1
|
Peng Z, Wang S, Wen D, Mei Z, Zhang H, Liao S, Lv L, Li C. FEN1 upregulation mediated by SUMO2 via antagonizing proteasomal degradation promotes hepatocellular carcinoma stemness. Transl Oncol 2024; 44:101916. [PMID: 38513457 PMCID: PMC10966306 DOI: 10.1016/j.tranon.2024.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE Metastasis of hepatocellular carcinoma (HCC) critically impacts the survival prognosis of patients, with the pivotal role of hepatocellular carcinoma stem cells in initiating invasive metastatic behaviors. The Flap Endonuclease 1 (FEN1) is delineated as a metallonuclease, quintessential for myriad cellular processes including DNA replication, DNA synthesis, DNA damage rectification, Okazaki fragment maturation, baseexcision repair, and the preservation of genomic stability. Furthermore, it has been recognized as an oncogene in a diverse range of malignancies. Our antecedent research has highlighted a pronounced overexpression of protein FEN1 in hepatocellular carcinoma, where it amplifies the invasiveness and metastatic potential of liver cancer cells. However, its precise role in liver cancer stem cells (LCSCs) remains an enigma and requires further investigation. METHODS To rigorously evaluate the stemness attributes of LCSCs, we employed sphere formation assays and flow cytometric evaluations. Both CD133+ and CD133- cell populations were discerningly isolated utilizing immunomagnetic bead separation techniques. The expression levels of pertinent genes were assayed via real-time quantitative PCR (RT-qPCR) and western blot analyses, while the expression profiles in hepatocellular carcinoma tissues were gauged using immunohistochemistry. Subsequent immunoprecipitation, in conjunction with mass spectrometry, ascertained the concurrent binding of proteins FEN1 and Small ubiquitin-related modifier 2 (SUMO2) in HCC cells. Lastly, the impact of SUMO2 on proteasomal degradation pathway of FEN1 was validated by supplementing MG132. RESULTS Our empirical findings substantiate that protein FEN1 is profusely expressed in spheroids and CD133+ cells. In vitro investigations demonstrate that the upregulation of protein FEN1 unequivocally augments the stemness of LCSCs. In a congruent in vivo context, elevation of FEN1 noticeably enhances the tumorigenic potential of LCSCs. Conversely, inhibiting protein FEN1 resulted in a marked reduction in LCSC stemness. From a mechanistic perspective, there exists a salient positive correlation between the protein expression of FEN1 and SUMO2 in liver cancer tissues. Furthermore, the level of SUMO2-mediated modification of FEN1 is pronouncedly elevated in LCSCs. Interestingly, SUMO2 has the ability to bind to FEN1, leading to a inhibition in the proteasomal degradation pathway of FEN1 and an enhancement in its protein expression. However, it is noteworthy that this interaction does not affect the mRNA level of FEN1. CONCLUSION In summation, our research elucidates that protein FEN1 is an effector in augmenting the stemness of LCSCs. Consequently, strategic attenuation of protein FEN1 might proffer a pioneering approach for the efficacious elimination of LCSCs.
Collapse
Affiliation(s)
- Zhenxiang Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Shuling Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Diguang Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| | - Hao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| |
Collapse
|
2
|
Wu M, Huang X, Wu B, Zhu M, Zhu Y, Yu L, Lan T, Liu J. The endonuclease FEN1 mediates activation of STAT3 and facilitates proliferation and metastasis in breast cancer. Mol Biol Rep 2024; 51:553. [PMID: 38642158 DOI: 10.1007/s11033-024-09524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The metastasis accounts for most deaths from breast cancer (BRCA). Understanding the molecular mechanisms of BRCA metastasis is urgently demanded. Flap Endonuclease 1 (FEN1), a pivotal factor in DNA metabolic pathways, contributes to tumor growth and drug resistance, however, little is known about the role of FEN1 in BRCA metastasis. METHODS AND RESULTS In this study, FEN1 expression and its clinical correlation in BRCA were investigated using bioinformatics, showing being upregulated in BRCA samples and significant relationships with tumor stage, node metastasis, and prognosis. Immunohistochemistry (IHC) staining of local BRCA cohort indicated that the ratio of high FEN1 expression in metastatic BRCA tissues rose over that in non-metastatic tissues. The assays of loss-of-function and gain-of-function showed that FEN1 enhanced BRCA cell proliferation, migration, invasion, xenograft growth as well as lung metastasis. It was further found that FEN1 promoted the aggressive behaviors of BRCA cells via Signal Transducer and Activator of Transcription 3 (STAT3) activation. Specifically, the STAT3 inhibitor Stattic thwarted the FEN1-induced enhancement of migration and invasion, while the activator IL-6 rescued the decreased migration and invasion caused by FEN1 knockdown. Additionally, overexpression of FEN1 rescued the inhibitory effect of nuclear factor-κB (NF-κB) inhibitor BAY117082 on phosphorylated STAT3. Simultaneously, the knockdown of FEN1 attenuated the phosphorylation of STAT3 promoted by the NF-κB activator tumor necrosis factor α (TNF-α). CONCLUSIONS These results indicate a novel mechanism that NF-κB-driven FEN1 contributes to promoting BRCA growth and metastasis by STAT3 activation.
