1
|
Peña-Montes DJ, Huerta-Cervantes M, Riveros-Rosas H, Manzo-Avalos S, Aguilera-Méndez A, Huerta M, Trujillo X, Cortés-Rojo C, Montoya-Pérez R, Salgado-Garciglia R, Saavedra-Molina A. Iron chelation mitigates mitochondrial dysfunction and oxidative stress by enhancing nrf2-mediated antioxidant responses in the renal cortex of a murine model of type 2 diabetes. Mitochondrion 2024; 78:101937. [PMID: 39004262 DOI: 10.1016/j.mito.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Renal iron overload is a common complication of diabetes that leads to oxidative stress and mitochondrial dysfunction in the kidneys. This study investigated the effects of iron chelation using deferiprone on mitochondrial dysfunction and oxidative stress in the renal cortex of a murine model of type 2 diabetes. Diabetic rats were treated with deferiprone (50 mg/kg BW) for 16 weeks. Our results show that iron chelation with deferiprone significantly increased the nuclear accumulation of Nrf2, a transcription factor that regulates the expression of antioxidant enzymes. This led to enhanced antioxidant capacity, reduced production of reactive oxygen species, and improved mitochondrial bioenergetic function in diabetic rats. However, chronic iron chelation led to altered mitochondrial respiration and increased oxidative stress in non-diabetic rats. In conclusion, our findings suggest that iron chelation with deferiprone protects mitochondrial bioenergetics and mitigates oxidative stress in the renal cortex, involving the NRF2 pathway in type 2 diabetes.
Collapse
Affiliation(s)
- Donovan J Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | | | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Salvador Manzo-Avalos
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Asdrubal Aguilera-Méndez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Mexico
| | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico.
| |
Collapse
|
2
|
Lan X, Ye Z, Du J, Liu L, Tian C, Huang L, Mo X. Cross-sectional study on the impact of cardiac and hepatic iron overload, as measured by MRI T2*, on the quality of life in children with severe beta-thalassemia major. Medicine (Baltimore) 2024; 103:e38817. [PMID: 38968493 PMCID: PMC11224881 DOI: 10.1097/md.0000000000038817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024] Open
Abstract
A cross-sectional study to explore the correlation between cardiac and hepatic iron overload and its impact on the quality of life in children diagnosed with severe beta-thalassemia major (β-TM). A cohort of 55 pediatric patients with β-TM, diagnosed via genetic testing at the Affiliated Hospital of Guangdong Medical University from January 2015 to January 2022, was included in this study. The assessment of cardiac and hepatic iron overload was conducted using the magnetic resonance imaging T2* technique. The Chinese version of the Pediatric Quality of Life Inventory (PedsQL) 4.0. Pearson correlation analysis was utilized to assess the relationships between the cardiac and hepatic T2* values and between these T2* values and the total scores of PedsQL 4.0. Analysis showed no significant correlation between cardiac and hepatic T2* values. However, a significant relationship was observed between cardiac T2* values and PedsQL 4.0 total scores (r = 0.313, P < .05), indicating that cardiac, but not hepatic, iron overload is associated with the quality of life. This study highlights the absence of correlation between cardiac and hepatic iron overload levels and demonstrates a significant impact of cardiac iron overload on the quality of life in children with β-TM. These findings suggest the need for a focused approach to cardiac health in managing β-TM.
Collapse
Affiliation(s)
- Xiang Lan
- Department of Paediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhonglv Ye
- Department of Paediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiayi Du
- Department of Paediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Liu
- Department of Paediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuan Tian
- Department of Paediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Linming Huang
- Department of Paediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaohuan Mo
- Department of Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
4
|
Geng W, Pan L, Shen L, Sha Y, Sun J, Yu S, Qiu J, Xing W. Correction: Evaluating renal iron overload in diabetes mellitus by blood oxygen level-dependent magnetic resonance imaging: a longitudinal experimental study. BMC Med Imaging 2024; 24:73. [PMID: 38532350 DOI: 10.1186/s12880-024-01243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Affiliation(s)
- Weiwei Geng
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, 213003, Changzhou, Jiangsu, China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, 213003, Changzhou, Jiangsu, China
| | - Liwen Shen
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, 213003, Changzhou, Jiangsu, China
| | - Yuanyuan Sha
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, 213003, Changzhou, Jiangsu, China
| | - Jun Sun
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, 213003, Changzhou, Jiangsu, China
| | - Shengnan Yu
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, 213003, Changzhou, Jiangsu, China
| | - Jianguo Qiu
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, 213003, Changzhou, Jiangsu, China.
