal extracts on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Phytother Res 2023; 37:3867-3897. [PMID: 37449926 DOI: 10.1002/ptr.7932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common condition that is prevalent in patients who consume little or no alcohol, and is characterized by excessive fat accumulation in the liver. The disease is becoming increasingly common with the rapid economic development of countries. Long-term accumulation of excess fat can lead to NAFLD, which represents a global health problem with no effective therapeutic approach. NAFLD is a complex, multifaceted pathological process that has been the subject of extensive research over the past few decades. Herbal medicines have gained attention as potential therapeutic agents to prevent and treat NAFLD due to their high efficacy and low risk of side effects. Our overview is based on a PubMed and Web of Science database search as of Dec 22 with the keywords: NAFLD/NASH Natural products and NAFLD/NASH Herbal extract. In this review, we evaluate the use of herbal medicines in the treatment of NAFLD. These natural resources have the potential to inform innovative drug research and the development of treatments for NAFLD in the future.
Collapse
Affiliation(s)
- Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Ding Y, Dai X, Bao M, Xing Y, Liu J, Zhao S, Liu E, Yuan Z, Bai L. Hepatic transcriptome signatures in mice and humans with nonalcoholic fatty liver disease. Animal Model Exp Med 2023; 6:317-328. [PMID: 37565549 PMCID: PMC10486336 DOI: 10.1002/ame2.12338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the main reason for cirrhosis and hepatocellular carcinoma. As a starting point for NAFLD, the treatment of nonalcoholic fatty liver (NAFL) is receiving increasing attention. Mice fed a high-fat diet (HFD) and hereditary leptin deficiency (ob/ob) mice are important NAFL animal models. However, the comparison of these mouse models with human NAFL is still unclear. METHODS In this study, HFD-fed mice and ob/ob mice were used as NAFL animal models. Liver histopathological characteristics were compared, and liver transcriptome from both mouse models was performed using RNA sequencing (RNA-seq). RNA-seq data obtained from the livers of NAFL patients was downloaded from the GEO database. Global gene expression profiles in the livers were further analyzed using functional enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. RESULTS Our results showed that the biochemical parameters of both mouse models and human NAFL were similar. Compared with HFD-fed mice, ob/ob mice were more similar in histologic appearance to NAFL patients. The liver transcriptome characteristics partly overlapped in mice and humans. Furthermore, in the NAFL pathway, most genes showed similar trends in mice and humans, thus demonstrating that both types of mice can be used as models for basic research on NAFL, considering the differences. CONCLUSION Our findings show that HFD-fed mice and ob/ob mice can mimic human NAFL partly in pathophysiological process. The comparative analysis of liver transcriptome profile in mouse models and human NAFL presented here provides insights into the molecular characteristics across these NAFL models.
Collapse
Affiliation(s)
- Yiming Ding
- Department of Laboratory Animal Science, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
- Department of CardiologyFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Institute of Cardiovascular Science, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xulei Dai
- Department of Laboratory Animal Science, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
- Institute of Cardiovascular Science, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anChina
| | - Miaoye Bao
- Department of Laboratory Animal Science, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
- Institute of Cardiovascular Science, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anChina
| | - Yuanming Xing
- Department of CardiologyFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Institute of Cardiovascular Science, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anChina
| | - Junhui Liu
- Department of Clinical LaboratoryFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Sihai Zhao
- Department of Laboratory Animal Science, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
- Institute of Cardiovascular Science, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anChina
| | - Enqi Liu
- Department of Laboratory Animal Science, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
- Institute of Cardiovascular Science, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anChina
| | - Zuyi Yuan
- Department of CardiologyFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Liang Bai
- Department of Laboratory Animal Science, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
