1
|
Marsh DH. Artificial Left Pleural Effusion to Facilitate Ultrasound-Guided Drainage of Postoperative Pericardial Effusion. Semin Thorac Cardiovasc Surg 2025:S1043-0679(25)00003-6. [PMID: 39952490 DOI: 10.1053/j.semtcvs.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025]
Abstract
Artificial pleural effusion (APL) has been described for image guided biopsy of the dome of the liver.1 This paper demonstrates APL is also useful for percutaneous, ultrasound-guided needle access to the pericardium. Approximately 35 patients of 200 that underwent ultrasound-guided pericardiocentesis (UGP) by the author had incidental left pleural effusions (PE). In these cases the pericardium was approached through the pleural fluid under direct ultrasound guidance. The space created by the pleural fluid is analogous to the operative field that pneumothorax affords video-assisted thorascopic surgery (VATS). Five patients without left pleural effusion had no appropriate percutaneous entry site, 500 ml to 1000 ml sterile saline was instilled to the left pleura with the intention of improving visualization and needle access to the pericardium. Most effusions were completely drained. No anesthetic or bleeding complications by the author in over 200 total UGP cases. Left pleural effusion can provide a convenient acoustic window for ultrasound guided pericardiocentesis. Saline can be instilled to the pleura to create and artificial pleural effusion. Posterior pericardial effusions are amenable to this technique. Improved visualization may reduce complications and improve patient safety.
Collapse
Affiliation(s)
- Dale H Marsh
- Director Interventional Critical Care and Point of Care Surgery, CVICU, Cleveland Clinic, Cleveland Ohio.
| |
Collapse
|
2
|
Tonko J, Lee A, Mannakkara N, Williams SE, Razavi R, Bishop M, O'Neill M, Niederer S, Whitaker J. Structural phenotyping in atrial fibrillation with combined cardiac CT and atrial MRI: Identifying and differentiating individual structural remodelling types in AF. J Cardiovasc Electrophysiol 2024; 35:1788-1796. [PMID: 38965873 DOI: 10.1111/jce.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Atrial remodelling (AR) is the persistent change in atrial structure and/or function and contributes to the initiation, maintenance and progression of atrial fibrillation (AF) in a reciprocal self-perpetuating relationship. Left atrial (LA) size, geometry, fibrosis, wall thickness (LAWT) and ejection fraction (LAEF) have all been shown to vary with pathological atrial remodelling. The association of these global remodelling markers with each other for differentiating structural phenotypes in AF is not well investigated. METHOD Patients referred for first-time AF ablation and controls without AF were prospectively recruited to undergo cardiac computed tomographic angiography (CCTA) and magnetic resonance imaging (MRI) with 3D atrial late-gadolinium enhanced (LGE) sequences. LAWT, atrial myocardial mass, LA volume and sphericity were calculated from CT. Biplane LA EF and LA fibrosis burden were derived from atrial MRI. Results were compared between patients with AF and controls. RESULTS Forty two AF patients (64.3% male, age 64.6 ± 10.2 years, CHA2DS2-VASc 2.48 ± 1.5, 69.0% paroxysmal AF, 31% persistent AF, LVEF 57.9 ± 10.5%) and 37 controls (64.9% male, age 56.6 ± 7.2, CHA2DS2-VASc 1.54 ± 1.1, LVEF 60.4 ± 4.9%) were recruited. Patients with AF had a significantly higher LAWT (1.45 ± 0.52 mm vs 1.12 ± 0.42 mm, p = 0.003), tissue mass (15.81 ± 6.53 g vs. 12.18 ± 5.01 g, p = 0.011), fibrosis burden (9.33 ± 8.35% vs 2.41 ± 3.60%, p = 0.013), left atrial size/volume (95.68 ± 26.63 mL vs 81.22 ± 20.64 mL, p = 0.011) and lower LAEF (50.3 ± 15.3% vs 65.2 ± 8.6%, p < 0.001) compared to controls. There was no significant correlation between % fibrosis with LAWT (p = 0.29), mass (p = 0.89), volume (p = 0.49) or sphericity (p = 0.79). LAWT had a statistically significant weak positive correlation with LA volume (r = 0.25, p = .041), but not with sphericity (p = 0.86). LAEF had a statistically significant but weak negative correlation with fibrosis (r = -0.33, p = 0.008) and LAWT (r = -0.24, p = 0.07). CONCLUSION AF is associated with significant quantifiable structural changes that are evident in LA size, tissue thickness, total LA tissue mass and fibrosis. These individual remodelling markers do not or only weakly correlate with each other suggesting different remodelling subtypes exist (e.g. fibrotic vs hypertrophic vs dilated). If confirmed, such a detailed understanding of the structural changes observed has the potential to inform clinical management strategies targeting individual mechanisms underlying the disease process.
