1
|
Watashi K, Shionoya K, Kobayashi C, Morita T. Hepatitis B and D virus entry. Nat Rev Microbiol 2025; 23:318-331. [PMID: 39572840 DOI: 10.1038/s41579-024-01121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 04/17/2025]
Abstract
Hepatitis B virus (HBV) entry is the initial step of viral infection, leading to the formation of covalently closed circular DNA, which is a molecular reservoir of viral persistence and a key obstacle for HBV cure. The restricted entry of HBV into specific cell types determines the nature of HBV, which has a narrow host range in tissues and species. Hepatitis D virus (HDV) shares viral surface antigens with HBV and thus follows a similar entry mechanism at its early stages. In late 2012, sodium taurocholate cotransporting polypeptide was discovered as an HBV and HDV entry receptor. Since then, the mechanisms of HBV and HDV entry have been extensively analysed. These analyses have expanded our understanding of HBV and HDV host tropism and have provided new strategies for the development of antiviral agents. Notably, the structures of sodium taurocholate cotransporting polypeptide and its interaction with the 2-48 amino acid region of viral preS1 have been recently solved. These findings will stimulate further entry studies. In this Review, we summarize current understanding of HBV and HDV entry and future perspectives.
Collapse
Affiliation(s)
- Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
| | - Kaho Shionoya
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Chisa Kobayashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Takeshi Morita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Xu ZM, Gnouamozi GE, Rüeger S, Shea PR, Buti M, Chan HL, Marcellin P, Lawless D, Naret O, Zeller M, Schneuing A, Scheck A, Junier T, Moradpour D, Podlaha O, Suri V, Gaggar A, Subramanian M, Correia B, Gfeller D, Urban S, Fellay J. Joint host-pathogen genomic analysis identifies hepatitis B virus mutations associated with human NTCP and HLA class I variation. Am J Hum Genet 2024; 111:1018-1034. [PMID: 38749427 PMCID: PMC11179264 DOI: 10.1016/j.ajhg.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
Evolutionary changes in the hepatitis B virus (HBV) genome could reflect its adaptation to host-induced selective pressure. Leveraging paired human exome and ultra-deep HBV genome-sequencing data from 567 affected individuals with chronic hepatitis B, we comprehensively searched for the signatures of this evolutionary process by conducting "genome-to-genome" association tests between all human genetic variants and viral mutations. We identified significant associations between an East Asian-specific missense variant in the gene encoding the HBV entry receptor NTCP (rs2296651, NTCP S267F) and mutations within the receptor-binding region of HBV preS1. Through in silico modeling and in vitro preS1-NTCP binding assays, we observed that the associated HBV mutations are in proximity to the NTCP variant when bound and together partially increase binding affinity to NTCP S267F. Furthermore, we identified significant associations between HLA-A variation and viral mutations in HLA-A-restricted T cell epitopes. We used in silico binding prediction tools to evaluate the impact of the associated HBV mutations on HLA presentation and observed that mutations that result in weaker binding affinities to their cognate HLA alleles were enriched. Overall, our results suggest the emergence of HBV escape mutations that might alter the interaction between HBV PreS1 and its cellular receptor NTCP during viral entry into hepatocytes and confirm the role of HLA class I restriction in inducing HBV epitope variations.