- Institute of Cardiovascular Science, Translational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anChina
| |
Collapse
|
4
|
Mahmoudi A, Moallem SA, Johnston TP, Sahebkar A. Liver Protective Effect of Fenofibrate in NASH/NAFLD Animal Models. PPAR Res 2022; 2022:5805398. [PMID: 35754743 PMCID: PMC9232374 DOI: 10.1155/2022/5805398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is initiated by excessive fat buildup in the liver, affecting around 35% of the world population. Various circumstances contribute to the initiation and progression of NAFLD, and it encompasses a wide range of disorders, from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. Although several treatments have been proposed, there is no definitive cure for NAFLD. In recent decades, several medications related to other metabolic disorders have been evaluated in preclinical studies and in clinical trials due to the correlation of NAFLD with other metabolic diseases. Fenofibrate is a fibrate drug approved for dyslipidemia that could be used for modulation of hepatic fat accumulation, targeting peroxisome proliferator-activator receptors, and de novo lipogenesis. This drug offers potential therapeutic efficacy for NAFLD due to its capacity to decrease the accumulation of hepatic lipids, as well as its antioxidant, anti-inflammatory, and antifibrotic properties. To better elucidate the pathophysiological processes underlying NAFLD, as well as to test therapeutic agents/interventions, experimental animal models have been extensively used. In this article, we first reviewed experimental animal models that have been used to evaluate the protective effects of fenofibrate on NAFLD/NASH. Next, we investigated the impact of fenofibrate on the hepatic microcirculation in NAFLD and then summarized the beneficial effects of fenofibrate, as compared to other drugs, for the treatment of NAFLD. Lastly, we discuss possible adverse side effects of fenofibrate on the liver.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Du Y, Zhang W, Qiu H, Xiao C, Shi J, Reid LM, He Z. Mouse Models of Liver Parenchyma Injuries and Regeneration. Front Cell Dev Biol 2022; 10:903740. [PMID: 35721478 PMCID: PMC9198899 DOI: 10.3389/fcell.2022.903740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mice have genetic and physiological similarities with humans and a well-characterized genetic background that is easy to manipulate. Murine models have become the most favored, robust mammalian systems for experimental analyses of biological processes and disease conditions due to their low cost, rapid reproduction, a wealth of mouse strains with defined genetic conditions (both native ones as well as ones established experimentally), and high reproducibility with respect to that which can be done in experimental studies. In this review, we focus on murine models for liver, an organ with renown regenerative capacity and the organ most central to systemic, complex metabolic and physiological functions for mammalian hosts. Establishment of murine models has been achieved for all aspects of studies of normal liver, liver diseases, liver injuries, and regenerative repair mechanisms. We summarize key information on current mouse systems that partially model facets of clinical scenarios, particularly those associated with drug-induced acute or chronic liver injuries, dietary related, non-alcoholic liver disease (NAFLD), hepatitis virus infectious chronic liver diseases, and autoimmune hepatitis (AIH). In addition, we also include mouse models that are suitable for studying liver cancers (e.g., hepatocellular carcinomas), the aging process (senescence, apoptosis), and various types of liver injuries and regenerative processes associated with them.
Collapse
Affiliation(s)
- Yuan Du
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Canjun Xiao
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
| | - Jun Shi
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Lola M. Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Zhiying He
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| |
Collapse
|
6
|
Parlati L, Régnier M, Guillou H, Postic C. New targets for NAFLD. JHEP Rep 2021; 3:100346. [PMID: 34667947 PMCID: PMC8507191 DOI: 10.1016/j.jhepr.2021.100346] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease worldwide. It is characterised by steatosis, liver inflammation, hepatocellular injury and progressive fibrosis. Several preclinical models (dietary and genetic animal models) of NAFLD have deepened our understanding of its aetiology and pathophysiology. Despite the progress made, there are currently no effective treatments for NAFLD. In this review, we will provide an update on the known molecular pathways involved in the pathophysiology of NAFLD and on ongoing studies of new therapeutic targets.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- ASK1, apoptosis signal-regulating kinase 1
- CAP, controlled attenuation parameter
- ChREBP