Collapse
Affiliation(s)
- Johanna Tonko
- Institute for Cardiovascular Science, University College London, London, UK
| | - Angela Lee
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - N Mannakkara
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- Guy s and St Thomas NHS Foundation Trust, London, UK
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- Guy s and St Thomas NHS Foundation Trust, London, UK
| | - Martin Bishop
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- Guy s and St Thomas NHS Foundation Trust, London, UK
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- Guy s and St Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Miller RJH, Shanbhag A, Killekar A, Lemley M, Bednarski B, Kavanagh PB, Feher A, Miller EJ, Bateman T, Builoff V, Liang JX, Newby DE, Dey D, Berman DS, Slomka PJ. AI-Defined Cardiac Anatomy Improves Risk Stratification of Hybrid Perfusion Imaging. JACC Cardiovasc Imaging 2024; 17:780-791. [PMID: 38456877 PMCID: PMC11222053 DOI: 10.1016/j.jcmg.2024.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Computed tomography attenuation correction (CTAC) improves perfusion quantification of hybrid myocardial perfusion imaging by correcting for attenuation artifacts. Artificial intelligence (AI) can automatically measure coronary artery calcium (CAC) from CTAC to improve risk prediction but could potentially derive additional anatomic features. OBJECTIVES The authors evaluated AI-based derivation of cardiac anatomy from CTAC and assessed its added prognostic utility. METHODS The authors considered consecutive patients without known coronary artery disease who underwent single-photon emission computed tomography/computed tomography (CT) myocardial perfusion imaging at 3 separate centers. Previously validated AI models were used to segment CAC and cardiac structures (left atrium, left ventricle, right atrium, right ventricular volume, and left ventricular [LV] mass) from CTAC. They evaluated associations with major adverse cardiovascular events (MACEs), which included death, myocardial infarction, unstable angina, or revascularization. RESULTS In total, 7,613 patients were included with a median age of 64 years. During a median follow-up of 2.4 years (IQR: 1.3-3.4 years), MACEs occurred in 1,045 (13.7%) patients. Fully automated AI processing took an average of 6.2 ± 0.2 seconds for CAC and 15.8 ± 3.2 seconds for cardiac volumes and LV mass. Patients in the highest quartile of LV mass and left atrium, LV, right atrium, and right ventricular volume were at significantly increased risk of MACEs compared to patients in the lowest quartile, with HR ranging from 1.46 to 3.31. The addition of all CT-based volumes and CT-based LV mass improved the continuous net reclassification index by 23.1%. CONCLUSIONS AI can automatically derive LV mass and cardiac chamber volumes from CT attenuation imaging, significantly improving cardiovascular risk assessment for hybrid perfusion imaging.
Collapse
Affiliation(s)
- Robert J H Miller
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Cardiac Sciences, University of Calgary, Calgary Alberta, Canada
| | - Aakash Shanbhag
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Aditya Killekar
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mark Lemley
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Bryan Bednarski
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Paul B Kavanagh
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Timothy Bateman
- Cardiovascular Imaging Technologies LLC, Kansas City, Missouri, USA
| | - Valerie Builoff
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joanna X Liang
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Damini Dey
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniel S Berman
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Piotr J Slomka
- Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
4
|
Miller RJH, Killekar A, Shanbhag A, Bednarski B, Michalowska AM, Ruddy TD, Einstein AJ, Newby DE, Lemley M, Pieszko K, Van Kriekinge SD, Kavanagh PB, Liang JX, Huang C, Dey D, Berman DS, Slomka PJ. Predicting mortality from AI cardiac volumes mass and coronary calcium on chest computed tomography. Nat Commun 2024; 15:2747. [PMID: 38553462 PMCID: PMC10980695 DOI: 10.1038/s41467-024-46977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Chest computed tomography is one of the most common diagnostic tests, with 15 million scans performed annually in the United States. Coronary calcium can be visualized on these scans, but other measures of cardiac risk such as atrial and ventricular volumes have classically required administration of contrast. Here we show that a fully automated pipeline, incorporating two artificial intelligence models, automatically quantifies coronary calcium, left atrial volume, left ventricular mass, and other cardiac chamber volumes in 29,687 patients from three cohorts. The model processes chamber volumes and coronary artery calcium with an end-to-end time of ~18 s, while failing to segment only 0.1% of cases. Coronary calcium, left atrial volume, and left ventricular mass index are independently associated with all-cause and cardiovascular mortality and significantly improve risk classification compared to identification of abnormalities by a radiologist. This automated approach can be integrated into clinical workflows to improve identification of abnormalities and risk stratification, allowing physicians to improve clinical decision-making.
Collapse
Affiliation(s)
- Robert J H Miller
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | - Aditya Killekar
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aakash Shanbhag
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bryan Bednarski
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna M Michalowska
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Andrew J Einstein
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, New York, NY, USA
- Department of Radiology, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, New York, NY, USA
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mark Lemley
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Konrad Pieszko
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Interventional Cardiology and Cardiac Surgery, University of Zielona Gora, Gora, Poland
| | - Serge D Van Kriekinge
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul B Kavanagh
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joanna X Liang
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cathleen Huang
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Berman
