1
|
Dai DLY, Petersen C, Turvey SE. Reduce, reinforce, and replenish: safeguarding the early-life microbiota to reduce intergenerational health disparities. Front Public Health 2024; 12:1455503. [PMID: 39507672 PMCID: PMC11537995 DOI: 10.3389/fpubh.2024.1455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Socioeconomic (SE) disparity and health inequity are closely intertwined and associated with cross-generational increases in the rates of multiple chronic non-communicable diseases (NCDs) in North America and beyond. Coinciding with this social trend is an observed loss of biodiversity within the community of colonizing microbes that live in and on our bodies. Researchers have rightfully pointed to the microbiota as a key modifiable factor with the potential to ease existing health inequities. Although a number of studies have connected the adult microbiome to socioeconomic determinants and health outcomes, few studies have investigated the role of the infant microbiome in perpetuating these outcomes across generations. It is an essential and important question as the infant microbiota is highly sensitive to external forces, and observed shifts during this critical window often portend long-term outcomes of health and disease. While this is often studied in the context of direct modulators, such as delivery mode, family size, antibiotic exposure, and breastfeeding, many of these factors are tied to underlying socioeconomic and/or cross-generational factors. Exploring cross-generational socioeconomic and health inequities through the lens of the infant microbiome may provide valuable avenues to break these intergenerational cycles. In this review, we will focus on the impact of social inequality in infant microbiome development and discuss the benefits of prioritizing and restoring early-life microbiota maturation for reducing intergenerational health disparities.
Collapse
Affiliation(s)
| | | | - Stuart E. Turvey
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Alemu BK, Lee MW, Leung MBW, Lee WF, Wang Y, Wang CC, Lau SL. Preventive effect of prenatal maternal oral probiotic supplementation on neonatal jaundice (POPS Study): A protocol for the randomised double-blind placebo-controlled clinical trial. BMJ Open 2024; 14:e083641. [PMID: 38851232 PMCID: PMC11163667 DOI: 10.1136/bmjopen-2023-083641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
INTRODUCTION Neonatal jaundice is a common and life-threatening health problem in neonates due to overaccumulation of circulating unconjugated bilirubin. Gut flora has a potential influence on bilirubin metabolism. The infant gut microbiome is commonly copied from the maternal gut. During pregnancy, due to changes in dietary habits, hormones and body weight, maternal gut dysbiosis is common, which can be stabilised by probiotics supplementation. However, whether probiotic supplements can reach the baby through the mother and reduce the incidence of neonatal jaundice has not been studied yet. Therefore, we aim to evaluate the effect of prenatal maternal probiotic supplementation on the incidence of neonatal jaundice. METHODS AND ANALYSIS This is a randomised double-blind placebo-controlled clinical trial among 94 pregnant women (47 in each group) in a tertiary hospital in Hong Kong. Voluntary eligible participants will be recruited between 28 and 35 weeks of gestation. Computer-generated randomisation and allocation to either the intervention or control group will be carried out. Participants will take either one sachet of Vivomixx (450 billion colony-forming units per sachet) or a placebo per day until 1 week post partum. Neither the study participants nor researchers will know the randomisation and allocation. The intervention will be initiated at 36 weeks of gestation. Neonatal bilirubin level will be measured to determine the primary outcome (hyperbilirubinaemia) while the metagenomic microbiome profile of breast milk and maternal and infant stool samples as well as pregnancy outcomes will be secondary outcomes. Binary logistic and linear regressions will be carried out to assess the association of the microbiome data with different clinical outcomes. ETHICS AND DISSEMINATION Ethics approval is obtained from the Joint CUHK-NTEC Clinical Research Ethics Committee, Hong Kong (CREC Ref: 2023.100-T). Findings will be published in peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER NCT06087874.