- ChREBP, carbohydrate responsive element–binding protein
- FAS, fatty acid synthase
- FFA, free fatty acid
- FGF21, fibroblast growth factor-21
- FXR
- FXR, farnesoid X receptor
- GGT, gamma glutamyltransferase
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HSC, hepatic stellate cells
- HSL, hormone-sensitive lipase
- HVPG, hepatic venous pressure gradient
- IL-, interleukin-
- JNK, c-Jun N-terminal kinase
- LXR
- LXR, liver X receptor
- MCD, methionine- and choline-deficient
- MUFA, monounsaturated fatty acids
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- NEFA
- NEFA, non-esterified fatty acid
- PPARα
- PPARα, peroxisome proliferator-activated receptor-α
- PUFAs, polyunsaturated fatty acids
- PY, persons/years
- Phf2, histone demethylase plant homeodomain finger 2
- RCT, randomised controlled trial
- SCD1, stearoyl-CoA desaturase-1
- SFA, saturated fatty acid
- SREBP-1c
- SREBP-1c, sterol regulatory element–binding protein-1c
- TCA, tricarboxylic acid
- TLR4, Toll-like receptor 4
- TNF-α, tumour necrosis factor-α
- VLDL, very low-density lipoprotein
- animal models
- glucotoxicity
- lipotoxicity
Collapse
Affiliation(s)
- Lucia Parlati
- Université de Paris, Institut Cochin, CNRS, INSERM, F- 75014 Paris, France.,Hôpital Cochin, 24, rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Marion Régnier
- UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Hervé Guillou
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Catherine Postic
- Université de Paris, Institut Cochin, CNRS, INSERM, F- 75014 Paris, France
| |
Collapse
|
7
|
Tan X, Liu R, Zhang Y, Wang X, Wang J, Wang H, Zhao G, Zheng M, Wen J. Integrated analysis of the methylome and transcriptome of chickens with fatty liver hemorrhagic syndrome. BMC Genomics 2021; 22:8. [PMID: 33407101 PMCID: PMC7789526 DOI: 10.1186/s12864-020-07305-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation, a biochemical modification of cytosine, has an important role in lipid metabolism. Fatty liver hemorrhagic syndrome (FLHS) is a serious disease and is tightly linked to lipid homeostasis. Herein, we compared the methylome and transcriptome of chickens with and without FLHS. Results We found genome-wide dysregulated DNA methylation pattern in which regions up- and down-stream of gene body were hypo-methylated in chickens with FLHS. A total of 4155 differentially methylated genes and 1389 differentially expressed genes were identified. Genes were focused when a negative relationship between mRNA expression and DNA methylation in promoter and gene body were detected. Based on pathway enrichment analysis, we found expression of genes related to lipogenesis and oxygenolysis (e.g., PPAR signaling pathway, fatty acid biosynthesis, and fatty acid elongation) to be up-regulated with associated down-regulated DNA methylation. In contrast, genes related to cellular junction and communication pathways (e.g., vascular smooth muscle contraction, phosphatidylinositol signaling system, and gap junction) were inhibited and with associated up-regulation of DNA methylation. Conclusions In the current study, we provide a genome-wide scale landscape of DNA methylation and gene expression. The hepatic hypo-methylation feature has been identified with FLHS chickens. By integrated analysis, the results strongly suggest that increased lipid accumulation and hepatocyte rupture are central pathways that are regulated by DNA methylation in chickens with FLHS. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07305-3.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yonghong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xicai Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hailong Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Animal Models of Fibrosis in Nonalcoholic Steatohepatitis: Do They Reflect Human Disease? Adv Nutr 2020; 11:1696-1711. [PMID: 33191435 PMCID: PMC7666900 DOI: 10.1093/advances/nmaa081] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is one of the most common chronic liver diseases in the world, yet no pharmacotherapies are available. The lack of translational animal models is a major barrier impeding elucidation of disease mechanisms and drug development. Multiple preclinical models of NASH have been proposed and can broadly be characterized as diet-induced, deficiency-induced, toxin-induced, genetically induced, or a combination of these. However, very few models develop advanced fibrosis while still reflecting human disease etiology or pathology, which is problematic since fibrosis stage is considered the best prognostic marker in patients and an important endpoint in clinical trials of NASH. While mice and rats predominate the NASH research, several other species have emerged as promising models. This review critically evaluates animal models of NASH, focusing on their ability to develop advanced fibrosis while maintaining their relevance to the human condition.
