1
|
Zhan X, Tian X, Zhang C, Ye J. A case of explosive community-acquired pneumonia and septic shock caused by Acinetobacter pittii. BMC Pulm Med 2025; 25:80. [PMID: 39953490 PMCID: PMC11829370 DOI: 10.1186/s12890-024-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 12/20/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Acinetobacter pittii, belongs to the genus Acinetobacter, has a special pathogenesis and is commonly known as nosocomial pathogen; community infections are rare. OBJECTIVE To present a case study of community-acquired pneumonia and septic shock resulting from infection with Acinetobacter pittii and to investigate the diagnosis, clinical features and treatment of Acinetobacter pittii infection. METHODS The clinical features and prognosis of patients with Acinetobacter pittii, infection were analyzed retrospectively. RESULTS The sepsis caused by Acinetobacter pittii, was improved after treatment. DISCUSSION AND CONCLUSION Pneumonia caused by fully sensitive hypervirulent Acinetobacter pittii is rare, usually with acute course, severe illness and high mortality. It is necessary to identify the infectious agent as soon as possible, and early treatment can improve the success rate of treatment.
Collapse
Affiliation(s)
- Xiaoying Zhan
- Department of Critical Care Medicine, Lishui Municipal Central Hospital, NO.289 Kuocang Road, Lishui, Zhejiang Province, China
| | - Xin Tian
- Department of Critical Care Medicine, Lishui Municipal Central Hospital, NO.289 Kuocang Road, Lishui, Zhejiang Province, China.
| | - Cangjian Zhang
- Department of Hematology, Lishui Municipal Central Hospital, Lishui, 323000, Zhejiang Province, China
| | - Jinqiang Ye
- Department of General Sugery, Lishui City Songyang County People's Hospital, Lishui, 323400, Zhejiang Province, China
| |
Collapse
|
2
|
Sun J, Xu W, Zhan X, Tian X, Yu Y. A rare case of community-acquired hypervirulent Acinetobacter Pittii infection, study of molecular characteristics, and literature review. Diagn Microbiol Infect Dis 2025; 111:116564. [PMID: 39603973 DOI: 10.1016/j.diagmicrobio.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Acinetobacter pittii, is typically a nosocomial pathogen and is rarely community-acquired. CASE PRESENTATION A 50-year-old male in China developed septic shock, multiorgan failure, and severe pneumonia. Cultures confirmed A. pittii, resistant to piperacillin-tazobactam but susceptible to other antibiotics. He recovered after 43 days of treatment. CONCLUSIONS Genome sequencing revealed high virulence, confirmed by larvicidal assays. This first report of community-acquired A. pittii highlights its potential for severe infections and septic shock, necessitating clinician awareness.
Collapse
Affiliation(s)
- Jian Sun
- Zhejiang University School of Medicine, Hangzhou, Department of Critical Care Medicine, Lishui Central Hospital, 289 Kuocang Road, Li Shui, 323000, Zhejiang, China; Department of Critical Care Medicine, Lishui Central Hospital, Wenzhou Medical College, 289 Kuocang Road, Lishui 323000, Zhejiang, China.
| | - Wenzeng Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Xiaoying Zhan
- Department of Critical Care Medicine, Lishui Central Hospital, Wenzhou Medical College, 289 Kuocang Road, Lishui 323000, Zhejiang, China.
| | - Xin Tian
- Department of Critical Care Medicine, Lishui Central Hospital, Wenzhou Medical College, 289 Kuocang Road, Lishui 323000, Zhejiang, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Souhail B, Danjean M, Mercier-Darty M, Amaddeo G, Sessa A, Fihman V, Galy A, Woerther PL, Lepeule R. First report of Acinetobacter pittii acute community-acquired pneumonia in an immunocompetent patient in France following a heat wave. BMC Infect Dis 2024; 24:35. [PMID: 38166743 PMCID: PMC10763415 DOI: 10.1186/s12879-023-08945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND In recent years, Acinetobacter baumannii-calcoaceticus complex (ABC) infections have attracted attention, mainly because of the impact of carbapenem-resistant isolates in hospital-acquired infections. However, acute community-acquired ABC infections are not uncommon in warm and humid countries, where they are responsible for community-acquired infections with specific clinical features. To date, such infection has not been reported in France. CASE PRESENTATION We report the case of a 55-year-old non-immunocompromised patient living in France with no known risk factors for community-acquired ABC infections who presented pneumonia with bloodstream infection due to wild-type A. pittii. The outcome was favorable after 7 days of antibiotic treatment with cefepime. We confirmed bacterial identification with whole-genome sequencing, and we examined the A. pitii core-genome phylogeny for genomic clusters. CONCLUSIONS This situation is uncommon in Europe and occurred after a heat wave in France with temperatures above 38 °C. Herein, we discuss the possibility that this pneumonia may be emerging in the current context of global warming.