Collapse
Affiliation(s)
- Bekalu Kassie Alemu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - May Wing Lee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Maran Bo Wah Leung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wing Fong Lee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- Institute of Health Sciences, The Chinese University, Hong Kong, Hong Kong SAR
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, Joint Laboratory for Reproductive Medicine, The Chinese University, Hong Kong, Hong Kong SAR
| | - So Ling Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
3
|
Lopes PC, Gomes ATPC, Mendes K, Blanco L, Correia MJ. Unlocking the potential of probiotic administration in caries management: a systematic review. BMC Oral Health 2024; 24:216. [PMID: 38341538 PMCID: PMC10859023 DOI: 10.1186/s12903-024-03893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/14/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The use of prebiotics and/or probiotic bacteria with the potential to modulate the oral ecosystem may play an important role in the prevention and management of dental caries. To assess the evidence of the potential of pre/probiotics both in the prevention and treatment of dental caries, we focused on the PICO question "In individuals with caries, after probiotic administration, is there an improvement in outcomes directly related to caries risk and development?". METHODS An extensive systematic search was conducted in electronic databases PubMed, Web of Science, Scopus and Cochrane, to identify articles with relevant data. This systematic review included trials performed in Humans; published in English; including the observation of patients with caries, with clear indication of the probiotic used and measuring the outcomes directly involved with the cariogenic process, including the quantification of bacteria with cariogenic potential. To evaluate the methodological quality of the studies, the critical assessment tool from the Joanna Briggs Institute was used. RESULTS Eight hundred and fifty articles, potentially relevant, were identified. Following PRISMA guidelines 14 articles were included in this systematic review. Outcomes such as reduction of cariogenic microorganism counts, salivary pH, buffer capacity, and caries activity were assessed. The probiotic most often referred with beneficial results in dental caries outcomes is Lacticaseibacillus rhamnosus. Regarding the most used administration vehicle, in studies with positive effects on the caries management, probiotic supplemented milk could be considered the best administration vehicle. CONCLUSIONS Evidence suggests a beneficial effect of probiotic supplemented milk (Lacticaseibacillus rhamnosus) as an adjuvant for caries prevention and management. However, comparable evidence is scarce and better designed and comparable studies are needed.
Collapse
Affiliation(s)
- Pedro C Lopes
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, 3504-505, Portugal
| | - Ana T P C Gomes
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, 3504-505, Portugal
| | - Karina Mendes
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, 3504-505, Portugal
| | - Letícia Blanco
- Department of Surgery, Universidad de Salamanca, Salamanca, Spain
| | - Maria J Correia
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, 3504-505, Portugal.
| |
Collapse
|
4
|
Catassi G, Aloi M, Giorgio V, Gasbarrini A, Cammarota G, Ianiro G. The Role of Diet and Nutritional Interventions for the Infant Gut Microbiome. Nutrients 2024; 16:400. [PMID: 38337684 PMCID: PMC10857663 DOI: 10.3390/nu16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infant gut microbiome plays a key role in the healthy development of the human organism and appears to be influenced by dietary practices through multiple pathways. First, maternal diet during pregnancy and infant nutrition significantly influence the infant gut microbiota. Moreover, breastfeeding fosters the proliferation of beneficial bacteria, while formula feeding increases microbial diversity. The timing of introducing solid foods also influences gut microbiota composition. In preterm infants the gut microbiota development is influenced by multiple factors, including the time since birth and the intake of breast milk, and interventions such as probiotics and prebiotics supplementation show promising results in reducing morbidity and mortality in this population. These findings underscore the need for future research to understand the long-term health impacts of these interventions and for further strategies to enrich the gut microbiome of formula-fed and preterm infants.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
5
|
Cao Y, Zhang L, Xiong F, Guo X, Kan X, Song S, Liang B, Liang B, Yu L, Zheng C. Effect of probiotics and fecal microbiota transplantation in dirty rats with established primary liver cancer. Future Microbiol 2024; 19:117-129. [PMID: 37934064 DOI: 10.2217/fmb-2022-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 09/15/2023] [Indexed: 11/08/2023] Open
Abstract
Background: The modulating effects of probiotics and fecal microbiota transplantation (FMT) on gut flora and their direct antitumor effects remain unclear in dirty rats with established primary liver cancer. Materials & methods: Probiotics (VSL#3), FMT or tap water were administrated to three groups. Fresh fecal samples were collected from all groups for 16S rRNA analysis. Liver cancer tissues were collected to evaluate the tumor response. Results: Significant modulation of β-diversity (p = 0.023) was observed after FMT. VSL#3 and FMT had no inhibitory effect on tumors, but the density of Treg cells decreased (p = 0.031) in the FMT group. Conclusion: FMT is a more attractive alternative to probiotics in dirty rats with liver cancer.