Collapse
Affiliation(s)
- Min Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.
| | - Xiaoshan Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Benmeng Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Miaolin Zhu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Yaqin Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Berfelde J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. FEN1 Inhibition as a Potential Novel Targeted Therapy against Breast Cancer and the Prognostic Relevance of FEN1. Int J Mol Sci 2024; 25:2110. [PMID: 38396787 PMCID: PMC10889347 DOI: 10.3390/ijms25042110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
To improve breast cancer treatment and to enable new strategies for therapeutic resistance, therapeutic targets are constantly being studied. Potential targets are proteins of DNA repair and replication and genomic integrity, such as Flap Endonuclease 1 (FEN1). This study investigated the effects of FEN1 inhibitor FEN1-IN-4 in combination with ionizing radiation on cell death, clonogenic survival, the cell cycle, senescence, doubling time, DNA double-strand breaks and micronuclei in breast cancer cells, breast cells and healthy skin fibroblasts. Furthermore, the variation in the baseline FEN1 level and its influence on treatment prognosis was investigated. The cell lines show specific response patterns in the aspects studied and have heterogeneous baseline FEN1 levels. FEN1-IN-4 has cytotoxic, cytostatic and radiosensitizing effects, expressed through increasing cell death by apoptosis and necrosis, G2M share, senescence, double-strand breaks and a reduced survival fraction. Nevertheless, some cells are less affected by the cytotoxicity and fibroblasts show a rather limited response. In vivo, high FEN1 mRNA expression worsens the prognosis of breast cancer patients. Due to the increased expression in breast cancer tissue, FEN1 could represent a new tumor and prognosis marker and FEN1-IN-4 may serve as a new potent agent in personalized medicine and targeted breast cancer therapy.
Collapse
Affiliation(s)
- Johanna Berfelde
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Thang NX, Han DW, Park C, Lee H, La H, Yoo S, Lee H, Uhm SJ, Song H, Do JT, Park KS, Choi Y, Hong K. INO80 function is required for mouse mammary gland development, but mutation alone may be insufficient for breast cancer. Front Cell Dev Biol 2023; 11:1253274. [PMID: 38020889 PMCID: PMC10646318 DOI: 10.3389/fcell.2023.1253274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The aberrant function of ATP-dependent chromatin remodeler INO80 has been implicated in multiple types of cancers by altering chromatin architecture and gene expression; however, the underlying mechanism of the functional involvement of INO80 mutation in cancer etiology, especially in breast cancer, remains unclear. In the present study, we have performed a weighted gene co-expression network analysis (WCGNA) to investigate links between INO80 expression and breast cancer sub-classification and progression. Our analysis revealed that INO80 repression is associated with differential responsiveness of estrogen receptors (ERs) depending upon breast cancer subtype, ER networks, and increased risk of breast carcinogenesis. To determine whether INO80 loss induces breast tumors, a conditional INO80-knockout (INO80 cKO) mouse model was generated using the Cre-loxP system. Phenotypic characterization revealed that INO80 cKO led to reduced branching and length of the mammary ducts at all stages. However, the INO80 cKO mouse model had unaltered lumen morphology and failed to spontaneously induce tumorigenesis in mammary gland tissue. Therefore, our study suggests that the aberrant function of INO80 is potentially associated with breast cancer by modulating gene expression. INO80 mutation alone is insufficient for breast tumorigenesis.
Collapse
Affiliation(s)
- Nguyen Xuan Thang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Hyeonji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Seonho Yoo
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Heeji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sik Park
- Department of Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Donald H, Blane A, Buthelezi S, Naicker P, Stoychev S, Majakwara J, Fanucchi S. Assessing the dynamics and macromolecular interactions of the intrinsically disordered protein YY1. Biosci Rep 2023; 43:BSR20231295. [PMID: 37815922 PMCID: PMC10611921 DOI: 10.1042/bsr20231295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023] Open
Abstract
YY1 is a ubiquitously expressed, intrinsically disordered transcription factor involved in neural development. The oligomeric state of YY1 varies depending on the environment. These structural changes may alter its DNA binding ability and hence its transcriptional activity. Just as YY1's oligomeric state can impact its role in transcription, so does its interaction with other proteins such as FOXP2. The aim of this work is to study the structure and dynamics of YY1 so as to determine the influence of oligomerisation and associations with FOXP2 on its DNA binding mechanism. The results confirm that YY1 is primarily a disordered protein, but it does consist of certain specific structured regions. We observed that YY1 quaternary structure is a heterogenous mixture of oligomers, the overall size of which is dependent on ionic strength. Both YY1 oligomerisation and its dynamic behaviour are further subject to changes upon DNA binding, whereby increases in DNA concentration result in a decrease in the size of YY1 oligomers. YY1 and the FOXP2 forkhead domain were found to interact with each other both in isolation and in the presence of YY1-specific DNA. The heterogeneous, dynamic multimerisation of YY1 identified in this work is, therefore likely to be important for its ability to make heterologous associations with other proteins such as FOXP2. The interactions that YY1 makes with itself, FOXP2 and DNA form part of an intricate mechanism of transcriptional regulation by YY1, which is vital for appropriate neural development.