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Basara G, Bahcecioglu G, Ren X, Zorlutuna P. An Experimental and Numerical Investigation of Cardiac Tissue-Patch Interrelation. J Biomech Eng 2023; 145:081004. [PMID: 37337466 PMCID: PMC10321148 DOI: 10.1115/1.4062736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Tissue engineered cardiac patches have great potential as a regenerative therapy for myocardial infarction. Yet, the mutual interaction of cardiac patches with healthy tissue has not been completely understood. Here, we investigated the impact of acellular and cellular patches on a beating two-dimensional (2D) cardiac cell layer, and the effect of the beating of this layer on the cells encapsulated in the patch. We cultured human-induced pluripotent stem cell-derived cardiomyocytes (iCMs) on a coverslip and placed gelatin methacryloyl hydrogel alone or with encapsulated iCMs to create acellular and cellular patches, respectively. When the acellular patch was placed on the cardiac cell layer, the beating characteristics and Ca+2 handling properties reduced, whereas placing the cellular patch restored these characteristics. To better understand the effects of the cyclic contraction and relaxation induced by the beating cardiac cell layer on the patch placed on top of it, a simulation model was developed, and the calculated strain values were in agreement with the values measured experimentally. Moreover, this dynamic culture induced by the beating 2D iCM layer on the iCMs encapsulated in the cellular patch improved their beating velocity and frequency. Additionally, the encapsulated iCMs were observed to be coupled with the underlying beating 2D iCM layer. Overall, this study provides a detailed investigation on the mutual relationship of acellular/cellular patches with the beating 2D iCM layer, understanding of which would be valuable for developing more advanced cardiac patches.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, 225 Multidisciplinary Research Building, Notre Dame, IN 46556
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, 108B Multidisciplinary Research Building, Notre Dame, IN 46556
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556; Department of Chemical and Biomolecular Engineering, University of Notre Dame, 143 Multidisciplinary Research Building, Notre Dame, IN 46556
| |
Collapse
|
6
|
Mileva N, Ohashi H, Paolisso P, Leipsic J, Mizukami T, Sonck J, Norgaard BL, Otake H, Ko B, Maeng M, Munhoz D, Nagumo S, Belmonte M, Vassilev D, Andreini D, Barbato E, Koo BK, De Bruyne B, Collet C. Relationship between coronary volume, myocardial mass, and post-PCI fractional flow reserve. Catheter Cardiovasc Interv 2023; 101:1182-1192. [PMID: 37102381 DOI: 10.1002/ccd.30664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Fractional flow reserve (FFR) measured after percutaneous coronary intervention (PCI) carries prognostic information. Yet, myocardial mass subtended by a stenosis influences FFR. We hypothesized that a smaller coronary lumen volume and a large myocardial mass might be associated with lower post-PCI FFR. AIM We sought to assess the relationship between vessel volume, myocardial mass, and post-PCI FFR. METHODS This was a subanalysis with an international prospective study of patients with significant lesions (FFR ≤ 0.80) undergoing PCI. Territory-specific myocardial mass was calculated from coronary computed tomography angiography (CCTA) using the Voronoi's algorithm. Vessel volume was extracted from quantitative CCTA analysis. Resting full-cycle ratio (RFR) and FFR were measured before and after PCI. We assessed the association between coronary lumen volume (V) and its related myocardial mass (M), and the percent of total myocardial mass (%M) with post-PCI FFR. RESULTS We studied 120 patients (123 vessels: 94 left anterior descending arteries, 13 left Circumflex arteries, 16 right coronary arteries). Mean vessel-specific mass was 61 ± 23.1 g (%M 39.6 ± 11.7%). The mean post-PCI FFR was 0.88 ± 0.06 FFR units. Post-PCI FFR values were lower in vessels subtending higher mass (0.87 ± 0.05 vs. 0.89 ± 0.07, p = 0.047), and with lower V/M ratio (0.87 ± 0.06 vs. 0.89 ± 0.07, p = 0.02). V/M ratio correlated significantly with post-PCI RFR and FFR (RFR r = 0.37, 95% CI: 0.21-0.52, p < 0.001 and FFR r = 0.41, 95% CI: 0.26-0.55, p < 0.001). CONCLUSION Post-PCI RFR and FFR are associated with the subtended myocardial mass and the coronary volume to mass ratio. Vessels with higher mass and lower V/M ratio have lower post-PCI RFR and FFR.
Collapse
Affiliation(s)
- Niya Mileva
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Cardiology Clinic, Alexandrovska University Hospital, Sofia, Bulgaria
| | - Hirofumi Ohashi
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Cardiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Jonathon Leipsic
- The Centre for Cardiovascular Innovation, UBC, Vancouver, Canada
| | - Takuya Mizukami
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Clinical Pharmacology, Showa University, Tokyo, Japan
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Bjarne L Norgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hiromasa Otake
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Brian Ko
- Monash Cardiovascular Research Centre, Monash University and Monash Heart, Monash Health, Clayton, Victoria, Australia
| | - Michael Maeng
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel Munhoz
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
- Department of Internal Medicine, Discipline of Cardiology, University of Campinas, Campinas, Brazil
| | - Sakura Nagumo
- Department of Internal Medicine, Division of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Kanagawa, Japan
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
- Department of Cardiology, University of Milan, Milan, Italy
| | | | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| |
Collapse
|
7
|
Drenckhahn JD, Nicin L, Akhouaji S, Krück S, Blank AE, Schänzer A, Yörüker U, Jux C, Tombor L, Abplanalp W, John D, Zeiher AM, Dimmeler S, Rupp S. Cardiomyocyte hyperplasia and immaturity but not hypertrophy are characteristic features of patients with RASopathies. J Mol Cell Cardiol 2023; 178:22-35. [PMID: 36948385 DOI: 10.1016/j.yjmcc.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
AIMS RASopathies are caused by mutations in genes that alter the MAP kinase pathway and are marked by several malformations with cardiovascular disorders as the predominant cause of mortality. Mechanistic insights in the underlying pathogenesis in affected cardiac tissue are rare. The aim of the study was to assess the impact of RASopathy causing mutations on the human heart. METHODS AND RESULTS Using single cell approaches and histopathology we analyzed cardiac tissue from children with different RASopathy-associated mutations compared to age-matched dilated cardiomyopathy (DCM) and control hearts. The volume of cardiomyocytes was reduced in RASopathy conditions compared to controls and DCM patients, and the estimated number of cardiomyocytes per heart was ~4-10 times higher. Single nuclei RNA sequencing of a 13-year-old RASopathy patient (carrying a PTPN11 c.1528C > G mutation) revealed that myocardial cell composition and transcriptional patterns were similar to <1 year old DCM hearts. Additionally, immaturity of cardiomyocytes is shown by an increased MYH6/MYH7 expression ratio and reduced expression of genes associated with fatty acid metabolism. In the patient with the PTPN11 mutation activation of the MAP kinase pathway was not evident in cardiomyocytes, whereas increased phosphorylation of PDK1 and its downstream kinase Akt was detected. CONCLUSION In conclusion, an immature cardiomyocyte differentiation status appears to be preserved in juvenile RASopathy patients. The increased mass of the heart in such patients is due to an increase in cardiomyocyte number (hyperplasia) but not an enlargement of individual cardiomyocytes (hypertrophy).