Collapse
Affiliation(s)
- David H Ipsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | |
Collapse
|
9
|
Wang X, Li L, Wang H, Xiao F, Ning Q. Epoxyeicosatrienoic acids alleviate methionine‐choline‐deficient diet–induced non‐alcoholic steatohepatitis in mice. Scand J Immunol 2019; 90:e12791. [PMID: 31132306 DOI: 10.1111/sji.12791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojing Wang
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Lan Li
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Hongwu Wang
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Fang Xiao
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Qin Ning
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
10
|
Yu Y, Cai J, She Z, Li H. Insights into the Epidemiology, Pathogenesis, and Therapeutics of Nonalcoholic Fatty Liver Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801585. [PMID: 30828530 PMCID: PMC6382298 DOI: 10.1002/advs.201801585] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Indexed: 05/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease which affects ≈25% of the adult population worldwide, placing a tremendous burden on human health. The disease spectrum ranges from simple steatosis to steatohepatitis, fibrosis, and ultimately, cirrhosis and carcinoma, which are becoming leading reasons for liver transplantation. NAFLD is a complex multifactorial disease involving myriad genetic, metabolic, and environmental factors; it is closely associated with insulin resistance, metabolic syndrome, obesity, diabetes, and many other diseases. Over the past few decades, countless studies focusing on the investigation of noninvasive diagnosis, pathogenesis, and therapeutics have revealed different aspects of the mechanism and progression of NAFLD. However, effective pharmaceuticals are still in development. Here, the current epidemiology, diagnosis, animal models, pathogenesis, and treatment strategies for NAFLD are comprehensively reviewed, emphasizing the outstanding breakthroughs in the above fields and promising medications in and beyond phase II.
Collapse
Affiliation(s)
- Yao Yu
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Jingjing Cai
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Zhigang She
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Hongliang Li
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| |
Collapse
|
11
|
Macronutrients and the Adipose-Liver Axis in Obesity and Fatty Liver. Cell Mol Gastroenterol Hepatol 2019; 7:749-761. [PMID: 30763771 PMCID: PMC6463203 DOI: 10.1016/j.jcmgh.2019.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Macronutrient metabolism is a highly orchestrated process, with adipose tissue and liver each playing central roles in nutrient uptake, processing, transport, and storage. These 2 tissues form an important metabolic circuit, particularly as it relates to lipids as the primary storage form of excess energy. The function of the circuit is influenced by many factors, including the quantity and type of nutrients consumed and their impact on the overall health of the tissues. In this review we begin with a brief summary of the homeostatic disposition of lipids between adipose tissue and liver and how these processes can become dysregulated in obesity. We then explore how specific dietary nutrients and nutrient combinations can exert unique influences on the liver-adipose tissue axis.
Collapse
|
12
|
Cao YN, Baiyisaiti A, Wong CW, Hsu SH, Qi R. Polyurethane Nanoparticle-Loaded Fenofibrate Exerts Inhibitory Effects on Nonalcoholic Fatty Liver Disease in Mice. Mol Pharm 2018; 15:4550-4557. [PMID: 30188729 DOI: 10.1021/acs.molpharmaceut.8b00548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyurethane (PU) nanoparticles are potential drug carriers. We aimed to study the in vitro and in vivo efficacy of biodegradable PU nanoparticles loaded with fenofibrate (FNB-PU) on nonalcoholic fatty liver disease (NAFLD). FNB-PU was prepared by a green process, and its preventive effects on NAFLD were investigated on HepG2 cells and mice. FNB-PU showed sustained in vitro FNB release profile. Compared to FNB crude drug, FNB-PU significantly decreased triglyceride content in HepG2 cells incubated with oleic acid and in livers of mice with NAFLD induced by a methionine choline deficient diet, and increased plasma FNB concentration of the mice. FNB-PU increased absorption of FNB and therefore enhanced the inhibitory effects of FNB on NAFLD.