Collapse
Affiliation(s)
- Heather Donald
- Protein Structure-Function Unit, School of molecular and Cell Biology, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| | - Ashleigh Blane
- Protein Structure-Function Unit, School of molecular and Cell Biology, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| | - Sindisiwe Buthelezi
- CSIR Biosciences, CSIR, Meiring Naude Road, Brummeria, 0001 Pretoria, Gauteng, South Africa
| | - Previn Naicker
- CSIR Biosciences, CSIR, Meiring Naude Road, Brummeria, 0001 Pretoria, Gauteng, South Africa
| | - Stoyan Stoychev
- CSIR Biosciences, CSIR, Meiring Naude Road, Brummeria, 0001 Pretoria, Gauteng, South Africa
| | - Jacob Majakwara
- School of Statistics and Actuarial Science, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Unit, School of molecular and Cell Biology, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| |
Collapse
|
6
|
Antropova EA, Khlebodarova TM, Demenkov PS, Volianskaia AR, Venzel AS, Ivanisenko NV, Gavrilenko AD, Ivanisenko TV, Adamovskaya AV, Revva PM, Kolchanov NA, Lavrik IN, Ivanisenko VA. Reconstruction of the regulatory hypermethylation network controlling hepatocellular carcinoma development during hepatitis C viral infection. J Integr Bioinform 2023; 20:jib-2023-0013. [PMID: 37978846 PMCID: PMC10757076 DOI: 10.1515/jib-2023-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/31/2023] [Indexed: 11/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been associated with hepatitis C viral (HCV) infection as a potential risk factor. Nonetheless, the precise genetic regulatory mechanisms triggered by the virus, leading to virus-induced hepatocarcinogenesis, remain unclear. We hypothesized that HCV proteins might modulate the activity of aberrantly methylated HCC genes through regulatory pathways. Virus-host regulatory pathways, interactions between proteins, gene expression, transport, and stability regulation, were reconstructed using the ANDSystem. Gene expression regulation was statistically significant. Gene network analysis identified four out of 70 HCC marker genes whose expression regulation by viral proteins may be associated with HCC: DNA-binding protein inhibitor ID - 1 (ID1), flap endonuclease 1 (FEN1), cyclin-dependent kinase inhibitor 2A (CDKN2A), and telomerase reverse transcriptase (TERT). It suggested the following viral protein effects in HCV/human protein heterocomplexes: HCV NS3(p70) protein activates human STAT3 and NOTC1; NS2-3(p23), NS5B(p68), NS1(E2), and core(p21) activate SETD2; NS5A inhibits SMYD3; and NS3 inhibits CCN2. Interestingly, NS3 and E1(gp32) activate c-Jun when it positively regulates CDKN2A and inhibit it when it represses TERT. The discovered regulatory mechanisms might be key areas of focus for creating medications and preventative therapies to decrease the likelihood of HCC development during HCV infection.
Collapse
Affiliation(s)
| | - Tamara M. Khlebodarova
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel S. Demenkov
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Artur S. Venzel
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikita V. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexandr D. Gavrilenko
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Timofey V. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anna V. Adamovskaya
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Polina M. Revva
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Inna N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106Magdeburg, Germany
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
7
|
Li M, Wei J, Xue C, Zhou X, Chen S, Zheng L, Duan Y, Deng H, Xiong W, Tang F, Li G, Zhou M. Dissecting the roles and clinical potential of YY1 in the tumor microenvironment. Front Oncol 2023; 13:1122110. [PMID: 37081988 PMCID: PMC10110844 DOI: 10.3389/fonc.2023.1122110] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Yin-Yang 1 (YY1) is a member of the GLI-Kruppel family of zinc finger proteins and plays a vital dual biological role in cancer as an oncogene or a tumor suppressor during tumorigenesis and tumor progression. The tumor microenvironment (TME) is identified as the “soil” of tumor that has a critical role in both tumor growth and metastasis. Many studies have found that YY1 is closely related to the remodeling and regulation of the TME. Herein, we reviewed the expression pattern of YY1 in tumors and summarized the function and mechanism of YY1 in regulating tumor angiogenesis, immune and metabolism. In addition, we discussed the potential value of YY1 in tumor diagnosis and treatment and provided a novel molecular strategy for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- MengNa Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - JianXia Wei
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - ChangNing Xue
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - XiangTing Zhou
- The First Clinical College of Changsha Medical University, Changsha, China
| | - ShiPeng Chen
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - LeMei Zheng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - YuMei Duan
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - HongYu Deng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - FaQing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - GuiYuan Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Ming Zhou,
| |
Collapse
|
8
|
Song S, Zhang W, Li Q, Wang Z, Su Q, Zhang X, Li B, Zhuang W. Dysregulation of alternative splicing contributes to multiple myeloma pathogenesis. Br J Cancer 2023; 128:1086-1094. [PMID: 36593359 PMCID: PMC10006196 DOI: 10.1038/s41416-022-02124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Dysregulation of alternative splicing (AS) triggers many tumours, understanding the roles of splicing events during tumorigenesis would open new avenues for therapies and prognosis in multiple myeloma (MM). METHODS Molecular, genetic, bioinformatic and statistic approaches are used to determine the mechanism of the candidate splicing factor (SF) in myeloma cell lines, myeloma xenograft models and MM patient samples. RESULTS GSEA reveals a significant difference in the expression pattern of the alternative splicing pathway genes, notably enriched in MM patients. Upregulation of the splicing factor SRSF1 is observed in the progression of plasma cell dyscrasias and predicts MM patients' poor prognosis. The c-indices of the Cox model indicated that SRSF1 improved the prognostic stratification of MM patients. Moreover, SRSF1 knockdown exerts a broad anti-myeloma activity in vitro and in vivo. The upregulation of SRSF1 is caused by the transcription factor YY1, which also functions as an oncogene in myeloma cells. Through RNA-Seq, we systematically verify that SRSF1 promotes the tumorigenesis of myeloma cells by switching AS events. CONCLUSION Our results emphasise the importance of AS for promoting tumorigenesis of MM. The candidate SF might be considered as a valuable therapeutic target and a potential prognostic biomarker for MM.