Collapse
Affiliation(s)
- Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Fu Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Bo Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Bin Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Li Yu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| |
Collapse
|
6
|
Li XH, Liu L, Wu WZ. Trans-Anethole Alleviates DSS-Induced Ulcerative Colitis by Remodeling the Intestinal Flora to Regulate Immunity and Bile Acid Metabolism. Mediators Inflamm 2023; 2023:4188510. [PMID: 37780399 PMCID: PMC10539094 DOI: 10.1155/2023/4188510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023] Open
Abstract
Ulcerative colitis (UC) is the most common inflammatory bowel disease (IBD); it is incurable, and the treatment is expensive. Trans-anethole (TA), the main component of fennel, exhibits various biological activities. An increasing number of studies have demonstrated the efficacy of herbal active ingredients in the treatment of UC. This study aimed to investigate the effect and mechanism of TA in UC. In this study, we have experimented on mice with dextran sulfate sodium salt (DSS)-induced UC. The TA group was gavaged with 62.5 mg/kg TA by gavage once daily on days 8-14. To observe the effect of TA on the colon tissue, various investigations were performed, including western blot and immunohistochemistry for intestinal barrier protein expression, TUNEL staining for apoptosis, western blot, and ELISA for inflammation level, flow cytometry for Th17/Treg, LC-MS for blood bile acid content, GC-MS for blood fatty acid content, and 16s RNA for intestinal contents. TA alleviated weight loss in mice with UC; increased colon length; alleviated intestinal mucosal damage; upregulated claudin-1, occludin, and ZO-1 protein expression levels; reduced inflammatory factors in the colon and serum; and alleviated apoptosis. TA reduced fatty acid and bile acid levels by inhibiting colony abundance and reducing Th17/Treg cell differentiation in the colon. We found that TA alleviates DSS-induced UC by remodeling the intestinal flora to regulate immunity and bile acid metabolism.
Collapse
Affiliation(s)
- Xu-Hui Li
- College of life Science and Technology, Harbin Normal University, Harbin, China
- Department of Gastroenterology, Heilongjiang Red Cross (General Forest Industry) Hospital, Harbin, China
| | - Li Liu
- Department of General Medicine, People's Hospital of Dongfanghong Forestry Bureau, Fuzhou, China
| | - Wen-Zhong Wu
- Department of Pediatrics, Heilongjiang Red Cross (General Forest Industry) Hospital, Harbin, China
| |
Collapse
|
7
|
Huang T, Li Z, Tye KD, Chan SN, Tang X, Luo H, Wang D, Zhou J, Duan X, Xiao X. Probiotic supplementation during pregnancy alters gut microbial networks of pregnant women and infants. Front Microbiol 2022; 13:1042846. [PMID: 36532501 PMCID: PMC9751803 DOI: 10.3389/fmicb.2022.1042846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Probiotic supplementation has been popular and widespread, yet we still lack a comprehensive understanding of how probiotic supplementation during pregnancy affects the gut microbial networks of pregnant women and infants. In this study, we firstly used network analysis to compare the gut microbiota of pregnant women with and without probiotic supplementation, as well as their infants. METHODS Thirty-one pairs of healthy pregnant women and infants were recruited and randomly divided into the probiotic group (15 mother-infant pairs) and the control group (16 mother-infant pairs). Pregnant women in the probiotic group consumed combined probiotics from 32 weeks to delivery. Fecal samples were collected from pregnant women and infants at several time points. Gut microbiota was evaluated using 16S rRNA gene sequencing. Intestinal microbial network and topological properties were performed using the molecular ecological network analysis. RESULTS No significant difference was found between the probiotic and control groups on the microbial alpha and beta diversity. As the gestational age increased, the total links, average degree, average clustering coefficient, robustness, and the proportion of positive correlations were increased in pregnant women with probiotics administration. In contrast, these indices were decreased in infants in the probiotic group. CONCLUSION Probiotic supplement does not change the microbial diversity of pregnant women and infants, but significantly alters the intestinal microbial network structure and properties. Although pregnant women have more complicated and stable networks after probiotic administration, their infants have less stable networks.
Collapse
Affiliation(s)
- Ting Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sze Ngai Chan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongju Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xia Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Kwok KO, Fries LR, Silva-Zolezzi I, Thakkar SK, Iroz A, Blanchard C. Effects of Probiotic Intervention on Markers of Inflammation and Health Outcomes in Women of Reproductive Age and Their Children. Front Nutr 2022; 9:889040. [PMID: 35734372 PMCID: PMC9207510 DOI: 10.3389/fnut.2022.889040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
The human intestinal microbiota has been shown to be modulated during inflammatory conditions. Probiotic administration has been shown to affect the immune system and cytokine expression which can affect inflammation and health outcomes. There seems to be an association between the mother's intestinal microbiota and inflammation biomarkers, both of which may contribute to newborn early life immune and metabolic programming and impact short and long-term health outcomes. Probiotic supplementation during pregnancy has been shown to influence metabolic health, immunity, and gastrointestinal health of the mother, and can also have carry-over benefits to infants such as infant allergy risk reduction. Therefore, this review focuses on the evidence of probiotic administration in women of reproductive age, including during pregnancy and its impact on inflammatory markers and on maternal and infant health. We performed a PubMed search for articles published in English in the last 20 years. Immune markers were narrowed to serum and breast milk levels of TNF-α, IL-6 and TGF-β, IgA, and IL-10. Studies that investigated the beneficial effects of interventions in women with gestational diabetes mellitus, polycystic ovarian syndrome, and infant allergy management are summarized. These results show a beneficial or neutral effect on selected health outcomes and that it is safe for woman and their infants. The effect of probiotics on modulation of inflammatory markers was probiotic specific. More research is needed to further our understanding of the mechanisms underlying the effects of probiotics on inflammation and how these effects improve health outcomes.