Collapse
Affiliation(s)
- Bérénice Souhail
- Antimicrobial Stewardship Team, Department of Prevention, Diagnosis, and Treatment of Infections, Henri Mondor University Hospital, AP-HP, 1, rue Gustave Eiffel, 94000, Créteil, France.
| | - Maxime Danjean
- Bacteriology and Infection Control Unit, Department of Prevention, Diagnosis, and Treatment of Infections, Henri Mondor University Hospital, AP-HP, Créteil, France
- EnvA, DYNAMYC, UPEC, Paris-Est Créteil University, EA 7380, Créteil, France
| | - Mélanie Mercier-Darty
- Next Generation Sequencing Platform, Henri Mondor University Hospital, AP-HP, Créteil, France
| | - Giuliana Amaddeo
- Hepatology Department, Henri Mondor University Hospital, AP-HP, Créteil, France
| | - Anna Sessa
- Hepatology Department, Henri Mondor University Hospital, AP-HP, Créteil, France
| | - Vincent Fihman
- Bacteriology and Infection Control Unit, Department of Prevention, Diagnosis, and Treatment of Infections, Henri Mondor University Hospital, AP-HP, Créteil, France
- EnvA, DYNAMYC, UPEC, Paris-Est Créteil University, EA 7380, Créteil, France
| | - Adrien Galy
- Antimicrobial Stewardship Team, Department of Prevention, Diagnosis, and Treatment of Infections, Henri Mondor University Hospital, AP-HP, 1, rue Gustave Eiffel, 94000, Créteil, France
- EnvA, DYNAMYC, UPEC, Paris-Est Créteil University, EA 7380, Créteil, France
| | - Paul Louis Woerther
- Bacteriology and Infection Control Unit, Department of Prevention, Diagnosis, and Treatment of Infections, Henri Mondor University Hospital, AP-HP, Créteil, France
- EnvA, DYNAMYC, UPEC, Paris-Est Créteil University, EA 7380, Créteil, France
| | - Raphaël Lepeule
- Antimicrobial Stewardship Team, Department of Prevention, Diagnosis, and Treatment of Infections, Henri Mondor University Hospital, AP-HP, 1, rue Gustave Eiffel, 94000, Créteil, France
- EnvA, DYNAMYC, UPEC, Paris-Est Créteil University, EA 7380, Créteil, France
| |
Collapse
|
4
|
Li P, Fan X. Pertussis-like Syndrome Caused by Acinetobacter pittii ST119. Indian J Pediatr 2023; 90:1051. [PMID: 37351783 DOI: 10.1007/s12098-023-04728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Peng Li
- Department of Pediatrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Xin Fan
- Department of Infectious Diseases & Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Tian C, Xing M, Fu L, Zhao Y, Fan X, Wang S. Emergence of uncommon KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases. Front Cell Infect Microbiol 2022; 12:943735. [PMID: 36034705 PMCID: PMC9411868 DOI: 10.3389/fcimb.2022.943735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To characterize one KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases. Methods A. pittii TCM strain was isolated from a bloodstream infection (BSI). Antimicrobial susceptibility tests were conducted via disc diffusion and broth microdilution. Stability experiments of blaNDM-1 and blaOXA-820 carbapenemase genes were further performed. Whole-genome sequencing (WGS) was performed on the Illumina and Oxford Nanopore platforms. Multilocus sequence typing (MLST) was analyzed based on the Pasteur and Oxford schemes. Resistance genes, virulence factors, and insertion sequences (ISs) were identified with ABRicate based on ResFinder 4.0, virulence factor database (VFDB), and ISfinder. Capsular polysaccharide (KL), lipooligosaccharide outer core (OCL), and plasmid reconstruction were tested using Kaptive and PLACNETw. PHASTER was used to predict prophage regions. A comparative genomics analysis of all ST220 A. pittii strains from the public database was carried out. Point mutations, average nucleotide identity (ANI), DNA–DNA hybridization (DDH) distances, and pan-genome analysis were performed. Results A. pittii TCM was ST220Pas and ST1818Oxf with KL38 and OCL6, respectively. It was resistant to imipenem, meropenem, and ciprofloxacin but still susceptible to amikacin, colistin, and tigecycline. WGS revealed that A. pittii TCM contained one circular chromosome and four plasmids. The Tn125 composite transposon, including blaNDM-1, was located in the chromosome with 3-bp target site duplications (TSDs). Many virulence factors and the blaOXA-820 carbapenemase gene were also identified. The stability assays revealed that blaNDM-1 and blaOXA-820 were stabilized by passage in an antibiotic-free medium. Moreover, 12 prophage regions were identified in the chromosome. Phylogenetic analysis showed that there are 11 ST220 A. pittii strains, and one collected from Anhui, China was closely related. All ST220 A. pittii strains presented high ANI and DDH values; they ranged from 99.85% to 100% for ANI and from 97.4% to 99.9% for DDH. Pan-genome analysis revealed 3,200 core genes, 0 soft core genes, 1,571 shell genes, and 933 cloud genes among the 11 ST220 A. pittii strains. Conclusions The coexistence of chromosomal NDM-1 and OXA-820 carbapenemases in A. pittii presents a huge challenge in healthcare settings. Increased surveillance of this species in hospital and community settings is urgently needed.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Mengyu Xing
- Department of Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Xueyu Fan
- Department of Clinical Laboratory, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Siwei Wang
- Core Facility, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- *Correspondence: Siwei Wang,
| |
Collapse
|
6
|
Capasso R, Pinto A, Serra N, Atripaldi U, Corcione A, Bocchini G, Guarino S, Lieto R, Rea G, Sica G, Valente T. Alert Germ Infections: Chest X-ray and CT Findings in Hospitalized Patients Affected by Multidrug-Resistant Acinetobacter baumannii Pneumonia. Tomography 2022; 8:1534-1543. [PMID: 35736874 PMCID: PMC9228714 DOI: 10.3390/tomography8030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Acinetobacter baumannii (Ab) is an opportunistic Gram-negative pathogen intrinsically resistant to many antimicrobials. The aim of this retrospective study was to describe the imaging features on chest X-ray (CXR) and computed tomography (CT) scans in hospitalized patients with multidrug-resistant (MDR) Ab pneumonia. CXR and CT findings were graded on a three-point scale: 1 represents normal attenuation, 2 represents ground-glass attenuation, and 3 represents consolidation. For each lung zone, with a total of six lung zones in each patient, the extent of disease was graded using a five-point scale: 0, no involvement; 1, involving 25% of the zone; 2, 25−50%; 3, 50−75%; and 4, involving >75% of the zone. Points from all zones were added for a final total cumulative score ranging from 0 to 72. Among 94 patients who tested positive for MDR Ab and underwent CXR (males 52.9%, females 47.1%; mean age 64.2 years; range 1−90 years), 68 patients underwent both CXR and chest CT examinations. The percentage of patients with a positive CT score was significantly higher than that obtained on CXR (67.65% > 35.94%, p-value = 0.00258). CT score (21.88 ± 15.77) was significantly (p-value = 0.0014) higher than CXR score (15.06 ± 18.29). CXR and CT revealed prevalent bilateral abnormal findings mainly located in the inferior and middle zones of the lungs. They primarily consisted of peripheral ground-glass opacities and consolidations which predominated on CXR and CT, respectively.