Collapse
Affiliation(s)
- Sha Song
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Weimin Zhang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Li
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Wang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qi Su
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xinyun Zhang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingzong Li
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Curcumin as an Enhancer of Therapeutic Efficiency of Chemotherapy Drugs in Breast Cancer. Int J Mol Sci 2022; 23:ijms23042144. [PMID: 35216255 PMCID: PMC8878285 DOI: 10.3390/ijms23042144] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022] Open
Abstract
Female breast cancer is the world’s most prevalent cancer in 2020. Chemotherapy still remains a backbone in breast cancer therapy and is crucial in advanced and metastatic breast cancer treatment. The clinical efficiency of chemotherapy regimens is limited due to tumor heterogeneity, chemoresistance, and side effects. Chemotherapeutic drug combinations with natural products hold great promise for enhancing their anticancer efficacy. Curcumin is an ideal chemopreventive and chemotherapy agent owning to its multitargeting function on various regulatory molecules, key signaling pathways, and pharmacological safety. This review aimed to elucidate the potential role of curcumin in enhancing the efficacy of doxorubicin, paclitaxel, 5-fluorouracil, and cisplatin via combinational therapy. Additionally, the molecular mechanisms underlying the chemosensitizing activity of these combinations have been addressed. Overall, based on the promising therapeutic potential of curcumin in combination with conventional chemotherapy drugs, curcumin is of considerable value to develop as an adjunct for combination chemotherapy with current drugs to treat breast cancer. Furthermore, this topic may provide the frameworks for the future research direction of curcumin–chemotherapy combination studies and may benefit in the development of a novel therapeutic strategy to maximize the clinical efficacy of anticancer drugs while minimizing their side effects in the future breast cancer treatment.
Collapse
|
10
|
Han L, Huang C, Wang X, Tong D. The RNA-binding protein GRSF1 promotes hepatocarcinogenesis via competitively binding to YY1 mRNA with miR-30e-5p. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:17. [PMID: 34998399 PMCID: PMC8742353 DOI: 10.1186/s13046-021-02217-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Background Dysregulation of RNA binding protein (RBP) expression has been confirmed to be causally linked with tumorigenesis. The detailed biological effect and underlying mechanisms of the RBP GRSF1 in hepatocellular carcinoma (HCC) remain unclear. Methods HCC cells with stable knockdown of GRSF1 were established using two sh-RNA-encoding lentiviruses. The functions of GRSF1 in HCC were explored using MTT, colony formation, flow cytometry, and Transwell assays and a xenograft model. Transcriptomic sequencing in GRSF1-deficient MHCC-97H cells was carried out to identify the downstream effector of GRSF1. The regulatory mechanisms among GRSF1, YY1 and miR-30e-5p were investigated via RNA immunoprecipitation, luciferase, RNA pull-down and ChIP assays. Several in vivo assays were used to assess the selectivity of the small-molecule compound VE-821 in HCC and to confirm the absence of general toxicity in animal models. Results GRSF1 was frequently increased in HCC tissue and cells and was associated with worse clinical outcomes. GRSF1 functions as a novel oncogenic RBP by enhancing YY1 mRNA stability, and the GUUU motifs within the YY1 3`UTR 2663-2847 were the specific binding motifs for GRSF1. YY1 feedback promoted GRSF1 expression by binding to the GRSF1 promoter. In addition, YY1 was a critical target of miR-30e-5p, which was confirmed in this study to inhibit HCC hepatocarcinogenesis. GRSF1 and miR-30e-5p competitively regulated YY1 by binding to its 3`UTR 2663-2847 region. Finally, we identified that VE-821 blocked HCC progression by inhibiting the GRSF1/YY1 pathway. Conclusion This study revealed the interaction network among GRSF1, YY1 and miR-30e-5p, providing new insight into HCC pathogenesis, and indicated that VE821 may serve as a novel agent with potential for HCC treatment through inhibition of the GRSF1/YY1 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02217-w.
Collapse
Affiliation(s)
- Lili Han
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Dongdong Tong
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| |
Collapse
|
11
|
Abadi AJ, Mirzaei S, Mahabady MK, Hashemi F, Zabolian A, Hashemi F, Raee P, Aghamiri S, Ashrafizadeh M, Aref AR, Hamblin MR, Hushmandi K, Zarrabi A, Sethi G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 2021; 36:189-213. [PMID: 34697839 DOI: 10.1002/ptr.7305] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.
Collapse
Affiliation(s)
- Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fardin Hashemi
- School of Rehabilitation, Department of Physical Therapy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Vice President at Translational Sciences, Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Zhong G, Wang Y, Wei H, Chen M, Lin H, Huang Z, Huang J, Wang S, Lin J. The Clinical Significance of the Expression of FEN1 in Primary Osteosarcoma. Int J Gen Med 2021; 14:6477-6485. [PMID: 34675615 PMCID: PMC8504935 DOI: 10.2147/ijgm.s335817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The aim of this research was to investigate the clinical significance of the expression of flap structure-specific endonuclease 1 (FEN1) in primary osteosarcoma. METHODS The expression of FEN1 was detected by immunohistochemistry analysis. The association of the expression of FEN1 in osteosarcoma with clinicopathological parameters was analyzed by using χ 2 test or Fisher's exact test. Survival analyses were performed by Kaplan-Meier method and Cox proportional hazards regression model. RESULTS Of the 40 osteosarcoma patients, 19 (47.5%) patients presented with FEN1 high expression, while in the non-neoplastic bone specimens, the FEN1 high expression was observed in 10% (3/30), the positive expression rate in osteosarcoma patients was significantly higher than that of non-neoplastic bone specimens (P< 0.01). Univariate analysis indicated that the progression-free survival (PFS) and overall survival (OS) were correlated with the expression level of FEN1 (PFS, P < 0.001; OS, P = 0.002), Enneking staging (PFS, P = 0.026; OS, P = 0.044) and chemotherapy response (PFS, P = 0.019; OS, P = 0.031). Multivariate analysis demonstrated that FEN1 expression was an independent prognostic factor for the PFS (HR = 4.73, P = 0.002) and OS (HR = 4.01, P = 0.038) of osteosarcoma patients. CONCLUSION This study showed that FEN1 was overexpressed in osteosarcoma patients and positively associated with poor prognosis of osteosarcoma patients. Further studies should focus on the relative mechanisms and the targeted FEN1 therapies for osteosarcoma.