Collapse
Affiliation(s)
- Kah Onn Kwok
- Food Science and Technology Programme, National University of Singapore, Singapore, Singapore
- Nestlé Research, Singapore, Singapore
| | | | | | | | - Alison Iroz
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Carine Blanchard
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
- *Correspondence: Carine Blanchard
| |
Collapse
|
9
|
Sadeghirashed S, Kazemi F, Taheri S, Ebrahimi MT, Arasteh J. A novel probiotic strain exerts therapeutic effects on mouse model of multiple sclerosis by altering the expression of inflammasome and IDO genes and modulation of T helper cytokine profile. Metab Brain Dis 2022; 37:197-207. [PMID: 34757579 DOI: 10.1007/s11011-021-00857-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis is an inflammatory demyelinating disease that commences to neuronal cell destruction. Recently, a promising evidence of synergic effects of combined supplementation with vitamin D and probiotics in modulating the gut microbiota and metabolome is emerging. Bacillus Coagulans IBRC-M10791 as a novel strain was chosen, prevention and treatment impacts of regular administered were studied in Cuprizone-induced C57bl/6 mouse of demyelination. The mice were divided into six groups and received a daily dose of cuprizone or probiotics. To investigate the effect of probiotic, the IDO-1, CYP27B1, NLRP1, NLRP3, and AIM2 expression were estimated by Real-Time PCR, and IL-4, IL-17, IFN-gamma, and TGF-beta cytokines were measured by ELISA. The results showed that there was significant decrease in IL-17 and IFN-γ and modulatory effects on IL-4 and TGF-β. On the other hand, we demonstrated that there are significant decrease for expression of IDO-1, CYP27b1, NLRP1, NLRP3 and AIM2 genes in prevention and treatment groups compared to cuprizone group. Also, a significant enhancement in rate of remyelination and alternations proved by LFB staining and Y-Maze test. In conclusion, our study provides insight into how the therapeutic effect of the chosen strain of probiotic was correlated with the modulation of the level of inflammatory and anti-inflammatory cytokines. Further, we demonstrated that the expression of genes related to Tryptophan, Vitamin D and Inflammasome pathways could be affected by B.coagulans. Our study could be beneficial to provide a novel Co-therapeutic strategy for Multiple sclerosis.
Collapse
Affiliation(s)
- Saba Sadeghirashed
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Kazemi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saba Taheri
- Department of Biology, Faculty of Sciences, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Maryam Tajabadi Ebrahimi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Arasteh
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Deng M, Wu X, Duan X, Xu J, Yang X, Sheng X, Lou P, Shao C, Lv C, Yu Z. Lactobacillus paracasei L9 improves colitis by expanding butyrate-producing bacteria that inhibit the IL-6/STAT3 signaling pathway. Food Funct 2021; 12:10700-10713. [PMID: 34605504 DOI: 10.1039/d1fo02077c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammation that is currently incurable. Increasing evidence indicates that supplementation with probiotics could improve the symptoms of IBD. It is scientifically significant to identify novel and valid strains for treating IBD. It has been reported that the probiotic Lactobacillus paracasei L9 (L9), which is identified from the gut of healthy centenarians, can modulate host immunity and plays an anti-allergic role. Here, we demonstrated that L9 alleviates the pathological phenotypes of experimental colitis by expanding the abundance of butyrate-producing bacteria. Oral administration of sodium butyrate in experimental colitis recapitulates the L9 anti-inflammatory phenotypes. Mechanistically, sodium butyrate ameliorated the inflammatory responses by inhibiting the IL-6/STAT3 signaling pathway in colitis. Overall, these findings demonstrated that L9 alleviates the DSS-induced colitis development by enhancing the abundance of butyrate-producing bacterial strains that produce butyrate to suppress the IL-6/STAT3 signaling pathway, providing new insight into a promising therapeutic target for the remission of IBD.