Collapse
Affiliation(s)
- Jörg-Detlef Drenckhahn
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Luka Nicin
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Sara Akhouaji
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Svenja Krück
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Anna Eva Blank
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Uygar Yörüker
- Department of Pediatric Cardiac Surgery, University Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Jux
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Tombor
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - Wesley Abplanalp
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - Andreas M Zeiher
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - Stefan Rupp
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
8
|
Michaud K, Jacobsen C, Basso C, Banner J, Blokker BM, de Boer HH, Dedouit F, O'Donnell C, Giordano C, Magnin V, Grabherr S, Suvarna SK, Wozniak K, Parsons S, van der Wal AC. Application of postmortem imaging modalities in cases of sudden death due to cardiovascular diseases-current achievements and limitations from a pathology perspective : Endorsed by the Association for European Cardiovascular Pathology and by the International Society of Forensic Radiology and Imaging. Virchows Arch 2023; 482:385-406. [PMID: 36565335 PMCID: PMC9931788 DOI: 10.1007/s00428-022-03458-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/25/2022]
Abstract
Postmortem imaging (PMI) is increasingly used in postmortem practice and is considered a potential alternative to a conventional autopsy, particularly in case of sudden cardiac deaths (SCD). In 2017, the Association for European Cardiovascular Pathology (AECVP) published guidelines on how to perform an autopsy in such cases, which is still considered the gold standard, but the diagnostic value of PMI herein was not analyzed in detail. At present, significant progress has been made in the PMI diagnosis of acute ischemic heart disease, the most important cause of SCD, while the introduction of postmortem CT angiography (PMCTA) has improved the visualization of several parameters of coronary artery pathology that can support a diagnosis of SCD. Postmortem magnetic resonance (PMMR) allows the detection of acute myocardial injury-related edema. However, PMI has limitations when compared to clinical imaging, which severely impacts the postmortem diagnosis of myocardial injuries (ischemic versus non-ischemic), the age-dating of coronary occlusion (acute versus old), other potentially SCD-related cardiac lesions (e.g., the distinctive morphologies of cardiomyopathies), aortic diseases underlying dissection or rupture, or pulmonary embolism. In these instances, PMI cannot replace a histopathological examination for a final diagnosis. Emerging minimally invasive techniques at PMI such as image-guided biopsies of the myocardium or the aorta, provide promising results that warrant further investigations. The rapid developments in the field of postmortem imaging imply that the diagnosis of sudden death due to cardiovascular diseases will soon require detailed knowledge of both postmortem radiology and of pathology.
Collapse
Affiliation(s)
- Katarzyna Michaud
- University Center of Legal Medicine Lausanne - Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Christina Jacobsen
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Basso
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Jytte Banner
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Hans H de Boer
- Department of Forensic Medicine, Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
| | - Fabrice Dedouit
- GRAVIT, Groupe de Recherche en Autopsie Virtuelle et Imagerie Thanatologique, Forensic Department, University Hospital, Rangueil, Toulouse, France
| | - Chris O'Donnell
- Department of Forensic Medicine, Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Virginie Magnin
- University Center of Legal Medicine Lausanne - Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Silke Grabherr
- University Center of Legal Medicine Lausanne - Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - S Kim Suvarna
- Department of Histopathology, Northern General Hospital, The University of Sheffield, Sheffield, UK
| | - Krzysztof Wozniak
- Department of Forensic Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Sarah Parsons
- Department of Forensic Medicine, Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
| | - Allard C van der Wal
- Department of Pathology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Shahmohammadi M, Huberts W, Luo H, Westphal P, Cornelussen RN, Prinzen FW, Delhaas T. Hemodynamics-driven mathematical model of third heart sound generation. Front Physiol 2022; 13:847164. [PMID: 36304577 PMCID: PMC9595280 DOI: 10.3389/fphys.2022.847164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The proto-diastolic third heart sound (S3) is observed in various hemodynamic conditions in both normal and diseased hearts. We propose a novel, one-degree of freedom mathematical model of mechanical vibrations of heart and blood that generates the third heart sound, implemented in a real-time model of the cardiovascular system (CircAdapt). To examine model functionality, S3 simulations were performed for conditions mimicking the normal heart as well as heart failure with preserved ejection fraction (HFpEF), atrioventricular valve regurgitation (AVR), atrioventricular valve stenosis (AVS) and septal shunts (SS). Simulated S3 showed both qualitative and quantitative agreements with measured S3 in terms of morphology, frequency, and timing. It was shown that ventricular mass, ventricular viscoelastic properties as well as inflow momentum play a key role in the generation of S3. The model indicated that irrespective of cardiac conditions, S3 vibrations are always generated, in both the left and right sides of the heart, albeit at different levels of audibility. S3 intensities increased in HFpEF, AVR and SS, but the changes of acoustic S3 features in AVS were not significant, as compared with the reference simulation. S3 loudness in all simulated conditions was proportional to the level of cardiac output and severity of cardiac conditions. In conclusion, our hemodynamics-driven mathematical model provides a fast and realistic simulation of S3 under various conditions which may be helpful to find new indicators for diagnosis and prognosis of cardiac diseases.
Collapse
Affiliation(s)
- Mehrdad Shahmohammadi
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Wouter Huberts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Hongxing Luo
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Philip Westphal
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Bakken Research Centre, Medtronic, BV, Maastricht, Netherlands
| | - Richard N. Cornelussen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Bakken Research Centre, Medtronic, BV, Maastricht, Netherlands
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
Direct Interaction of Mitochondrial Cytochrome c Oxidase with Thyroid Hormones: Evidence for Two Binding Sites. Cells 2022; 11:cells11050908. [PMID: 35269529 PMCID: PMC8909594 DOI: 10.3390/cells11050908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Thyroid hormones regulate tissue metabolism to establish an energy balance in the cell, in particular, by affecting oxidative phosphorylation. Their long-term impact is mainly associated with changes in gene expression, while the short-term effects may differ in their mechanisms. Our work was devoted to studying the short-term effects of hormones T2, T3 and T4 on mitochondrial cytochrome c oxidase (CcO) mediated by direct contact with the enzyme. The data obtained indicate the existence of two separate sites of CcO interaction with thyroid hormones, differing in their location, affinity and specificity to hormone binding. First, we show that T3 and T4 but not T2 inhibit the oxidase activity of CcO in solution and on membrane preparations with Ki ≈ 100–200 μM. In solution, T3 and T4 compete in a 1:1 ratio with the detergent dodecyl-maltoside to bind to the enzyme. The peroxidase and catalase partial activities of CcO are not sensitive to hormones, but electron transfer from heme a to the oxidized binuclear center is affected. We believe that T3 and T4 could be ligands of the bile acid-binding site found in the 3D structure of CcO by Ferguson-Miller’s group, and hormone-induced inhibition is associated with dysfunction of the K-proton channel. A possible role of this interaction in the physiological regulation of the enzyme is discussed. Second, we find that T2, T3, and T4 inhibit superoxide generation by oxidized CcO in the presence of excess H2O2. Inhibition is characterized by Ki values of 0.3–5 μM and apparently affects the formation of O2●− at the protein surface. The second binding site for thyroid hormones presumably coincides with the point of tight T2 binding on the Va subunit described in the literature.