Collapse
Affiliation(s)
- Guangxian Zhong
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Yunqing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Hongxiang Wei
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Meifang Chen
- The Health Management Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Huangfeng Lin
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Zhen Huang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Jinlong Huang
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Shenglin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Jianhua Lin
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| |
Collapse
|
13
|
Roles of the Immune/Methylation/Autophagy Landscape on Single-Cell Genotypes and Stroke Risk in Breast Cancer Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5633514. [PMID: 34457116 PMCID: PMC8397558 DOI: 10.1155/2021/5633514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
This study sought to perform integrative analysis of the immune/methylation/autophagy landscape on breast cancer prognosis and single-cell genotypes. Breast Cancer Recurrence Risk Score (BCRRS) and Breast Cancer Prognostic Risk Score (BCPRS) were determined based on 6 prognostic IMAAGs obtained from the TCGA-BRCA cohort. BCRRS and BCPRS, respectively, were used to construct a risk prediction model of overall survival and progression-free survival. Predictive capacity of the model was evaluated using clinical data. Analysis showed that BCRRS is associated with a high risk of stroke. In addition, PPI and drug-ceRNA networks based on differences in BCPRS were constructed. Single cells were genotyped through integrated scRNA-seq of the TNBC samples based on clustering results of BCPRS-related genes. The findings of this study show the potential regulatory effects of IMAAGs on breast cancer tumor microenvironment. High AUCs of 0.856 and 0.842 were obtained for the OS and PFS prognostic models, respectively. scRNA-seq analysis showed high expression levels of adipocytes and adipose tissue macrophages (ATMs) in high BCPRS clusters. Moreover, analysis of ligand-receptor interactions and potential regulatory mechanisms were performed. The LINC00276&MALAT1/miR-206/FZD4-Wnt7b pathway was also identified which may be useful in future research on targets against breast cancer metastasis and recurrence. Neural network-based deep learning models using BCPRS-related genes showed that these genes can be used to map the tumor microenvironment. In summary, analysis of IMAAGs, BCPRS, and BCRRS provides information on the breast cancer microenvironment at both the macro- and microlevels and provides a basis for development of personalized treatment therapy.
Collapse
|
14
|
Xiao Y, Zhou Y, Sun S, Wang H, Wu S, Bao W. Effect of Promoter Methylation on the Expression of Porcine MUC2 Gene and Resistance to PEDV Infection. Front Vet Sci 2021; 8:646408. [PMID: 33996974 PMCID: PMC8116951 DOI: 10.3389/fvets.2021.646408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Integrity of the intestinal mucosal barrier is closely related to the occurrence of diarrhea. As an important component protein of the intestinal mucosal barrier, Mucin 2 (MUC2) plays a critical role in preventing the invasion of pathogens, toxins, and foreign bodies. In the present study, we preliminary verified the function of the porcine MUC2 gene in resisting porcine epidemic diarrhea virus (PEDV) infection and investigated the effect of DNA methylation in the promoter region on MUC2 gene expression. The results showed that after PEDV infection, the intestinal mucosal barrier was damaged. Moreover, MUC2 expression was significantly higher in PEDV-infected piglets than in healthy piglets (P < 0.01). The mRNA expression of MUC2 was significantly higher in PEDV-infected IPEC-J2 cells than in non-infected IPEC-J2 cells (P < 0.05). Methylation of the mC-5 site in the MUC2 promoter inhibited the binding of Yin Yang 1 (YY1) to the promoter, down regulated the expression of MUC2 and increased the susceptibility of piglets to PEDV. In conclusion, this study suggests that MUC2 plays an essential regulatory role in PEDV infection. High MUC2 expression improves the resistance of pigs to PEDV infection. The binding of YY1 to the MUC2 promoter is hindered by the methylation of the mC-5 site, which downregulates MUC2 expression and ultimately affects the resistance of pigs to PEDV infection.