Collapse
Affiliation(s)
- Min Deng
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Xi Wu
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Xiaoyue Duan
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Xu Yang
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Pengbo Lou
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Chunlei Shao
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Cong Lv
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China.
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Chen X, Wu Y, Hu Y, Zhang Y, Wang S. Lactobacillus rhamnosus GG Reduces β-conglycinin-Allergy-Induced Apoptotic Cells by Regulating Bacteroides and Bile Secretion Pathway in Intestinal Contents of BALB/c Mice. Nutrients 2020; 13:nu13010055. [PMID: 33375432 PMCID: PMC7823992 DOI: 10.3390/nu13010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Allergy can cause intestinal damage, including through cell apoptosis. In this study, intestinal cell apoptosis was first observed in the β-conglycinin (β-CG) allergy model, and the effect of Lactobacillus rhamnosus GG (LGG) on reducing apoptosis of cells in the intestine and its underlying mechanisms were further investigated. Allergic mice received oral LGG daily, and intestinal tissue apoptotic cells, gut microbiota, and metabolites were evaluated six and nine days after intervention. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis revealed that LGG intervention could reduce the incidence of cell apoptosis more effectively than natural recovery (NR). The results of 16S rRNA analysis indicated that LGG intervention led to an increase in the relative abundance of Bacteroides. Metabolite analysis of intestinal contents indicated that histamine, N-acetylhistamine, N(α)-γ-glutamylhistamine, phenylalanine, tryptophan, arachidonic acid malate, and xanthine were significantly decreased, and deoxycholic acid, lithocholic acid were significantly increased after the LGG intervention on β-CG allergy; the decreases in histamine and N(α)-γ-glutamylhistamine were significant compared with those of NR. In conclusion, LGG reduces apoptosis of cells induced by β-CG allergy, which may be related to regulation of Bacteroides and the bile secretion pathway.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (Y.H.); (S.W.)
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (Y.H.); (S.W.)
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (Y.H.); (S.W.)
- Correspondence: ; Tel.: +86-22-85358445
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (Y.H.); (S.W.)
| |
Collapse
|
12
|
Puccetti M, Xiroudaki S, Ricci M, Giovagnoli S. Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline? Pharmaceutics 2020; 12:E624. [PMID: 32635461 PMCID: PMC7408102 DOI: 10.3390/pharmaceutics12070624] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mismanagement of bacterial infection therapies has undermined the reliability and efficacy of antibiotic treatments, producing a profound crisis of the antibiotic drug market. It is by now clear that tackling deadly infections demands novel strategies not only based on the mere toxicity of anti-infective compounds. Host-directed therapies have been the first example as novel treatments with alternate success. Nevertheless, recent advances in the human microbiome research have provided evidence that compounds produced by the microbial metabolism, namely postbiotics, can have significant impact on human health. Such compounds target the host-microbe-pathogen interface rescuing biotic and immune unbalances as well as inflammation, thus providing novel therapeutic opportunities. This work discusses critically, through literature review and personal contributions, these novel nonantibiotic treatment strategies for infectious disease management and resistance prevention, which could represent a paradigm change rocking the foundation of current antibiotic therapy tenets.
Collapse
Affiliation(s)
| | | | | | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy; (M.P.); (S.X.); (M.R.)