Collapse
|
11
|
Lee LE, Chandrasekar B, Yu P, Ma L. Quantification of myocardial fibrosis using noninvasive T2-mapping magnetic resonance imaging: Preclinical models of aging and pressure overload. NMR IN BIOMEDICINE 2022; 35:e4641. [PMID: 34729828 DOI: 10.1002/nbm.4641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 05/02/2023]
Abstract
Noninvasive imaging of cardiac fibrosis is important for early diagnosis and intervention in chronic heart diseases. Here, we investigated whether noninvasive, contrast agent-free MRI T2 -mapping can quantify myocardial fibrosis in preclinical models of aging and pressure overload. Myocardial fibrosis and remodeling were analyzed in two animal models: (i) aging (15-month-old male CF-1 mice vs. young 6- to 8-week-old mice), and (ii) pressure overload (PO; by transverse aortic constriction in 4- to 5-month-old male C57BL/6 mice vs. sham-operated for 14 days). In vivo T2 -mapping was performed by acquiring data during the isovolumic and early diastolic phases, with a modified respiratory and ECG-triggered multiecho TurboRARE sequence on a 7-T MRI. Cine MRI provided cardiac morphology and function. A quantitative segmentation method was developed to analyze the in vivo T2 -maps of hearts at midventricle, apex, and basal regions. The cardiac fibrosis area was analyzed ex vivo by picro sirius red (PSR) staining. Both aged and pressure-overloaded hearts developed significant myocardial contractile dysfunction, cardiac hypertrophy, and interstitial fibrosis. The aged mice had two phenotypes, fibrotic and mild-fibrotic. Notably, the aged fibrotic subgroup and the PO mice showed a marked decrease in T2 relaxation times (25.3 ± 0.6 in aged vs. 29.9 ± 0.7 ms in young mice, p = 0.002; and 24.3 ± 1.7 in PO vs. 28.7 ± 0.7 ms in shams, p = 0.05). However, no significant difference in T2 was detected between the aged mild-fibrotic subgroup and the young mice. Accordingly, an inverse correlation between myocardial fibrosis percentage (FP) and T2 relaxation time was derived (R2 = 0.98): T2 (ms) = 30.45 - 1.05 × FP. Thus, these results demonstrate a statistical agreement between T2 -map-quantified fibrosis and PSR staining in two different clinically relevant animal models. In conclusion, T2 -mapping MRI is a promising noninvasive contrast agent-free quantitative technique to characterize myocardial fibrosis.
Collapse
Affiliation(s)
- Li E Lee
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Bysani Chandrasekar
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
- Department of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ping Yu
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Lixin Ma
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Nogami K, Sugiyama T, Kanaji Y, Hoshino M, Hara S, Yamaguchi M, Hada M, Sumino Y, Misawa T, Hirano H, Ueno H, Miwa N, Yamao K, Kusa S, Hachiya H, Kakuta T. Association between pericoronary adipose tissue attenuation and outcome after second-generation cryoballoon ablation for atrial fibrillation. Br J Radiol 2021; 94:20210361. [PMID: 34520243 DOI: 10.1259/bjr.20210361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES Previous studies reported the association between inflammation and atrial fibrillation (AF). Pericoronary adipose tissue (PCAT) attenuation, PCATA, on cardiac CT angiography (CTA) reflects pericoronary inflammation. We hypothesized that the PCATA predicts AF recurrence after cryoballoon ablation (CBA) for paroxysmal and persistent AF. METHODS We studied 364 patients (median age, 65 years) with persistent (n = 41) and paroxysmal (n = 323) AF undergoing successful first-session second-generation CBA with pre-ablation cardiac CTA. Three-vessel (3V)-PCATA was defined as the mean CT attenuation value of PCAT of all three major coronary arteries. Predictors of AF recurrence during follow-up were evaluated. RESULTS AF recurrence after the 3-month blanking period was detected in 90 patients (24.7%) during the median follow-up of 26 (interquartile range, 19-42) months. AF recurrence was associated with prior stroke and statin use, NT-proBNP and high-sensitivity cardiac troponin-I levels, left ventricular dimension, left atrial volume index (LAVI), 3V-PCATA, and early AF recurrence during the blanking period. On multivariable Cox proportional hazard analysis, prior stroke (hazard ratio [HR], 2.208, 95% confidence interval [CI], 1.166-4.180, p = 0.015), LAVI (HR, 1.030, 95% CI, 1.010-1.051, p = 0.003), 3V-PCATA (HR, 1.034, 95% CI, 1.001-1.069, p = 0.046), and early AF recurrence (HR, 2.858, 95% CI, 1.855-4.405, p < 0.001) remained statistically significant. CONCLUSION Pre-ablation CTA-derived 3V-PCATA, representing pericoronary inflammation, was an independent predictor of recurrence after first-session AF ablation using a second-generation cryoballoon. ADVANCES IN KNOWLEDGE Assessment of 3V-PCATA may identify patients at high risk of AF recurrence after CBA for AF.