Collapse
Affiliation(s)
- Yi-Ni Cao
- Peking University Institute of Cardiovascular Sciences , Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems , Beijing , China
| | - Asiya Baiyisaiti
- School of Pharmacy , Shihezi University , Shihezi , Xinjiang , China
| | - Chui-Wei Wong
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences , Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems , Beijing , China
| |
Collapse
|
13
|
Santhekadur PK, Kumar DP, Sanyal AJ. Preclinical models of non-alcoholic fatty liver disease. J Hepatol 2018; 68:230-237. [PMID: 29128391 PMCID: PMC5775040 DOI: 10.1016/j.jhep.2017.10.031] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) can manifest as non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis (NASH). NASH is often associated with progressive fibrosis which can lead to cirrhosis and hepatocellular carcinoma (HCC). NASH is increasing as an aetiology for end-stage liver disease as well as HCC. There are currently no approved therapies for NASH. A major barrier to development of therapeutics for NASH is the lack of preclinical models of disease that are appropriately validated to represent the biology and outcomes of human disease. Many in vitro and animal models have been developed. In vitro models do not fully capture the hepatic and extrahepatic milieu of human NASH and large animal models are expensive and logistically difficult to use. Therefore, there is considerable interest in the development and validation of mouse models for NAFLD, including NASH. Several models based on varying genetic or dietary manipulations have been developed. However, the majority do not recreate steatohepatitis, strictly defined as the presence of hepatocellular ballooning with or without Mallory-Denk bodies, accompanied by inflammation in the presence of macrovesicular steatosis. Others lack validation against human disease. Herein, we describe the best practices in development of mouse models of NASH. We further review existing models and the literature supporting their use as a surrogate for human disease. Finally, data on models to evaluate protective genes are discussed. It is hoped that this review will provide guidance for the interpretation of data derived from mouse models and also for the development and validation of newer models.
Collapse
|
14
|
Duwaerts CC, Amin AM, Siao K, Her C, Fitch M, Beysen C, Turner SM, Goodsell A, Baron JL, Grenert JP, Cho SJ, Maher JJ. Specific Macronutrients Exert Unique Influences on the Adipose-Liver Axis to Promote Hepatic Steatosis in Mice. Cell Mol Gastroenterol Hepatol 2017; 4. [PMID: 28649594 PMCID: PMC5472193 DOI: 10.1016/j.jcmgh.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The factors that distinguish metabolically healthy obesity from metabolically unhealthy obesity are not well understood. Diet has been implicated as a determinant of the unhealthy obesity phenotype, but which aspects of the diet induce dysmetabolism are unknown. The goal of this study was to investigate whether specific macronutrients or macronutrient combinations provoke dysmetabolism in the context of isocaloric, high-energy diets. METHODS Mice were fed 4 high-energy diets identical in calorie and nutrient content but different in nutrient composition for 3 weeks to 6 months. The test diets contained 42% carbohydrate (sucrose or starch) and 42% fat (oleate or palmitate). Weight and glucose tolerance were monitored; blood and tissues were collected for histology, gene expression, and immunophenotyping. RESULTS Mice gained weight on all 4 test diets but differed significantly in other metabolic outcomes. Animals fed the starch-oleate diet developed more severe hepatic steatosis than those on other formulas. Stable isotope incorporation showed that the excess hepatic steatosis in starch-oleate-fed mice derived from exaggerated adipose tissue lipolysis. In these mice, adipose tissue lipolysis coincided with adipocyte necrosis and inflammation. Notably, the liver and adipose tissue abnormalities provoked by starch-oleate feeding were reproduced when mice were fed a mixed-nutrient Western diet with 42% carbohydrate and 42% fat. CONCLUSIONS The macronutrient composition of the diet exerts a significant influence on metabolic outcome, independent of calories and nutrient proportions. Starch-oleate appears to cause hepatic steatosis by inducing progressive adipose tissue injury. Starch-oleate phenocopies the effect of a Western diet; consequently, it may provide clues to the mechanism whereby specific nutrients cause metabolically unhealthy obesity.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Amin M. Amin
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Kevin Siao
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Chris Her
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California
| | | | | | - Amanda Goodsell
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - Jody L. Baron
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California
| | - James P. Grenert
- The Liver Center, University of California, San Francisco, California,Department of Pathology, University of California, San Francisco, California
| | - Soo-Jin Cho
- Department of Pathology, University of California, San Francisco, California