Collapse
Affiliation(s)
- Zhi Ming Xu
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gnimah Eva Gnouamozi
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sina Rüeger
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Maria Buti
- Liver Unit, Hospital Universitario Vall d'Hebron and CIBEREHD del Instituto Carlos III, Barcelona, Spain
| | - Henry Ly Chan
- The Chinese University of Hong Kong, Hong Kong, China
| | | | - Dylan Lawless
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Naret
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Matthias Zeller
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arne Schneuing
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andreas Scheck
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas Junier
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | - Bruno Correia
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Geng N, Ma L, Jin Y, Lu J, Zheng Y, Wang J, Wang X, Chen X. Prediction Model for the Clearance of Hepatitis B Surface Antigen in Patients with Chronic Hepatitis B before Interferon Therapy: A Prospective Case-Control Study. Diagnostics (Basel) 2024; 14:118. [PMID: 38201427 PMCID: PMC10804386 DOI: 10.3390/diagnostics14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
To evaluate the prediction model comprised of patients' laboratory results and single-nucleotide polymorphism (SNP) markers of host gene for the clearance of hepatitis B surface antigen (HBsAg) in patients with chronic hepatitis B (CHB) who underwent interferon (IFN)-α therapy, this prospective case-control study enrolled 131 patients with CHB who underwent IFN-α-based regimens in our hospital between January 2015 and September 2019. Among them, 56 cases were without HBsAg clearance, while the other 75 cases had HBsAg clearance. Multivariable logistic regression analysis showed that CYP27B1 rs4646536 (odd ratio [OR] = 0.155, 95% CI: 0.030-0.807, p = 0.027), PAK4 rs9676717 (OR = 11.237, 95% CI: 1.768-71.409, p = 0.010), IL28B rs12979860 (OR = 0.059, 95% CI: 0.006-0.604, p = 0.017), baseline HBsAg (OR = 0.170, 95% CI: 0.040-0.716, p = 0.016), and HBeAg status (OR = 3.971, 95% CI: 1.138-13.859, p = 0.031) were independently associated with HBsAg clearance. The model that included rs3077, rs4646536, rs9676717, rs2850015, rs12979860, baseline HBsAg, HBeAg status, and HBV DNA had the best prediction performance for HBsAg clearance prediction, with AUC = 0.877, 80% sensitivity, and 81% specificity. In conclusion, laboratory results and gene polymorphisms before treatment might have a good predictive value for HbsAg clearance after IFN-α treatment in CHB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinyue Chen
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (N.G.); (L.M.); (Y.J.); (J.L.); (Y.Z.); (J.W.); (X.W.)
| |
Collapse
|
4
|
Adimulam T, Arumugam T, Gokul A, Ramsuran V. Genetic Variants within SARS-CoV-2 Human Receptor Genes May Contribute to Variable Disease Outcomes in Different Ethnicities. Int J Mol Sci 2023; 24:8711. [PMID: 37240057 PMCID: PMC10218380 DOI: 10.3390/ijms24108711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a global pandemic, with an alarming infectivity and mortality rate. Studies have examined genetic effects on SARS-CoV-2 disease susceptibility and severity within Eurasian populations. These studies identified contrasting effects on the severity of disease between African populations. Genetic factors can explain some of the diversity observed within SARS-CoV-2 disease susceptibility and severity. Single nucleotide polymorphisms (SNPs) within the SARS-CoV-2 receptor genes have demonstrated detrimental and protective effects across ethnic groups. For example, the TT genotype of rs2285666 (Angiotensin-converting enzyme 2 (ACE2)) is associated with the severity of SARS-CoV-2 disease, which is found at higher frequency within Asian individuals compared to African and European individuals. In this study, we examined four SARS-CoV-2 receptors, ACE2, Transmembrane serine protease 2 (TMPRSS2), Neuropilin-1 (NRP1), and Basigin (CD147). A total of 42 SNPs located within the four receptors were reviewed: ACE2 (12), TMPRSS2 (10), BSG (CD147) (5), and NRP1 (15). These SNPs may be determining factors for the decreased disease severity observed within African individuals. Furthermore, we highlight the absence of genetic studies within the African population and emphasize the importance of further research. This review provides a comprehensive summary of specific variants within the SARS-CoV-2 receptor genes, which can offer a better understanding of the pathology of the SARS-CoV-2 pandemic and identify novel potential therapeutic targets.
Collapse
Affiliation(s)
- Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Anmol Gokul
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
5
|
Huang J, Su M, Chen H, Wu S, Chen Z. The S267F variant of sodium taurocholate co-transporting polypeptide is strongly associated with resistance to chronic hepatitis B and high level of serum total bile acids. LIVER RESEARCH 2022; 6:186-190. [PMID: 39958196 PMCID: PMC11791793 DOI: 10.1016/j.livres.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Background and aims The sodium taurocholate co-transporting polypeptide (NTCP) is a functional receptor for the hepatitis B virus (HBV), and it is critical for bile acid homeostasis. Previous studies of the association between the S267F variant and chronic hepatitis B (CHB) have generated conflicting results. This study analyzed the correlation between the NTCP S267F variant and CHB susceptibility by using a large sample of participants classified by gender and age, and this study also analyzed the relationship between this variant and the level of serum total bile acids. Methods In total, 543 patients with CHB and 429 control subjects underwent S267F variant genotyping using SNaPshot technology. Logistic regression was utilized to evaluate any association of the NTCP S267F variant with CHB susceptibility. Results The S267F variant was inversely correlated with the risk of chronic HBV infection in both the dominant model (GG genotype vs. AG genotype: odds ratio (OR) = 0.46, 95% confidence interval (CI) 0.30-0.71, P < 0.001) and the allele model (G allele vs. A allele: OR = 0.50, 95% CI 0.33-0.76, P = 0.001), and this correlation was not affected by gender and age stratification. The carriers of the heterozygous NTCP variant exhibited higher total bile acids levels than the carriers of wild-type NTCP, regardless of whether they were control subjects or patients with CHB. Heterozygous carriers exhibited reduced hepatitis B e antigen (HBeAg)-positivity rates and had lower ALT, AST, and lg DNA concentrations compared with wild-type carriers in patients with CHB. Conclusions The S267F variant of NTCP is a protective factor that reduces the risk of chronic HBV infection and exhibits a higher total bile acids level. Patients with CHB who carry this variant may have a better prognosis than those carrying wild-type NTCP.