Collapse
Affiliation(s)
- Kai Nogami
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Tomoyo Sugiyama
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Yoshihisa Kanaji
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Masahiro Hoshino
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Satoshi Hara
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Masao Yamaguchi
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Masahiro Hada
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Yohei Sumino
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Toru Misawa
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Hidenori Hirano
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Hiroki Ueno
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Naoyuki Miwa
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Kazuya Yamao
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Shigeki Kusa
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Hitoshi Hachiya
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Tsunekazu Kakuta
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| |
Collapse
|
13
|
Ellmann S, Nickel JM, Heiss R, El Amrani N, Wüst W, Rompel O, Rueffer A, Cesnjevar R, Dittrich S, Uder M, May MS. Prognostic Value of CTA-Derived Left Ventricular Mass in Neonates with Congenital Heart Disease. Diagnostics (Basel) 2021; 11:diagnostics11071215. [PMID: 34359298 PMCID: PMC8303678 DOI: 10.3390/diagnostics11071215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
For therapeutic decisions regarding uni- or biventricular surgical repair in congenital heart disease (CHD), left ventricular mass (LVM) is an important factor. The aim of this retrospective study was to determine the LVM of infants with CHD in thoracic computed tomography angiographies (CTAs) and to evaluate its usefulness as a prognostic parameter, with special attention paid to hypoplastic left heart (HLH) patients. Manual segmentation of the left ventricular endo- and epicardial volumes was performed in CTAs of 132 infants. LVMs were determined from these volumes and normalized to body surface area. LVMs of patients with different types of CHD were compared to each other using analyses of variances (ANOVA). An LVM cutoff for discrimination between uni- and biventricular repair was determined using receiver operating characteristics. Survival rates were calculated using Kaplan–Meier statistics. Patients with a clinical diagnosis of an HLH had significantly lower mean LVM (21.88 g/m2) compared to patients without applicable disease (50.22 g/m2; p < 0.0001) and compared to other CHDs, including persistent truncus arteriosus, left ventricular outflow tract obstruction, transposition of the great arteries, pulmonary artery stenosis or atresia, and double-outlet right ventricle (all, p < 0.05). The LVM cutoff for uni- vs. biventricular surgery was 33.9 g/m2 (sensitivity: 82.3%; specificity: 73.7%; PPV: 94.9%). In a subanalysis of HLH patients, a sensitivity of 50.0%, specificity of 100%, PPV of 100%, and NPV of 83.3% was determined. Patient survival was not significantly different between the surgical approaches or between patients with LVM above or below the cutoff. LVM can be measured in chest CTA of newborns with CHD and can be used as a prognostic factor.
Collapse
Affiliation(s)
- Stephan Ellmann
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.-M.N.); (R.H.); (N.E.A.); (O.R.); (M.U.); (M.S.M.)
- Correspondence:
| | - Julie-Marie Nickel
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.-M.N.); (R.H.); (N.E.A.); (O.R.); (M.U.); (M.S.M.)
| | - Rafael Heiss
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.-M.N.); (R.H.); (N.E.A.); (O.R.); (M.U.); (M.S.M.)
- Imaging Science Institute Erlangen, Ulmenweg 18, 91054 Erlangen, Germany;
| | - Nouhayla El Amrani
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.-M.N.); (R.H.); (N.E.A.); (O.R.); (M.U.); (M.S.M.)
| | - Wolfgang Wüst
- Imaging Science Institute Erlangen, Ulmenweg 18, 91054 Erlangen, Germany;
- Department of Radiology, Martha Maria Hospital Nuremberg, 90491 Nuremberg, Germany
| | - Oliver Rompel
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.-M.N.); (R.H.); (N.E.A.); (O.R.); (M.U.); (M.S.M.)
| | - Andre Rueffer
- Department of Pediatric Cardiac Surgery, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Loschgestraße 15, 91054 Erlangen, Germany;
| | - Sven Dittrich
- Department of Pediatric Cardiology, University Hospital Erlangen, Loschgestraße 15, 91054 Erlangen, Germany;
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.-M.N.); (R.H.); (N.E.A.); (O.R.); (M.U.); (M.S.M.)
- Imaging Science Institute Erlangen, Ulmenweg 18, 91054 Erlangen, Germany;
| | - Matthias S. May
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.-M.N.); (R.H.); (N.E.A.); (O.R.); (M.U.); (M.S.M.)
- Imaging Science Institute Erlangen, Ulmenweg 18, 91054 Erlangen, Germany;
| |
Collapse
|
14
|
Loeffler S, Starobin J. Reaction-diffusion informed approach to determine myocardial ischemia using stochastic in-silico ECGs and CNNs. Comput Biol Med 2021; 136:104635. [PMID: 34298482 DOI: 10.1016/j.compbiomed.2021.104635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022]
Abstract
Every year, nine million people die globally from ischemic heart disease (IHD). There are many methods of early detection of IHD which can help prevent death, but few are able to determine the configuration and severity of this disease. Our study aims to determine the severity and configuration of ischemic zones by implementing the reaction-diffusion analysis of cardiac excitation in a model of the left ventricle of the human heart. Initially, this model is applied to compute twenty thousand in-silico ECG signals with stochastic distribution of ischemic parameters. Furthermore, generated data is effectively (r2=0.85) implemented for training a one-dimensional convolutional neural network to determine the severity and configuration of ischemia using only two lead surface ECG. Our results readily demonstrate that using a minimally configured portable ECG system can be instrumental for monitoring IHD and allowing early tracking of acute ischemic events.
Collapse
Affiliation(s)
- Shane Loeffler
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Joseph Starobin
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
15
|
van Driest FY, van der Geest RJ, Broersen A, Dijkstra J, El Mahdiui M, Jukema JW, Scholte AJHA. Quantification of myocardial ischemia and subtended myocardial mass at adenosine stress cardiac computed tomography: a feasibility study. Int J Cardiovasc Imaging 2021; 37:3313-3322. [PMID: 34160721 PMCID: PMC8557181 DOI: 10.1007/s10554-021-02314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/12/2021] [Indexed: 12/03/2022]
Abstract
Combination of coronary computed tomography angiography (CCTA) and adenosine stress CT myocardial perfusion (CTP) allows for coronary artery lesion assessment as well as myocardial ischemia. However, myocardial ischemia on CTP is nowadays assessed semi-quantitatively by visual analysis. The aim of this study was to fully quantify myocardial ischemia and the subtended myocardial mass on CTP. We included 33 patients referred for a combined CCTA and adenosine stress CTP protocol, with good or excellent imaging quality on CTP. The coronary artery tree was automatically extracted from the CCTA and the relevant coronary artery lesions with a significant stenosis (≥ 50%) were manually defined using dedicated software. Secondly, epicardial and endocardial contours along with CT perfusion deficits were semi-automatically defined in short-axis reformatted images using MASS software. A Voronoi-based segmentation algorithm was used to quantify the subtended myocardial mass, distal from each relevant coronary artery lesion. Perfusion defect and subtended myocardial mass were spatially registered to the CTA. Finally, the subtended myocardial mass per lesion, total subtended myocardial mass and perfusion defect mass (per lesion) were measured. Voronoi-based segmentation was successful in all cases. We assessed a total of 64 relevant coronary artery lesions. Average values for left ventricular mass, total subtended mass and perfusion defect mass were 118, 69 and 7 g respectively. In 19/33 patients (58%) the total perfusion defect mass could be distributed over the relevant coronary artery lesion(s). Quantification of myocardial ischemia and subtended myocardial mass seem feasible at adenosine stress CTP and allows to quantitatively correlate coronary artery lesions to corresponding areas of myocardial hypoperfusion at CCTA and adenosine stress CTP.