Collapse
Affiliation(s)
- Yeyi Xiao
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shouyong Sun
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haifei Wang
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou, China
| |
Collapse
|
15
|
Mohamed RI, Bargal SA, Mekawy AS, El-Shiekh I, Tuncbag N, Ahmed AS, Badr E, Elserafy M. The overexpression of DNA repair genes in invasive ductal and lobular breast carcinomas: Insights on individual variations and precision medicine. PLoS One 2021; 16:e0247837. [PMID: 33662042 PMCID: PMC7932549 DOI: 10.1371/journal.pone.0247837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/14/2021] [Indexed: 12/22/2022] Open
Abstract
In the era of precision medicine, analyzing the transcriptomic profile of patients is essential to tailor the appropriate therapy. In this study, we explored transcriptional differences between two invasive breast cancer subtypes; infiltrating ductal carcinoma (IDC) and lobular carcinoma (LC) using RNA-Seq data deposited in the TCGA-BRCA project. We revealed 3854 differentially expressed genes between normal ductal tissues and IDC. In addition, IDC to LC comparison resulted in 663 differentially expressed genes. We then focused on DNA repair genes because of their known effects on patients' response to therapy and resistance. We here report that 36 DNA repair genes are overexpressed in a significant number of both IDC and LC patients' samples. Despite the upregulation in a significant number of samples, we observed a noticeable variation in the expression levels of the repair genes across patients of the same cancer subtype. The same trend is valid for the expression of miRNAs, where remarkable variations between patients' samples of the same cancer subtype are also observed. These individual variations could lie behind the differential response of patients to treatment. The future of cancer diagnostics and therapy will inevitably depend on high-throughput genomic and transcriptomic data analysis. However, we propose that performing analysis on individual patients rather than a big set of patients' samples will be necessary to ensure that the best treatment is determined, and therapy resistance is reduced.
Collapse
Affiliation(s)
- Ruwaa I. Mohamed
- Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Salma A. Bargal
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Asmaa S. Mekawy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Alaa S. Ahmed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- * E-mail: (EB); (ME)
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- * E-mail: (EB); (ME)
| |
Collapse
|
16
|
Lung cancer: progression of heat shock protein 70 in association with flap endonuclease 1 protein. 3 Biotech 2021; 11:141. [PMID: 33708464 DOI: 10.1007/s13205-020-02598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer deaths worldwide and existing approaches are not enough to manage, and hence, it is important to concentrate on new drug strategies. This study was aimed to identify the interacting partner of Flap endonuclease 1 (FEN1) and its role in cancer treatment. We identified a new FEN1 interacting partner confirmed it as Heat Shock Protein 70 (HSP 70), and its effect on FEN1 expression, in vitro. Additionally, we found that the 5-Fluorouracil's (5-FU) function was significantly improved when used in combination with HSP 70 inhibitor (KNK 437). The findings are interesting, elucidating the synergistic mechanism between two compounds which helps to develop a novel management strategy for over-expressed FEN1 in the lung. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02598-3.
Collapse
|
17
|
Zhang X, Li J, Feng Q. CircRNA circYY1 (hsa_circ_0101187) Modulates Cell Glycolysis and Malignancy Through Regulating YY1 Expression by Sponging miR-769-3p in Breast Cancer. Cancer Manag Res 2021; 13:1145-1158. [PMID: 33603460 PMCID: PMC7881944 DOI: 10.2147/cmar.s289172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
Background Breast cancer (BC) is a highly heterogeneous malignant tumor that affects women’s health. Circular RNAs (circRNAs) are involved in tumor growth in many cancers. However, the role of hsa_circ_0101187 (circYY1) in BC is still unclear. Methods Expression of circYY1, microRNA (miR)-769-3p, and YY1 (Yin Yang 1) mRNA was tested by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, colony formation, migration, and invasion were analyzed with MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), colony formation, and transwell assays. Glucose uptake, lactate product, and ATP (adenosine triphosphate) content were detected with corresponding kits. Several protein levels were measured with Western blotting. The regulatory mechanisms of the circYY1, miR-769-3p, and YY1 were validated by RNA immunoprecipitation (RIP) assay, dual-luciferase reporter assay, and/or RNA pull-down assay. The role of circYY1 in BC was confirmed by xenograft assay. Results CircYY1 and YY1 were upregulated in BC, while miR-769-3p had an opposing result. Also, BC patients with high circYY1 expression had a poor prognosis. Downregulation of circYY1 decreased xenograft tumor growth in vivo. Both circYY1 inhibition and miR-769-3p elevation constrained BC cell viability, colony formation, migration, invasion, and glycolysis in vitro. CircYY1 acted as a sponge for miR-769-3p, which targeted YY1. CircYY1 sponged miR-769-3p to modulate YY1 expression. Both miR-769-3p inhibition and YY1 upregulation antagonized circYY1 silencing-mediated influence on malignancy and glycolysis of BC cells. Conclusion CircYY1 promoted glycolysis and tumor growth via increasing YY1 expression through sponging miR-769-3p in BC, offering a promising therapeutic target and prognostic biomarker for BC.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning City, People's Republic of China
| | - Jiehua Li
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning City, People's Republic of China
| | - Qin Feng
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing City, People's Republic of China
| |
Collapse
|
18
|
Xu L, Shen JM, Qu JL, Song N, Che XF, Hou KZ, Shi J, Zhao L, Shi S, Liu YP, Qu XJ, Teng YE. FEN1 is a prognostic biomarker for ER+ breast cancer and associated with tamoxifen resistance through the ERα/cyclin D1/Rb axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:258. [PMID: 33708885 PMCID: PMC7940940 DOI: 10.21037/atm-20-3068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Tamoxifen is an important choice in endocrine therapy for patients with oestrogen receptor-positive (ER+) breast cancer, and disease progression-associated resistance to tamoxifen therapy is still challenging. Flap endonuclease-1 (FEN1) is used as a prognostic biomarker and is considered to participate in proliferation, migration, and drug resistance in multiple cancers, especially breast cancer, but the prognostic function of FEN1 in ER+ breast cancer, and whether FEN1 is related to tamoxifen resistance or not, remain to be explored. Methods On-line database Kaplan-Meier (KM) plotter, GEO datasets, and immunohistochemistry were used to analyse the prognostic value of FEN1 in ER+ breast cancer from mRNA and protein levels. Cell viability assay and colony formation assays showed the response of tamoxifen in MCF-7 and T47D cells. Microarray data with FEN1 siRNA versus control group in MCF-7 cells were analysed by Gene Set Enrichment Analysis (GSEA). The protein levels downstream of FEN1 were detected by western blot assay. Results ER+ breast cancer patients who received tamoxifen for adjuvant endocrine therapy with poor prognosis showed a high expression of FEN1. MCF-7 and T47D appeared resistant to tamoxifen after FEN1 over-expression and increased sensitivity to tamoxifen after FEN1 knockdown. Importantly, FEN1 over-expression could activate tamoxifen resistance through the ERα/cyclin D1/Rb axis. Conclusions As a biomarker of tamoxifen effectiveness, FEN1 participates in tamoxifen resistance through ERα/cyclin D1/Rb axis. In the future, reversing tamoxifen resistance by knocking-down FEN1 or by way of action as a small molecular inhibitor of FEN1 warrants further investigation.