Collapse
Affiliation(s)
- Jiancheng Huang
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian, China
| | - Mingkuan Su
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian, China
| | - Hongbin Chen
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian, China
| | - Shuiqing Wu
- Department of Gastroenterology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian, China
| | - Zongyun Chen
- Department of Laboratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian, China
| |
Collapse
|
6
|
He C, He HY, Sun CF, Ojha SC, Wang H, Deng CL, Sheng YJ. The relationship between NTCP gene varieties and the progress of liver disease after HBV infection: an updated systematic review and meta-analysis. Am J Med Sci 2022; 364:207-219. [DOI: 10.1016/j.amjms.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 06/22/2021] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
|
7
|
Na+-Taurocholate Co-Transporting Polypeptide (NTCP) in Livers, Function, Expression Regulation, and Potential in Hepatitis B Treatment. LIVERS 2021. [DOI: 10.3390/livers1040019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection has become one of the leading causes of liver cirrhosis and hepatocellular carcinoma globally. The discovery of sodium taurocholate co-transporting polypeptide (NTCP), a solute carrier, as a key receptor for HBV and hepatitis D virus (HDV) has opened new avenues for HBV treatment. Additionally, it has led researchers to generate hepatoma cell lines (including HepG2-NTCP and Huh-7-NTCP) susceptible to HBV infection in vitro, hence, paving the way to develop and efficiently screen new and novel anti-HBV drugs. This review summarizes the history, function and critical findings regarding NTCP as a viral receptor for HBV/HDV, and it also discusses recently developed drugs targeting NTCP.
Collapse
|
8
|
Association Analysis of Genetic Variants of Sodium Taurocholate Co-Transporting Polypeptide NTCP Gene (SLC10A1) and HBV Infection Status in a Cohort of Egyptian Patients. GASTROENTEROLOGY INSIGHTS 2021. [DOI: 10.3390/gastroent12040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Single nucleotide polymorphisms (SNPs) in the SLC10A1 gene, coding for a functional receptor of hepatitis B virus (HBV), sodium taurocholate co-transporting polypeptide (NTCP), may influence the susceptibility, outcome, and disease course of HBV infection in some populations. Aim: to determine the prevalence of SNPs of the NTCP gene, rs2296651 and rs943277, and their relationship with chronic HBV infection in a group of Egyptian patients. Methods: One hundred and thirty seven patients with HBV and 65 healthy controls were enrolled, and the patients were divided into two groups; group I chronic HBV infection (68 patients with normal ALT and minimal or no liver necroinflammation or fibrosis) and group II chronic hepatitis B (69 patients with elevated ALT and moderate or severe liver necroinflammation). They were subjected to full history taking, clinical examination, laboratory investigations, abdominal ultrasound, and liver stiffness measurement using both Echosens® Fibroscan and acoustic radiation force impulse (ARFI). A real time PCR TaqMan 5′ allelic discrimination assay was applied to detect the SNPs in the NTCP gene, rs2296651 and rs943277. Results: On studying the rs2296651 variant, all controls and patients had genotype GG without any significant association with HBV infection or disease progression. However, the rs943277 variant in all controls and 98% of patients had genotype GA, except for two chronic HBV infection patients who had genotype AA, but no significant difference between patients and controls was found. The non-invasive methods for liver fibrosis assessment ARFI, AST/platelet’s ratio (APRI), and fibrosis-4 score (FIB-4) could predict the stages of fibrosis in agreement with Fibroscan with AUCOR 0.8, 0.79, and 0.76, respectively. Conclusion: These findings may suggest that there is no relation between these SNPs of the NTCP gene and the susceptibility or chronicity of HBV infection in the Egyptian population. We also suggest that the use of the non-invasive methods for liver fibrosis assessment, ARFI, FIB-4, and APRI, may decrease the need for liver biopsies in the prediction of significant hepatic fibrosis in chronic HBV patients.