Collapse
Affiliation(s)
- F Y van Driest
- Department of Cardiology, Leiden Heart-Lung Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - R J van der Geest
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - A Broersen
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - J Dijkstra
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - M El Mahdiui
- Department of Cardiology, Leiden Heart-Lung Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - J W Jukema
- Department of Cardiology, Leiden Heart-Lung Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - A J H A Scholte
- Department of Cardiology, Leiden Heart-Lung Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands.
| |
Collapse
|
16
|
Kim W, Lim M, Jang YJ, Koo HJ, Kang JW, Jung SH, Yang DH. Novel Resectable Myocardial Model Using Hybrid Three-Dimensional Printing and Silicone Molding for Mock Myectomy for Apical Hypertrophic Cardiomyopathy. Korean J Radiol 2021; 22:1054-1065. [PMID: 33856135 PMCID: PMC8236372 DOI: 10.3348/kjr.2020.1164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/25/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
Objective We implemented a novel resectable myocardial model for mock myectomy using a hybrid method of three-dimensional (3D) printing and silicone molding for patients with apical hypertrophic cardiomyopathy (ApHCM). Materials and Methods From January 2019 through May 2020, 3D models from three patients with ApHCM were generated using the end-diastolic cardiac CT phase image. After computer-aided designing of measures to prevent structural deformation during silicone injection into molding, 3D printing was performed to reproduce anatomic details and molds for the left ventricular (LV) myocardial mass. We compared the myocardial thickness of each cardiac segment and the LV myocardial mass and cavity volumes between the myocardial model images and cardiac CT images. The surgeon performed mock surgery, and we compared the volume and weight of the resected silicone and myocardium. Results During the mock surgery, the surgeon could determine an ideal site for the incision and the optimal extent of myocardial resection. The mean differences in the measured myocardial thickness of the model (0.3, 1.0, 6.9, and 7.3 mm in the basal, midventricular, apical segments, and apex, respectively) and volume of the LV myocardial mass and chamber (36.9 mL and 14.8 mL, 2.9 mL and −9.4 mL, and 6.0 mL and −3.0 mL in basal, mid-ventricular and apical segments, respectively) were consistent with cardiac CT. The volume and weight of the resected silicone were similar to those of the resected myocardium (6 mL [6.2 g] of silicone and 5 mL [5.3 g] of the myocardium in patient 2; 12 mL [12.5 g] of silicone and 11.2 mL [11.8 g] of the myocardium in patient 3). Conclusion Our 3D model created using hybrid 3D printing and silicone molding may be useful for determining the extent of surgery and planning surgery guided by a rehearsal platform for ApHCM.
Collapse
Affiliation(s)
- Wooil Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | | | - Hyun Jung Koo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Joon Won Kang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sung Ho Jung
- Department of Thoracic and Cardiovascular Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
17
|
Basso C, Michaud K, d'Amati G, Banner J, Lucena J, Cunningham K, Leone O, Vink A, van der Wal AC, Sheppard MN. Cardiac hypertrophy at autopsy. Virchows Arch 2021; 479:79-94. [PMID: 33740097 PMCID: PMC8298245 DOI: 10.1007/s00428-021-03038-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Since cardiac hypertrophy may be considered a cause of death at autopsy, its assessment requires a uniform approach. Common terminology and methodology to measure the heart weight, size, and thickness as well as a systematic use of cut off values for normality by age, gender, and body weight and height are needed. For these reasons, recommendations have been written on behalf of the Association for European Cardiovascular Pathology. The diagnostic work up implies the search for pressure and volume overload conditions, compensatory hypertrophy, storage and infiltrative disorders, and cardiomyopathies. Although some gross morphologic features can point to a specific diagnosis, systematic histologic analysis, followed by possible immunostaining and transmission electron microscopy, is essential for a final diagnosis. If the autopsy is carried out in a general or forensic pathology service without expertise in cardiovascular pathology, the entire heart (or pictures) together with mapped histologic slides should be sent for a second opinion to a pathologist with such an expertise. Indication for postmortem genetic testing should be integrated into the multidisciplinary management of sudden cardiac death.