| |
Collapse
|
13
|
De Filippis F, Pasolli E, Ercolini D. The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiol Rev 2020; 44:454-489. [PMID: 32556166 PMCID: PMC7391071 DOI: 10.1093/femsre/fuaa015] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Lactic acid bacteria (LAB) are present in foods, the environment and the animal gut, although fermented foods (FFs) are recognized as the primary niche of LAB activity. Several LAB strains have been studied for their health-promoting properties and are employed as probiotics. FFs are recognized for their potential beneficial effects, which we review in this article. They are also an important source of LAB, which are ingested daily upon FF consumption. In this review, we describe the diversity of LAB and their occurrence in food as well as the gut microbiome. We discuss the opportunities to study LAB diversity and functional properties by considering the availability of both genomic and metagenomic data in public repositories, as well as the different latest computational tools for data analysis. In addition, we discuss the role of LAB as potential probiotics by reporting the prevalence of key genomic features in public genomes and by surveying the outcomes of LAB use in clinical trials involving human subjects. Finally, we highlight the need for further studies aimed at improving our knowledge of the link between LAB-fermented foods and the human gut from the perspective of health promotion.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 80055, Portici (NA)Italy
- Task Force on Microbiome Studies, Corso Umberto I, 40, 80100, Napoli, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 80055, Portici (NA)Italy
- Task Force on Microbiome Studies, Corso Umberto I, 40, 80100, Napoli, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 80055, Portici (NA)Italy
- Task Force on Microbiome Studies, Corso Umberto I, 40, 80100, Napoli, Italy
| |
Collapse
|
14
|
Gargari G, Taverniti V, Koirala R, Gardana C, Guglielmetti S. Impact of a Multistrain Probiotic Formulation with High Bifidobacterial Content on the Fecal Bacterial Community and Short-Chain Fatty Acid Levels of Healthy Adults. Microorganisms 2020; 8:microorganisms8040492. [PMID: 32235660 PMCID: PMC7232159 DOI: 10.3390/microorganisms8040492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
The consumption of probiotic products is continually increasing, supported by growing scientific evidence of their efficacy. Considering that probiotics may primarily affect health (either positively or negatively) through gut microbiota modulation, the first aspect that should be evaluated is their impact on the intestinal microbial ecosystem. In this study, we longitudinally analyzed the bacterial taxonomic composition and organic acid levels in four fecal samples collected over the course of four weeks from 19 healthy adults who ingested one capsule a day for two weeks of a formulation containing at least 70 billion colony-forming units, consisting of 25% lactobacilli and 75% Bifidobacterium animalis subsp. lactis. We found that 16S rRNA gene profiling showed that probiotic intake only induced an increase in a single operational taxonomic unit ascribed to B. animalis, plausibly corresponding to the ingested bifidobacterial strain. Furthermore, liquid chromatography/mass spectrometry revealed a significant increase in the lactate and acetate/butyrate ratio and a trend toward a decrease in succinate following probiotic administration. The presented results indicate that the investigated probiotic formulation did not alter the intestinal bacterial ecosystem of healthy adults and suggest its potential ability to promote colonization resistance in the gut through a transient increase in fecal bifidobacteria, lactic acid, and the acetate/butyrate ratio.
Collapse
Affiliation(s)
- Giorgio Gargari
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (V.T.); (R.K.)
| | - Valentina Taverniti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (V.T.); (R.K.)
| | - Ranjan Koirala
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (V.T.); (R.K.)
| | - Claudio Gardana
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy;
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (V.T.); (R.K.)
- Correspondence: ; Tel.: +39-02-5031-9136
| |
Collapse
|
15
|
Agnihotry S, Sarangi AN, Aggarwal R. Construction & assessment of a unified curated reference database for improving the taxonomic classification of bacteria using 16S rRNA sequence data. Indian J Med Res 2020; 151:93-103. [PMID: 32134020 PMCID: PMC7055167 DOI: 10.4103/ijmr.ijmr_220_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background & objectives: For bacterial community analysis, 16S rRNA sequences are subjected to taxonomic classification through comparison with one of the three commonly used databases [Greengenes, SILVA and Ribosomal Database Project (RDP)]. It was hypothesized that a unified database containing fully annotated, non-redundant sequences from all the three databases, might provide better taxonomic classification during analysis of 16S rRNA sequence data. Hence, a unified 16S rRNA database was constructed and its performance was assessed by using it with four different taxonomic assignment methods, and for data from various hypervariable regions (HVRs) of 16S rRNA gene. Methods: We constructed a unified 16S rRNA database (16S-UDb) by merging non-ambiguous, fully annotated, full-length 16S rRNA sequences from the three databases and compared its performance in taxonomy assignment with that of three original databases. This was done using four different taxonomy assignment methods [mothur Naïve Bayesian Classifier (mothur-nbc), RDP Naïve Bayesian Classifier (rdp-nbc), UCLUST, SortMeRNA] and data from 13 regions of 16S rRNA [seven hypervariable regions (HVR) (V2-V8) and six pairs of adjacent HVRs]. Results: Our unified 16S rRNA database contained 13,078 full-length, fully annotated 16S rRNA sequences. It could assign genus and species to larger proportions (90.05 and 46.82%, respectively, when used with mothur-nbc classifier and the V2+V3 region) of sequences in the test database than the three original 16S rRNA databases (70.88-87.20% and 10.23-24.28%, respectively, with the same classifier and region). Interpretation & conclusions: Our results indicate that for analysis of bacterial mixtures, sequencing of V2-V3 region of 16S rRNA followed by analysis of the data using the mothur-nbc classifier and our 16S-UDb database may be preferred.