Collapse
Affiliation(s)
- Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Ji-Ming Shen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Jing-Lei Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Xiao-Fang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Ke-Zuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Jing Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Lei Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Yun-Peng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Xiu-Juan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Yue-E Teng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Wang N, Wu D, Long Q, Yan Y, Chen X, Zhao Z, Yan H, Zhang X, Xu M, Deng W, Liu X. Dysregulated YY1/PRMT5 axis promotes the progression and metastasis of laryngeal cancer by targeting Hippo pathway. J Cell Mol Med 2021; 25:946-959. [PMCID: PMC7812261 DOI: 10.1111/jcmm.16156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastases lead to high mortality in laryngeal cancer, but the regulation of its underlying mechanisms remains elusive. We identified Protein arginine methyltransferase 5 (PRMT5) was significantly up‐regulated in laryngeal cancer tissues, which predicts poor patient prognosis. Functional assays demonstrated that PRMT5 overexpression promoted the invasive capacity and lymph node metastasis in vitro and in vivo. Mechanistic experiments suggested that LATS2 was a downstream target of PRMT5. PRMT5 inhibition increased the expression of LATS2 and YAP phosphorylation in laryngeal cancer cells, thereby promoting laryngeal cancer metastasis. Furthermore, informatics and experimental data confirmed that PRMT5 gene was transcriptionally activated by YY1. Collectively, our results unravelled the important role of PRMT5 in laryngeal cancer tumorigenesis and metastasis. The dysregulation YY1/PRMT5/LATS2/YAP axis may contribute to laryngeal cancer progression; thus, PRMT5 may be a potential therapeutic strategy for patients with laryngeal cancer.
Collapse
Affiliation(s)
- Nan Wang
- School of Life SciencesJiaying UniversityMeizhouChina
| | - Di Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Qian Long
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Yue Yan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xiaoqi Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Zheng Zhao
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Honghong Yan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xinrui Zhang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Meilan Xu
- School of Life SciencesJiaying UniversityMeizhouChina
| | - Wuguo Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xuekui Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| |
Collapse
|
20
|
Xu L, Qu JL, Song N, Zhang LY, Zeng X, Che XF, Hou KZ, Shi S, Feng ZY, Qu XJ, Liu YP, Teng YE. Biological and clinical significance of flap endonuclease‑1 in triple‑negative breast cancer: Support of metastasis and a poor prognosis. Oncol Rep 2020; 44:2443-2454. [PMID: 33125141 PMCID: PMC7610327 DOI: 10.3892/or.2020.7812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Flap endonuclease‑1 (FEN1), a structure‑specific nuclease participating in DNA replication and repair processes, has been confirmed to promote the proliferation and drug resistance of tumor cells. However, the biological functions of FEN1 in cancer cell migration and invasion have not been defined. In the present study, using online database analysis and immunohistochemistry of the specimens, it was found that FEN1 expression was associated with a highly invasive triple‑negative breast cancer (TNBC) subtype in both breast cancer samples from the Oncomine database and from patients recruited into the study. Furthermore, FEN1 was an important biomarker of lymph node metastasis and poor prognosis in patients with TNBC. FEN1 promoted migration of TNBC cell lines and FEN1 knockdown reduced the number of spontaneous lung metastasis in vivo. Ingenuity Pathway Analysis of FEN1‑related transcripts in 198 patients with TNBC demonstrated that the polo‑like kinase family may be the downstream target of FEN1. PLK4 was further identified as a critical target of FEN1 mediating TNBC cell migration, by regulating actin cytoskeleton rearrangement. The results of the present study validate FEN1 as a therapeutic target in patients with TNBC and revealed a new role for FEN1 in regulating TNBC invasion and metastasis.