Collapse
Affiliation(s)
- Cristina Basso
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| | - Katarzyna Michaud
- University Center of Legal Medicine Lausanne - Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Jytte Banner
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Joaquin Lucena
- Forensic Pathology Service, Institute of Legal Medicine and Forensic Sciences, Seville, Spain
| | - Kristopher Cunningham
- Department of Laboratory Medicine and Pathobiology, Ontario Forensic Pathology Service, University of Toronto, Toronto, Canada
| | - Ornella Leone
- Cardiovascular and Cardiac Transplant Pathology Unit, Department of Pathology, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aryan Vink
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Mary N Sheppard
- Department of Cardiovascular Pathology, Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's Medical School, London, UK
| | | |
Collapse
|
18
|
Fukui M, Sorajja P, Gössl M, Bae R, Lesser JR, Sun B, Duncan A, Muller D, Cavalcante JL. Left Ventricular Remodeling After Transcatheter Mitral Valve Replacement With Tendyne. JACC Cardiovasc Interv 2020; 13:2038-2048. [DOI: 10.1016/j.jcin.2020.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
|
19
|
Sugiyama T, Kanaji Y, Hoshino M, Yamaguchi M, Hada M, Ohya H, Sumino Y, Hirano H, Kanno Y, Horie T, Misawa T, Nogami K, Ueno H, Hamaya R, Usui E, Murai T, Lee T, Yonetsu T, Sasano T, Kakuta T. Determinants of Pericoronary Adipose Tissue Attenuation on Computed Tomography Angiography in Coronary Artery Disease. J Am Heart Assoc 2020; 9:e016202. [PMID: 32750306 PMCID: PMC7792233 DOI: 10.1161/jaha.120.016202] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022]
Abstract
Background Recent studies have reported the association between pericoronary inflammation assessed by pericoronary adipose tissue attenuation (PCATA) on computed tomography angiography and worse outcomes in patients with coronary artery disease. We investigated the determinants predicting increased PCATA in patients with known or suspected coronary artery disease. Methods and Results A total of 540 patients who underwent computed tomography angiography and invasive coronary angiography were studied. Mean computed tomography attenuation values of PCAT (-190 to -30 Hounsfield units) (PCATA) were assessed at the proximal 40-mm segments of all 3 major coronary arteries by crude analysis. Univariable and multivariable analyses were performed to determine the predictors of increased PCATA surrounding the proximal right coronary artery. Mean right coronary artery-PCATA was -72.22±8.47 Hounsfield units and the average of 3-vessel PCATA was -70.24±6.60 Hounsfield units. Multivariable linear regression analysis revealed that the independent determinants of right coronary artery-PCATA were male (β coefficient=4.965, P<0.001), left ventricular mass index (β coefficient=0.040, P=0.025), and angiographically significant stenosis (diameter stenosis >50%) (β coefficient=2.418, P=0.008). Sex-related determinants were NT-proBNP level (N-terminal pro-B-type natriuretic peptide; β coefficient <0.001, P=0.026), Agatston score (β coefficient=-0.002, P=0.010), left ventricular mass index (β coefficient=0.041, P=0.028), and significant stenosis (β coefficient=4.006, P<0.001) in male patients and left ventricular ejection fraction (β coefficient=-0.217, P=0.010) and significant stenosis (β coefficient=3.835, P=0.023) in female patients. Conclusions Right coronary artery-PCATA was associated with multiple clinical characteristics, established risk factors, and the presence of significant stenosis. Our results suggest that clinically significant factors such as sex, left ventricular hypertrophy, ejection fraction, calcification, and epicardial stenosis should be taken into account in the assessment of pericoronary inflammation using computed tomography angiography.
Collapse
Affiliation(s)
- Tomoyo Sugiyama
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Yoshihisa Kanaji
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Masahiro Hoshino
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Masao Yamaguchi
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Masahiro Hada
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Hiroaki Ohya
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Yohei Sumino
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Hidenori Hirano
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Yoshinori Kanno
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Tomoki Horie
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Toru Misawa
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Kai Nogami
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Hiroki Ueno
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Rikuta Hamaya
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Eisuke Usui
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Tadashi Murai
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| | - Tetsumin Lee
- Department of Cardiovascular MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Taishi Yonetsu
- Department of Cardiovascular MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuo Sasano
- Department of Cardiovascular MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Tsunekazu Kakuta
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraIbarakiJapan
| |
Collapse
|
20
|
Cho SKS, Darby JRT, Saini BS, Lock MC, Holman SL, Lim JM, Perumal SR, Macgowan CK, Morrison JL, Seed M. Feasibility of ventricular volumetry by cardiovascular MRI to assess cardiac function in the fetal sheep. J Physiol 2020; 598:2557-2573. [PMID: 32378201 DOI: 10.1113/jp279054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The application of fetal cardiovascular magnetic resonance imaging (CMR) to assess fetal cardiovascular physiology and cardiac function through the quantification of ventricular volumes has previously been investigated, but the approach has not yet been fully validated. Ventricular output measurements calculated from heart rate and stroke volumes (SV) of the right and left ventricles measured by ventricular volumetry (VV) exhibited a high level of agreement with phase-contrast (PC) blood flow measurements in the main pulmonary artery and ascending aorta, respectively. Ejection fraction of the right ventricle, which is lower than that of the left ventricle in postnatal subjects, was similar to the left ventricular ejection fraction in the fetus; probably due to the different loading conditions present in the fetal circulation. This study provides evidence to support the reliability of VV in the sheep fetus, providing evidence for its use in animal models of human diseases affecting the fetal circulation. ABSTRACT The application of ventricular volumetry (VV) by cardiovascular magnetic resonance imaging (CMR) in the fetus remains challenging due to the small size of the fetal heart and high heart rate. The reliability of this technique in utero has not yet been established. The aim of this study was to assess the feasibility and reliability of VV in a fetal sheep model of human pregnancy. Right and left ventricular outputs by stroke volume (SV) measured using VV were compared with 2D phase-contrast (PC) CMR measurements of blood flow in the main pulmonary artery (MPA) and ascending aorta (AAo). At 124-140 days (d) gestation, singleton bearing Merino ewes underwent CMR under general anaesthesia using fetal femoral artery catheters, implanted at 109-117d, to trigger cine steady state free precession acquisitions of ventricular short-axis stacks. The short-axis cine stacks were segmented at end-systole and end-diastole, yielding right and left ventricular SV, ejection fraction, and cardiac outputs (SV × heart rate). PC cine acquisitions of MPA and AAo were analysed to measure blood flow, which served as comparators for the right and left cardiac outputs by VV. There was good correlation and agreement between VV and PC measures of ventricular outputs with no significant bias (r2 = 0.926; P < 0.0001; Bias = -4.7 ± 10.5 ml min-1 kg-1 ; 95% limits of agreement: -15.9 to 25.2 ml min-1 kg-1 ). This study validates fetal VV by CMR in a large animal model of human pregnancy and provides preliminary reference values of fetal sheep right and left ventricles in late gestation.
Collapse
Affiliation(s)
- Steven K S Cho
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Brahmdeep S Saini
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jessie Mei Lim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Mike Seed
- Division of Cardiology, Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|