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, 213003, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Mohammadi S, Ghaderi S, Sayehmiri F, Fathi M. Quantitative susceptibility mapping for iron monitoring of multiple subcortical nuclei in type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1331831. [PMID: 38510699 PMCID: PMC10950952 DOI: 10.3389/fendo.2024.1331831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Iron accumulation in the brain has been linked to diabetes, but its role in subcortical structures involved in motor and cognitive functions remains unclear. Quantitative susceptibility mapping (QSM) allows the non-invasive quantification of iron deposition in the brain. This systematic review and meta-analysis examined magnetic susceptibility measured by QSM in the subcortical nuclei of patients with type 2 diabetes mellitus (T2DM) compared with controls. Methods PubMed, Scopus, and Web of Science databases were systematically searched [following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines] for studies reporting QSM values in the deep gray matter (DGM) regions of patients with T2DM and controls. Pooled standardized mean differences (SMDs) for susceptibility were calculated using fixed-effects meta-analysis models, and heterogeneity was assessed using I2. Sensitivity analyses were conducted, and publication bias was evaluated using Begg's and Egger's tests. Results Six studies including 192 patients with T2DM and 245 controls were included. This study found a significant increase in iron deposition in the subcortical nuclei of patients with T2DM compared to the control group. The study found moderate increases in the putamen (SMD = 0.53, 95% CI 0.33 to 0.72, p = 0.00) and dentate nucleus (SMD = 0.56, 95% CI 0.27 to 0.85, p = 0.00) but weak associations between increased iron levels in the caudate nucleus (SMD = 0.32, 95% CI 0.13 to 0.52, p = 0.00) and red nucleus (SMD = 0.22, 95% CI 0.00 0.44, p = 0.05). No statistical significance was found for iron deposition alterations in the globus pallidus (SMD = 0.19; 95% CI -0.01 to 0.38; p = 0.06) and substantia nigra (SMD = 0.12, 95% CI -0.10, 0.34, p = 0.29). Sensitivity analysis showed that the findings remained unaffected by individual studies, and consistent increases were observed in multiple subcortical areas. Discussion QSM revealed an increase in iron in the DGM/subcortical nuclei in T2DM patients versus controls, particularly in the motor and cognitive nuclei, including the putamen, dentate nucleus, caudate nucleus, and red nucleus. Thus, QSM may serve as a potential biomarker for iron accumulation in T2DM patients. However, further research is needed to validate these findings.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
An JR, Wang QF, Sun GY, Su JN, Liu JT, Zhang C, Wang L, Teng D, Yang YF, Shi Y. The Role of Iron Overload in Diabetic Cognitive Impairment: A Review. Diabetes Metab Syndr Obes 2023; 16:3235-3247. [PMID: 37872972 PMCID: PMC10590583 DOI: 10.2147/dmso.s432858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
It is well documented that diabetes mellitus (DM) is strongly associated with cognitive decline and structural damage to the brain. Cognitive deficits appear early in DM and continue to worsen as the disease progresses, possibly due to different underlying mechanisms. Normal iron metabolism is necessary to maintain normal physiological functions of the brain, but iron deposition is one of the causes of some neurodegenerative diseases. Increasing evidence shows that iron overload not only increases the risk of DM, but also contributes to the development of cognitive impairment. The current review highlights the role of iron overload in diabetic cognitive impairment (DCI), including the specific location and regulation mechanism of iron deposition in the diabetic brain, the factors that trigger iron deposition, and the consequences of iron deposition. Finally, we also discuss possible therapies to improve DCI and brain iron deposition.
Collapse
Affiliation(s)
- Ji-Ren An
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, People’s Republic of China
| | - Qing-Feng Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Gui-Yan Sun
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jia-Nan Su
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jun-Tong Liu
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Chi Zhang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Li Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Dan Teng
- He University, Shenyang, 110163, People’s Republic of China
| | - Yu-Feng Yang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Yan Shi
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| |
Collapse
|