Collapse
Affiliation(s)
- Raffaella Capasso
- Department of Radiology, CTO Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-706-2629
| | - Antonio Pinto
- Department of Radiology, CTO Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Nicola Serra
- Department of Public Health, University Federico II of Naples, 80138 Napoli, Italy;
| | - Umberto Atripaldi
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Adele Corcione
- Department of Translational Medical Sciences, Section of Pediatrics, University Federico II of Naples, 80138 Napoli, Italy;
| | - Giorgio Bocchini
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Salvatore Guarino
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Roberta Lieto
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Gaetano Rea
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Tullio Valente
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| |
Collapse
|
7
|
Zhu R, Mathur V. Prophages Present in Acinetobacter pittii Influence Bacterial Virulence, Antibiotic Resistance, and Genomic Rearrangements. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:38-49. [PMID: 36161193 PMCID: PMC9041518 DOI: 10.1089/phage.2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Introduction: Antibiotic resistance and virulence are common among bacterial populations, posing a global clinical challenge. The bacterial species Acinetobacter pittii, an infectious agent in clinical environments, has shown increasing rates of antibiotic resistance. Viruses that integrate as prophages into A. pittii could be a potential cause of this pathogenicity, as they often contain antibiotic resistance or virulence factor gene sequences. Methods: In this study, we analyzed 25 A. pittii strains for potential prophages. Using virulence factor databases, we identified many common and virulent prophages in A. pittii. Results: The analysis also included a specific catalogue of the virulence factors and antibiotic resistance genes contributed by A. pittii prophages. Finally, our results illustrate multiple similarities between A. pittii and its bacterial relatives with regard to prophage integration sites and prevalence. Discussion: These findings provide a broader insight into prophage behavior that can be applied to future studies on similar species in the Acinetobacter calcoaceticus-baumannii complex.
Collapse
Affiliation(s)
| | - Vinayak Mathur
- Department of Science, Cabrini University, Radnor, Pennsylvania, USA.,Address correspondence to: Vinayak Mathur, PhD, Department of Science, Cabrini University, 610 King of Prussia Road, IAD 224, Radnor, PA 19087-3698, USA
| |
Collapse
|
8
|
Lynch JP, Clark NM, Zhanel GG. Infections Due to Acinetobacter baumannii-calcoaceticus Complex: Escalation of Antimicrobial Resistance and Evolving Treatment Options. Semin Respir Crit Care Med 2022; 43:97-124. [PMID: 35172361 DOI: 10.1055/s-0041-1741019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacteria within the genus Acinetobacter (principally A. baumannii-calcoaceticus complex [ABC]) are gram-negative coccobacilli that most often cause infections in nosocomial settings. Community-acquired infections are rare, but may occur in patients with comorbidities, advanced age, diabetes mellitus, chronic lung or renal disease, malignancy, or impaired immunity. Most common sites of infections include blood stream, skin/soft-tissue/surgical wounds, ventilator-associated pneumonia, orthopaedic or neurosurgical procedures, and urinary tract. Acinetobacter species are intrinsically resistant to multiple antimicrobials, and have a remarkable ability to acquire new resistance determinants via plasmids, transposons, integrons, and resistance islands. Since the 1990s, antimicrobial resistance (AMR) has escalated dramatically among ABC. Global spread of multidrug-resistant (MDR)-ABC strains reflects dissemination of a few clones between hospitals, geographic regions, and continents; excessive antibiotic use amplifies this spread. Many isolates are resistant to all antimicrobials except colistimethate sodium and tetracyclines (minocycline or tigecycline); some infections are untreatable with existing antimicrobial agents. AMR poses a serious threat to effectively treat or prevent ABC infections. Strategies to curtail environmental colonization with MDR-ABC require aggressive infection-control efforts and cohorting of infected patients. Thoughtful antibiotic strategies are essential to limit the spread of MDR-ABC. Optimal therapy will likely require combination antimicrobial therapy with existing antibiotics as well as development of novel antibiotic classes.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology; Department of Medicine; The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nina M Clark
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Complete Genome Sequence of Acinetobacter pittii BHS4, Isolated from Air-Conditioning Condensate in Hong Kong. Microbiol Resour Announc 2021; 10:e0088021. [PMID: 34672711 PMCID: PMC8530085 DOI: 10.1128/mra.00880-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter pittii is widespread in the environment, and the Acinetobacter calcoaceticus-baumannii complex, to which it belongs, is a major cause of hospital-acquired pneumonia and bacteremia. A. pitti BHS4 was isolated from an air-conditioning unit in Hong Kong and its complete genome sequence (3,901,980 bp; GC content, 38.79%) established through hybrid assembly.