Collapse
|
9
|
Burwitz BJ, Zhou Z, Li W. Animal models for the study of human hepatitis B and D virus infection: New insights and progress. Antiviral Res 2020; 182:104898. [PMID: 32758525 DOI: 10.1016/j.antiviral.2020.104898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) is a member of the Hepadnaviridae family and infects hepatocytes, leading to liver pathology in acutely and chronically infected individuals. Co-infection with Hepatitis D virus (HDV), which requires the surface proteins of HBV to replicate, can exacerbate this disease progression. Thus, the >250 million people living with chronic HBV infection, including 13 million co-infected with HDV, would significantly benefit from an effective and affordable curative treatment. Animal models are crucial to the development of innovative disease therapies, a paradigm repeated again and again throughout the fields of immunology, neurology, reproduction, and development. Unfortunately, HBV has a highly-restricted species tropism, infecting limited species including humans, chimpanzees, and treeshrews. The first experimentally controlled studies of HBV infection were following inoculation of human volunteers in 1942, which identified the transmissibility of hepatitis through serum transfer and led to the hypothesis that the etiological agent was viral. Subsequent research in chimpanzees (Desmyter et al., 1971; Lichter, 1969) and later in other species, such as the treeshrews (Walter et al., 1996; Yan et al., 1996), further confirmed the viral origin of hepatitis B. Shortly thereafter, HBV-like viral infections were identified in woodchucks (Summers et al., 1978; Werner et al., 1979) and ducks, and much of our understanding of HBV replication can be attributed to these important models. However, with the exodus of chimpanzees from research and the limited reagents and historical data for treeshrews and other understudied species, there remains an urgent need to identify physiologically relevant models of chronic HBV infection. While large strides have been made in generating such models, particularly over the past two decades, there is still no available model that faithfully recapitulates the immunity and pathogenesis of HBV infection. Here, we discuss recent advancements in the generation of murine and non-human primate (NHP) models of HBV/HDV infection.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing, 102206, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
10
|
Nyarko E, Obirikorang C, Owiredu WKBA, Adu EA, Acheampong E, Aidoo F, Ofori E, Addy BS, Asare-Anane H. NTCP gene polymorphisms and hepatitis B virus infection status in a Ghanaian population. Virol J 2020; 17:91. [PMID: 32620148 PMCID: PMC7333392 DOI: 10.1186/s12985-020-01376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SLC10A1 gene codes NTCP, a receptor through which the hepatitis B virus (HBV) gets access into hepatocytes - a stage of the viral cycle necessary for replication. Polymorphism variants of SLC10A1 play roles in HBV infection, viral clearance, treatment outcome, and complications, in diverse ethnic groups and countries. However, no such study has been conducted in the Ghanaian population, a country with HBV endemicity. Therefore, an exploratory study was conducted to investigate the presence of three (3) single nucleotide polymorphisms (SNPs) in the SLC10A1 gene (rs2296651, rs61745930, and rs4646287) and assessed the risk of HBV infection among the Ghanaian population. METHOD Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to determine the presence of the SNPs among 292 participants comprising 146 HBV infected persons as case-subjects and 146 HBV non-infected persons as control-subjects. RESULTS The minor allele frequency (T) of rs2296651 was present in a significantly high proportion of cases compared with the control group (11.6% vs. 3.1%, p < 0.0001). The homozygote recessive variant of rs61745930 was present in 2.7% of the control group and 5.5% of the case group. Moreover, the minor allele frequencies of rs4646287 were 9.3 and 8.2% among the control and the case group, respectively (p = 0.767). Under the dominant (CC) genetic model of inheritance, rs2296651 was found to be protective of HBV infection [OR = 0.18 (0.07-0.44)], whereas under the co-dominant and additive model, rs2296651 was a potential risk factor for HBV infection [OR = 5.2 (95%CI: 2.1-12.8); 3.5 (95%CI: 1.6-7.6], respectively. Variants of rs61745930 and rs4646287 were not associated with HBV infection (p > 0.05). Polymorphisms in SLC10A1, however, did not show any significant association with HBV infectivity (p > 0.05). CONCLUSION The study highlights some polymorphism proof that variants rs2296651, rs61745930, and rs4646287 exist in HBV-infected individuals in Ghana. Although variant rs2296651 was found to be associated with HBV infection, this association warrants more studies. Polymorphisms in SLC10A1 were not associated with HBV infectivity among the Ghanaian population. Further investigation is warranted to assess the offensive role of the relationship between rs2296651 and HBV infectivity.