| | - Jacquelyn J. Maher
- Department of Medicine, University of California, San Francisco, California,The Liver Center, University of California, San Francisco, California,Correspondence Address correspondence to: Jacquelyn J. Maher, MD, Liver Center Laboratory, 1001 Potrero Avenue, Building 40, Room 4102, San Francisco, California 94110. fax: (415) 641-0517.Liver Center Laboratory1001 Potrero Avenue, Building 40, Room 4102San FranciscoCalifornia 94110
| |
Collapse
|
15
|
Mann JP, Feldstein AE, Nobili V. Update on lipid species and paediatric nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2017; 20:110-116. [PMID: 27906700 DOI: 10.1097/mco.0000000000000346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW To describe the recent advances in our understanding of fatty acids and lipids in paediatric nonalcoholic fatty liver disease (NAFLD) and their future implications. RECENT FINDINGS Data have been accumulated to suggest that ceramides are the main drivers of hepatic insulin resistance in NAFLD, and inhibition of ceramide synthesis improves histology in mice.Saturated fatty acids formed by de novo lipogenesis generate increased lipotoxicity compared with dietary-derived saturated fatty acids.Hepatic lipogenesis and associated insulin resistance have been found to be influenced by several novel proteins, including E2F1, cyclic AMP response element binding protein transcriptional coactivator 2, Raptor, and eukaryotic initiation factor 6. There are encouraging data from animal models that modulation of these could be therapeutic targets.Human and animal metabolomics and lipidomics data have been used to generate a lipid signature for NAFLD and nonalcoholic steatohepatitis. Serum lipidomics appears to correlate with hepatic lipidomics.Therapeutic trials of polyunsaturated fatty acids in children have had mixed results, with some reductions in noninvasive biomarkers. SUMMARY Multiple new pathways for drug targets have been identified, and use of lipidomics is likely to become a noninvasive method for assessing disease. However, much of the data for paediatric NAFLD are extrapolated from adult or animal studies.
Collapse
Affiliation(s)
- Jake P Mann
- aDepartment of Paediatrics, University of Cambridge, Cambridge, UK bDepartment of Pediatric Gastroenterology, University of California San Diego (UCSD) cRady Children's Hospital, San Diego, California, USA dHepatometabolic Unit eLiver Research Unit, Bambino Gesu Hospital, IRCCS, Rome, Italy
| | | | | |
Collapse
|
16
|
Pierce AA, Duwaerts CC, Soon RK, Siao K, Grenert JP, Fitch M, Hellerstein MK, Beysen C, Turner SM, Maher JJ. Isocaloric manipulation of macronutrients within a high-carbohydrate/moderate-fat diet induces unique effects on hepatic lipogenesis, steatosis and liver injury. J Nutr Biochem 2015; 29:12-20. [PMID: 26895660 DOI: 10.1016/j.jnutbio.2015.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
Abstract
Diets containing excess carbohydrate and fat promote hepatic steatosis and steatohepatitis in mice. Little is known, however, about the impact of specific carbohydrate/fat combinations on liver outcome. This study was designed to determine whether high-energy diets with identical caloric density but different carbohydrate and fat composition have unique effects on the liver. Four experimental diets were formulated with 60%kcal carbohydrate and 20%kcal fat, each in nearly pure form from a single source: starch-oleate, starch-palmitate, sucrose-oleate and sucrose-palmitate. The diets were fed to mice for 3 or 12 weeks for analysis of lipid metabolism and liver injury. All mice developed hepatic steatosis over 12 weeks, but mice fed the sucrose-palmitate diet accumulated more hepatic lipid than those in the other three experimental groups. The exaggerated lipid accumulation in sucrose-palmitate-fed mice was attributable to a disproportionate rise in hepatic de novo lipogenesis. These mice accrued more hepatic palmitate and exhibited more evidence of liver injury than any of the other experimental groups. Interestingly, lipogenic gene expression in mice fed the custom diets did not correlate with actual de novo lipogenesis. In addition, de novo lipogenesis rose in all mice between 3 and 12 weeks, without feedback inhibition from hepatic steatosis. The pairing of simple sugar (sucrose) and saturated fat (palmitate) in a high-carbohydrate/moderate-fat diet induces more de novo lipogenesis and liver injury than other carbohydrate/fat combinations. Diet-induced liver injury correlates positively with hepatic de novo lipogenesis and is not predictable by isolated analysis of lipogenic gene expression.
Collapse
Affiliation(s)
- Andrew A Pierce
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - Caroline C Duwaerts
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - Russell K Soon
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - Kevin Siao
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - James P Grenert
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; KineMed, Inc., Emeryville, CA 94608, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; KineMed, Inc., Emeryville, CA 94608, USA
| | | | | | - Jacquelyn J Maher
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA.
| |
Collapse
|