Collapse
|
10
|
Deems A, Du Prey M, Dowd SE, McLaughlin RW. Characterization of the Biodiesel Degrading Acinetobacter oleivorans Strain PT8 Isolated from the Fecal Material of a Painted Turtle (Chrysemys picta). Curr Microbiol 2021; 78:522-527. [PMID: 33392672 DOI: 10.1007/s00284-020-02320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 11/26/2022]
Abstract
Acinetobacter species are gram-negative, non-fermenting bacteria with coccobacilli morphology. The bacteria are found ubiquitously and have the ability to occupy niches which include environmental sites, animals, and humans. The original purpose of this study was to determine if painted turtles (Chrysemys picta) living in the wild in Western Wisconsin were colonized with carbapenem-resistant bacteria. Fecal samples from ten turtles were examined for carbapenem-resistant bacteria. None of the isolates were found to be carbapenem resistant by antimicrobial susceptibility testing. However, all the isolates were resistant to other β-lactams and chloramphenicol classes of antimicrobials. One isolate, Acinetobacter oleivorans strain PT8, was selected for additional characterization, including whole-genome sequencing (WGS). Strain PT8 is capable of degrading biodiesel, forming biofilms, and has a putative type 6 gene cluster. Finally, the taxonomic position of the available whole-genome sequences of 25 A. oleivorans genomes from purified isolates was determined.
Collapse
Affiliation(s)
- Amanda Deems
- General Studies, Gateway Technical College, 3520-30th Avenue, Kenosha, WI, 53144, USA
| | - Michael Du Prey
- General Studies, Gateway Technical College, 3520-30th Avenue, Kenosha, WI, 53144, USA
| | - Scot E Dowd
- MR DNA (Molecular Research LP), Shallowater, TX, USA
| | | |
Collapse
|
11
|
Kamyab E, Rohde S, Kellermann MY, Schupp PJ. Chemical Defense Mechanisms and Ecological Implications of Indo-Pacific Holothurians. Molecules 2020; 25:E4808. [PMID: 33086732 PMCID: PMC7587958 DOI: 10.3390/molecules25204808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Sea cucumbers are slow-moving organisms that use morphological, but also a diverse combination of chemical defenses to improve their overall fitness and chances of survival. Since chemical defense compounds are also of great pharmaceutical interest, we pinpoint the importance of biological screenings that are a relatively fast, informative and inexpensive way to identify the most bioactive organisms prior to further costly and elaborate pharmacological screenings. In this study, we investigated the presence and absence of chemical defenses of 14 different sea cucumber species from three families (Holothuriidae, Stichopodidae and Synaptidae) against ecological factors such as predation and pathogenic attacks. We used the different sea cucumber crude extracts as well as purified fractions and pure saponin compounds in a portfolio of ecological activity tests including fish feeding assays, cytotoxicity tests and antimicrobial assays against environmental pathogenic and non-pathogenic bacteria. Furthermore, we quantified and correlated the concentrations of sea cucumber characteristic saponin compounds as effective chemical defensive compounds in all 14 crude extracts by using the vanillin-sulfuric acid test. The initial results revealed that among all tested sea cucumber species that were defended against at least one ecological threat (predation and/or bacterial attack), Bohadschiaargus, Stichopuscholoronotus and Holothuria fuscopunctata were the three most promising bioactive sea cucumber species. Therefore, following further fractionation and purification attempts, we also tested saponin-containing butanol fractions of the latter, as well as two purified saponin species from B. argus. We could demonstrate that both, the amount of saponin compounds and their structure likely play a significant role in the chemical defense strategy of the sea cucumbers. Our study concludes that the chemical and morphological defense mechanisms (and combinations thereof) differ among the ecological strategies of the investigated holothurian species in order to increase their general fitness and level of survival. Finally, our observations and experiments on the chemical ecology of marine organisms can not only lead to a better understanding of their ecology and environmental roles but also can help in the better selection of bioactive organisms/compounds for the discovery of novel, pharmacologically active secondary metabolites in the near future.