Collapse
Affiliation(s)
- Eric Nyarko
- Department of Molecular Medicine, School of Medicine and Dentistry
- , Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Obirikorang
- Department of Molecular Medicine, School of Medicine and Dentistry
- , Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - W K B A Owiredu
- Department of Molecular Medicine, School of Medicine and Dentistry
- , Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evans Asamoah Adu
- Department of Molecular Medicine, School of Medicine and Dentistry
- , Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuel Acheampong
- Department of Molecular Medicine, School of Medicine and Dentistry
- , Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,School of Medical and Health Science, Edith Cowan University, Joondalup, Australia
| | - Freeman Aidoo
- Department of Molecular Medicine, School of Medicine and Dentistry
- , Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuel Ofori
- Department of Molecular Medicine, School of Medicine and Dentistry
- , Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Henry Asare-Anane
- Department of Chemical Pathology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
11
|
Russell LE, Zhou Y, Lauschke VM, Kim RB. In Vitro Functional Characterization and in Silico Prediction of Rare Genetic Variation in the Bile Acid and Drug Transporter, Na+-Taurocholate Cotransporting Polypeptide (NTCP, SLC10A1). Mol Pharm 2020; 17:1170-1181. [DOI: 10.1021/acs.molpharmaceut.9b01200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Laura E. Russell
- Department of Physiology & Pharmacology, Western University, Medical Sciences Building, Rm 216, N6A 5C1 London, Ontario, Canada
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Richard B. Kim
- Department of Physiology & Pharmacology, Western University, Medical Sciences Building, Rm 216, N6A 5C1 London, Ontario, Canada
- Division of Clinical Pharmacology, Department of Medicine, Western University, 339 Windermere Rd, N6A 5A5 London, Ontario, Canada
| |
Collapse
|
12
|
Pereira LMS, da Silva Graça Amoras E, da Silva Conde SRS, Demachki S, dos Santos EJM, Lima SS, Ishak R, Rosário Vallinoto AC. NGF (-198C > T, Ala35Val) and p75 NTR (Ser205Leu) gene mutations are associated with liver function in different histopathological profiles of the patients with chronic viral hepatitis in the Brazilian Amazon. Mol Med 2020; 26:12. [PMID: 31996124 PMCID: PMC6990582 DOI: 10.1186/s10020-019-0134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDS Neural growth factor (NGF) is a neurotrophin that can interact with the p75NTR receptor and initiate a cascade of reactions that determines cell survival or death, and both are associated with the physiology of liver tissue. Single nucleotide polymorphisms (SNPs) in the NGF and p75NTR genes have been investigated in different pathologies; however, there are no studies that have analyzed their biological roles in the hepatic microenvironment. In the present study, we evaluated the impact of SNPs in these genes on the maintenance of liver function at different stages of inflammation and fibrosis in patients with chronic viral liver disease in the Brazilian Amazon. METHODS The SNPs -198C > T, Arg80Gln, Val72Met, Ala35Val, Ala18Ala and Ser205Leu were genotyped by real-time PCR in samples from patients with chronic viral hepatitis stratified by stage of inflammation and liver fibrosis. Histopathological, viral load (VL), liver enzyme and comorbidities data were obtained from updated medical records. Other aspects were highlighted by applied epidemiological questionnaires. RESULTS The -198C/T and Ala35Val polymorphisms in NGF were associated with changes in histopathological profiles, VL and liver enzymes. Ser205Leu polymorphism in p75NTR was associated only with changes in VL and liver enzymes. Polymorphic frequencies were variable among different ethnic populations, mainly for biologically relevant polymorphisms. A multifactorial network of interactions has been established based on genetic, virological, behavioral and biochemical aspects. CONCLUSION Mutations in the NGF (-198C > T, Ala35Val) and p75NTR (Ser205Leu) genes, within the list of multifactorial aspects, are associated with liver function in different histopathological profiles of patients with chronic viral liver disease in the Brazilian Amazon.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | | | | | - Sâmia Demachki
- School of Medicine, Health Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Eduardo José Melo dos Santos
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Laboartory of Human and Medical Genetics, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Sandra Souza Lima
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Ricardo Ishak
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| |
Collapse
|
13
|
Association of NTCP Gene Polymorphisms and Spontaneous Clearance of Hepatitis B Virus in Asia: A Meta-Analysis. HEPATITIS MONTHLY 2019. [DOI: 10.5812/hepatmon.94500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|