Collapse
Affiliation(s)
- Shikha Agnihotry
- Biomedical Informatics Centre, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Aditya N Sarangi
- Biomedical Informatics Centre, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rakesh Aggarwal
- Biomedical Informatics Centre; Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
16
|
Chen Y, Li Z, Tye KD, Luo H, Tang X, Liao Y, Wang D, Zhou J, Yang P, Li Y, Su Y, Xiao X. Probiotic Supplementation During Human Pregnancy Affects the Gut Microbiota and Immune Status. Front Cell Infect Microbiol 2019; 9:254. [PMID: 31380297 PMCID: PMC6646513 DOI: 10.3389/fcimb.2019.00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
The consumption of probiotics and fermented foods has been very popular in recent decades. The primary aim of our study was to evaluate the effect of probiotics on the gut microbiota and the changes in inflammatory cytokines after an average of 6.7 weeks of probiotic administration among normal pregnant women. Thirty-two healthy pregnant women at 32 weeks of gestation were recruited and divided into two groups. The probiotic group ingested combined probiotics until after birth. The base characteristics of the probiotics and control groups showed no significant differences. The structure of the fecal microbiota at the genus level varied during the third trimester, and administration of probiotics had no influence on the composition of the fecal microbiota however, many highly abundant taxa and core microbiota at the genus level changed in the probiotic group when compared to the control group. The analysis of cytokines showed that IL-5, IL-6, TNF-α, and GM-CSF had equal levels between the baseline and control groups but were significantly increased after probiotic administration (baseline = control < probiotics). Additionally, levels of IL-1β, IL-2, IL-12, and IFN-γ significantly increased among the three groups (baseline < control < probiotics). This result demonstrated that probiotics helped to shift the anti-inflammatory state to a pro-inflammatory state. The correlation analysis outcome suggested that the relationship between the microbiota and the cytokines was not strain-dependent. The gut microbiota varied during the third trimester. The probiotics demonstrated immunomodulation effects that helped to switch over to a pro-inflammatory immune state in the third trimester, which was important for labor.
Collapse
Affiliation(s)
- Yuyi Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu Liao
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongju Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yimi Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingbing Su
- Department of Clinical Medicine, International School of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Román E, Nieto JC, Gely C, Vidal S, Pozuelo M, Poca M, Juárez C, Guarner C, Manichanh C, Soriano G. Effect of a Multistrain Probiotic on Cognitive Function and Risk of Falls in Patients With Cirrhosis: A Randomized Trial. Hepatol Commun 2019; 3:632-645. [PMID: 31061952 PMCID: PMC6492476 DOI: 10.1002/hep4.1325] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Probiotics can modulate gut microbiota, intestinal permeability, and immune response and could therefore improve cognitive dysfunction and help avoid potential consequences, such as falls, in patients with cirrhosis. The aim of this study was to evaluate the effect of a multistrain probiotic on cognitive function, risk of falls, and inflammatory response in patients with cirrhosis. Consecutive outpatients with cirrhosis and cognitive dysfunction (defined by a Psychometric Hepatic Encephalopathy Score [PHES] < -4) and/or falls in the previous year were randomized to receive either a sachet of a high-concentration multistrain probiotic containing 450 billion bacteria twice daily for 12 weeks or placebo. We evaluated the changes in cognitive function (PHES); risk of falls (Timed Up and Go [TUG] test, gait speed, and incidence of falls); systemic inflammatory response; neutrophil oxidative burst; intestinal barrier integrity (serum fatty acid-binding protein 6 [FABP-6] and 2 [FABP-2] and zonulin and urinary claudin-3); bacterial translocation (lipopolysaccharide-binding protein [LBP]); and fecal microbiota. Thirty-six patients were included. Patients treated with the probiotic (n = 18) showed an improvement in the PHES (P = 0.006), TUG time (P = 0.015) and gait speed (P = 0.02), and a trend toward a lower incidence of falls during follow-up (0% compared with 22.2% in the placebo group [n = 18]; P = 0.10). In the probiotic group, we observed a decrease in C-reactive protein (P = 0.01), tumor necrosis factor alpha (P = 0.01), FABP-6 (P = 0.009), and claudin-3 (P = 0.002), and an increase in poststimulation neutrophil oxidative burst (P = 0.002). Conclusion: The multistrain probiotic improved cognitive function, risk of falls, and inflammatory response in patients with cirrhosis and cognitive dysfunction and/or previous falls.