Collapse
Affiliation(s)
- Elham Kamyab
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
| | - Matthias Y. Kellermann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstrasse 231, D-26129 Oldenburg, Germany
| |
Collapse
|
12
|
Li S, Wang D, Du D, Qian K, Yan W. Characterization of co-metabolic biodegradation of methyl tert-butyl ether by a Acinetobacter sp. strain. RSC Adv 2019; 9:38962-38972. [PMID: 35540635 PMCID: PMC9076015 DOI: 10.1039/c9ra09507a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022] Open
Abstract
Co-metabolic bioremediation is a promising approach for the elimination of methyl tert-butyl ether (MTBE), which is a common pollutant found worldwide in ground water. In this paper, a bacterial strain able to co-metabolically degrade MTBE was isolated and named as Acinetobacter sp. SL3 based on 16S rRNA gene sequencing analysis. Strain SL3 could grow on n-alkanes (C5-C8) accompanied with the co-metabolic degradation of MTBE. The number of carbons present in the n-alkane substrate significantly influenced the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA), with n-octane resulting in a higher MTBE degradation rate (V max = 36.7 nmol min-1 mgprotein -1, K s = 6.4 mmol L-1) and lower TBA accumulation rate. A degradation experiment in a fed-batch reactor revealed that the efficiency of MTBE degradation by Acinetobacter sp. strain SL3 did not show an obvious decrease after nine rounds of MTBE replenishment ranging from 0.1-0.5 mmol L-1. The results of this paper reveal the preferable properties of Acinetobacter sp. SL3 for the bioremediation of MTBE via co-metabolism and leads towards the development of new MTBE elimination technologies.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Dan Wang
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Dan Du
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Keke Qian
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wei Yan
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
13
|
Cosgaya C, Ratia C, Marí-Almirall M, Rubio L, Higgins PG, Seifert H, Roca I, Vila J. In vitro and in vivo Virulence Potential of the Emergent Species of the Acinetobacter baumannii (Ab) Group. Front Microbiol 2019; 10:2429. [PMID: 31708900 PMCID: PMC6821683 DOI: 10.3389/fmicb.2019.02429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/08/2019] [Indexed: 01/30/2023] Open
Abstract
The increased use of molecular identification methods and mass spectrometry has revealed that Acinetobacter spp. of the A. baumannii (Ab) group other than A. baumannii are increasingly being recovered from human samples and may pose a health challenge if neglected. In this study 76 isolates of 5 species within the Ab group (A. baumannii n = 16, A. lactucae n = 12, A. nosocomialis n = 16, A. pittii n = 20, and A. seifertii n = 12), were compared in terms of antimicrobial susceptibility, carriage of intrinsic resistance genes, biofilm formation, and the ability to kill Caenorhabditis elegans in an infection assay. In agreement with previous studies, antimicrobial resistance was common among A. baumannii while all other species were generally more susceptible. Carriage of genes encoding different efflux pumps was frequent in all species and the presence of intrinsic class D β-lactamases was reported in A. baumannii, A. lactucae (heterotypic synonym of A. dijkshoorniae) and A. pittii but not in A. nosocomialis and A. seifertii. A. baumannii and A. nosocomialis presented weaker pathogenicity in our in vitro and in vivo models than A. seifertii, A. pittii and, especially, A. lactucae. Isolates from the former species showed decreased biofilm formation and required a longer time to kill C. elegans nematodes. These results suggest relevant differences in terms of antibiotic susceptibility patterns among the members of the Ab group as well as highlight a higher pathogenicity potential for the emerging species of the group in this particular model. Nevertheless, the impact of such potential in the human host still remains to be determined.