Collapse
Affiliation(s)
- Eva Román
- Department of GastroenterologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- Escola Universitària d’Infermeria EUI‐Sant PauBarcelonaSpain
- Institut de Recerca IIB‐Sant PauBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| | | | | | - Sílvia Vidal
- Institut de Recerca IIB‐Sant PauBarcelonaSpain
- Department of ImmunologyHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Marta Pozuelo
- Fundació Hospital Universitari Vall d’Hebron‐Institut de RecercaBarcelonaSpain
| | - Maria Poca
- Department of GastroenterologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| | - Cándido Juárez
- Institut de Recerca IIB‐Sant PauBarcelonaSpain
- Department of ImmunologyHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Carlos Guarner
- Department of GastroenterologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| | - Chaysavanh Manichanh
- Fundació Hospital Universitari Vall d’Hebron‐Institut de RecercaBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| | - Germán Soriano
- Department of GastroenterologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
18
|
Cutting Edge: Probiotics and Fecal Microbiota Transplantation in Immunomodulation. J Immunol Res 2019; 2019:1603758. [PMID: 31143780 PMCID: PMC6501133 DOI: 10.1155/2019/1603758] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics are commensal or nonpathogenic microbes that confer beneficial effects on the host through several mechanisms such as competitive exclusion, antibacterial effects, and modulation of immune responses. Some probiotics have been found to regulate immune responses via immune regulatory mechanisms. T regulatory (Treg) cells, T helper cell balances, dendritic cells, macrophages, B cells, and natural killer (NK) cells can be considered as the most determinant dysregulated mediators in immunomodulatory status. Recently, fecal microbiota transplantation (FMT) has been defined as the transfer of distal gut microbial communities from a healthy individual to a patient's intestinal tract to cure some immune disorders (mainly inflammatory bowel diseases). The aim of this review was followed through the recent literature survey on immunomodulatory effects and mechanisms of probiotics and FMT and also efficacy and safety of probiotics and FMT in clinical trials and applications.
Collapse
|
19
|
Lerner A, Shoenfeld Y, Matthias T. Probiotics: If It Does Not Help It Does Not Do Any Harm. Really? Microorganisms 2019; 7:104. [PMID: 30979072 PMCID: PMC6517882 DOI: 10.3390/microorganisms7040104] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics per definition should have beneficial effects on human health, and their consumption has tremendously increased in the last decades. In parallel, the amount of published material and claims for their beneficial efficacy soared continuously. Recently, multiple systemic reviews, meta-analyses, and expert opinions expressed criticism on their claimed effects and safety. The present review describes the dark side of the probiotics, in terms of problematic research design, incomplete reporting, lack of transparency, and under-reported safety. Highlighted are the potential virulent factors and the mode of action in the intestinal lumen, risking the physiological microbiome equilibrium. Finally, regulatory topics are discussed to lighten the heterogeneous guidelines applied worldwide. The shift in the scientific world towards a better understanding of the human microbiome, before consumption of the probiotic cargo, is highly endorsed. It is hoped that better knowledge will extend the probiotic repertoire, re-confirm efficacy or safety, establish their efficacy and substantiate their beneficial effects.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
- AESKU.KIPP Institute, 55234 Wendelsheim, Germany.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 5262000, Israel.
| | | |
Collapse
|
20
|
Scriven M, Dinan TG, Cryan JF, Wall M. Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Diseases 2018; 6:E78. [PMID: 30200574 PMCID: PMC6163507 DOI: 10.3390/diseases6030078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
The microbiome gut brain (MGB) axis consists of bidirectional routes of communication between the gut and the brain. It has emerged as a potential therapeutic target for multiple medical specialties including psychiatry. Significant numbers of preclinical trials have taken place with some transitioning to clinical studies in more recent years. Some positive results have been reported secondary to probiotic administration in both healthy populations and specific patient groups. This review aims to summarise the current understanding of the MGB axis and the preclinical and clinical findings relevant to psychiatry. Significant differences have been identified between the microbiome of patients with a diagnosis of depressive disorder and healthy controls. Similar findings have occurred in patients diagnosed with bipolar affective disorder and irritable bowel syndrome. A probiotic containing Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum produced a clinically measurable symptom improvement in patients with depressive disorder. To date, some promising results have suggested that probiotics could play a role in the treatment of stress-related psychiatric disease. However, more well-controlled clinical trials are required to determine which clinical conditions are likely to benefit most significantly from this novel approach.
Collapse
Affiliation(s)
- Mary Scriven
- Department of Psychiatry, University College Cork, T12 DC4A Cork, Ireland.
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, T12 DC4A Cork, Ireland.
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland.
| | - Mary Wall
- Department of Psychiatry, University College Cork, T12 DC4A Cork, Ireland.
| |
Collapse
|