Collapse
Affiliation(s)
- Clara Cosgaya
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | - Carlos Ratia
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | | | - Laia Rubio
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Bonn, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Bonn, Germany
| | - Ignasi Roca
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Espinal P, Pantel A, Rolo D, Marti S, López-Rojas R, Smani Y, Pachón J, Vila J, Lavigne JP. Relationship Between Different Resistance Mechanisms and Virulence in Acinetobacter baumannii. Microb Drug Resist 2019; 25:752-760. [PMID: 30632884 DOI: 10.1089/mdr.2018.0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: This study analyzed the virulence of several Acinetobacter baumannii strains expressing different resistance mechanisms using the Caenorhabditis elegans infection model. Results: Strains susceptible/resistant to carbapenems (presenting class D (OXA-23, OXA-24), class B metallo-β-lactamase (MBL) (NDM-1), penicillin binding protein (PBP) altered and decreased expression of Omp 33-36 kDa) and isogenic A. baumannii strains susceptible/resistant to colistin (presenting loss of lipopolysaccharide (LPS) and pmrA mutations) were included to evaluate the virulence using the C. elegans infection model. The nematode killing assay, bacterial ingestion in worms, and bacterial lawn avoidance assay were performed with the Fer-15 mutant line. A. baumannii strains generally presented low virulence, showing no difference between carbapenem-resistant strains (expressing class D, MBLs, or altered PBP) and their isogenic susceptible strains. In contrast, the absence of the Omp 33-36 kDa protein in the knockout was associated with a decrease of virulence, and a significant difference was observed between colistin-resistant mutants and their susceptible counterpart when the mechanism of resistance was associated with the loss of LPS but not with its modification. Conclusions: Resistance to carbapenems in A. baumannii associated with the production of OXA-type or NDM-type enzymes does not seem to affect their virulence in the C. elegans infection model. In contrast, the presence of Omp 33-36 kDa, and high level resistance to colistin related with the loss of LPS, might contribute with the virulence profile in A. baumannii.
Collapse
Affiliation(s)
- Paula Espinal
- 1 Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,2 National Institute of Health and Medical Research, U1047, Montpellier University, Nîmes, France
| | - Alix Pantel
- 2 National Institute of Health and Medical Research, U1047, Montpellier University, Nîmes, France.,3 Department of Microbiology, University Hospital Nîmes, Nîmes, France
| | - Dora Rolo
- 1 Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Sara Marti
- 4 Microbiology Department, Hospital Universitari Bellvitge, Barcelona, Spain.,5 Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Rafael López-Rojas
- 6 Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Younes Smani
- 6 Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Jerónimo Pachón
- 6 Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Jordi Vila
- 1 Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jean-Philippe Lavigne
- 2 National Institute of Health and Medical Research, U1047, Montpellier University, Nîmes, France.,3 Department of Microbiology, University Hospital Nîmes, Nîmes, France
| |
Collapse
|
15
|
Helber SB, Hoeijmakers DJJ, Muhando CA, Rohde S, Schupp PJ. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLoS One 2018; 13:e0197617. [PMID: 29924803 PMCID: PMC6010217 DOI: 10.1371/journal.pone.0197617] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Coral reefs are experiencing increasing anthropogenic impacts that result in substantial declines of reef-building corals and a change of community structure towards other benthic invertebrates or macroalgae. Reefs around Zanzibar are exposed to untreated sewage and runoff from the main city Stonetown. At many of these sites, sponge cover has increased over the last years. Sponges are one of the top spatial competitors on reefs worldwide. Their success is, in part, dependent on their strong chemical defenses against predators, microbial attacks and other sessile benthic competitors. This is the first study that investigates the bioactive properties of sponge species in the Western Indian Ocean region. Crude extracts of the ten most dominant sponge species were assessed for their chemical defenses against 35 bacterial strains (nine known as marine pathogens) using disc diffusion assays and general cytotoxic activities were assessed with brine shrimp lethality assays. The three chemically most active sponge species were additionally tested for their allelopathic properties against the scleractinian coral competitor Porites sp.. The antimicrobial assays revealed that all tested sponge extracts had strong antimicrobial properties and that the majority (80%) of the tested sponges were equally defended against pathogenic and environmental bacterial strains. Additionally, seven out of ten sponge species exhibited cytotoxic activities in the brine shrimp assay. Moreover, we could also show that the three most bioactive sponge species were able to decrease the photosynthetic performance of the coral symbionts and thus were likely to impair the coral physiology.
Collapse
Affiliation(s)
- Stephanie B. Helber
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | | | - Christopher A. Muhando
- Institute of Marine Sciences (IMS), University of Dar es Salaam, Stonetown, Zanzibar, Tanzania
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| |
Collapse
|