Collapse
Affiliation(s)
- Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jing-Lei Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Na Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ling-Yun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xue Zeng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiao-Fang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zu-Ying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA 92109, USA
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue-E Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
21
|
Liu SB, Qiu XQ, Guo WQ, Li JL, Su Q, Du JH, Hu HJ, Wang XX, Song YH, Lou X, Xu XB. Transcriptome Analysis of FEN1 Knockdown HEK293T Cell Strain Reveals Alteration in Nucleic Acid Metabolism, Virus Infection, Cell Morphogenesis and Cancer Development. Comb Chem High Throughput Screen 2020; 22:379-386. [PMID: 31272350 DOI: 10.2174/1386207322666190704095602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022]
Abstract
AIM AND OBJECTIVE Flap endonuclease-1 (FEN1) plays a central role in DNA replication and DNA damage repair process. In mammals, FEN1 functional sites variation is related to cancer and chronic inflammation, and supports the role of FEN1 as a tumor suppressor. However, FEN1 is overexpressed in multiple types of cancer cells and is associated with drug resistance, supporting its role as an oncogene. Hence, it is vital to explore the multi-functions of FEN1 in normal cell metabolic process. This study was undertaken to examine how the gene expression profile changes when FEN1 is downregulated in 293T cells. MATERIALS AND METHODS Using the RNA sequencing and real-time PCR approaches, the transcript expression profile of FEN1 knockdown HEK293T cells have been detected for the next step evaluation, analyzation, and validation. RESULTS Our results confirmed that FEN1 is important for cell viability. We showed that when FEN1 downregulation led to the interruption of nucleic acids related metabolisms, cell cycle related metabolisms are significantly interrupted. FEN1 may also participate in non-coding RNA processing, ribosome RNA processing, transfer RNA processing, ribosome biogenesis, virus infection and cell morphogenesis. CONCLUSION These findings provide insight into how FEN1 nuclease might regulate a wide variety of biological processes, and laid the foundation for understanding the role of other RAD2 family nucleases in cell growth and metabolism.
Collapse
Affiliation(s)
- Song-Bai Liu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Xiu-Qin Qiu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Wei-Qiang Guo
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin-Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qian Su
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Jia-Hui Du
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - He-Juan Hu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Xiao-Xiao Wang
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Xiao Lou
- 307 Hospital of Chinese People's Liberation Army,The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiang-Bin Xu
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
22
|
Zhang J, Jing L, Tan S, Zeng EM, Lin Y, He L, Hu Z, Liu J, Guo Z. Inhibition of miR-1193 leads to synthetic lethality in glioblastoma multiforme cells deficient of DNA-PKcs. Cell Death Dis 2020; 11:602. [PMID: 32732911 PMCID: PMC7393494 DOI: 10.1038/s41419-020-02812-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and has the highest mortality rate among cancers and high resistance to radiation and cytotoxic chemotherapy. Although some targeted therapies can partially inhibit oncogenic mutation-driven proliferation of GBM cells, therapies harnessing synthetic lethality are ‘coincidental’ treatments with high effectiveness in cancers with gene mutations, such as GBM, which frequently exhibits DNA-PKcs mutation. By implementing a highly efficient high-throughput screening (HTS) platform using an in-house-constructed genome-wide human microRNA inhibitor library, we demonstrated that miR-1193 inhibition sensitized GBM tumor cells with DNA-PKcs deficiency. Furthermore, we found that miR-1193 directly targets YY1AP1, leading to subsequent inhibition of FEN1, an important factor in DNA damage repair. Inhibition of miR-1193 resulted in accumulation of DNA double-strand breaks and thus increased genomic instability. RPA-coated ssDNA structures enhanced ATR checkpoint kinase activity, subsequently activating the CHK1/p53/apoptosis axis. These data provide a preclinical theory for the application of miR-1193 inhibition as a potential synthetic lethal approach targeting GBM cancer cells with DNA-PKcs deficiency.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| | - Li Jing
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Subee Tan
- Key Laboratory for Molecular Biotechnology, College of Life Sciences, Nanjing University, 210093, Nanjing, Jiangsu, P.R. China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, R.P. China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 17176, Sweden
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Jianping Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
23
|
Zhao L, Li R, Qiu JZ, Yu JB, Cao Y, Yuan RT. YY1-mediated PTEN dephosphorylation antagonizes IR-induced DNA repair contributing to tongue squamous cell carcinoma radiosensitization. Mol Cell Probes 2020; 53:101577. [PMID: 32334006 DOI: 10.1016/j.mcp.2020.101577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Ionizing radiation (IR) confers a survival advantage in tongue squamous cell carcinoma (TSCC), however, IR resistance limits its efficacy. Although Yin Yang 1 (YY1) has been reported to play a role in genotoxic drug resistance by accelerating DNA repair, its role in TSCC radioresistance remains unclear. In this study, we examined YY1 mRNA and protein expression in human tongue cancer samples using qRT-PCR and western blotting, respectively. DNA array data identified YY1 mRNA expression in IR sensitivity or resistance cell lines and tissues. Tongue carcinoma primary cells and CAL27 cells with YY1 stably overexpressed or knocked-down were exposed to IR and evaluated for cell proliferation and apoptosis by CCK8-assay and caspase-3 assay, respectively. We also examined DNA damage- or repair-related indicators, such as YY1, p-H2AX, nuclear PTEN, p-PTEN, and Rad51 through Western blot analysis. Additionally, we explored the mechanism of IR-induced PTEN nuclear translocation by introducing a series of PTEN phosphorylation site mutations and co-IP assay. We observed that YY1 mRNA and protein are highly expressed in TSCC tissues, which was correlated with worse overall survival. Moreover, higher expression of YY1 and Rad51 was observed in radioresistant cells and tissues, overexpression of YY1 led to IR resistance in TSCC cells, whereas YY1 knockdown sensitized TSCC cells to IR. The underlying mechanism showed that the overexpression of YY1 upregulated nuclear PTEN and Rad51 expression, which is essential for DNA repair. IR upregulated YY1, nuclear PTEN, and Rad51; thus, knockdown of YY1 completely blocked IR-induced upregulation of nuclear PTEN/Rad51. IR upregulated PTEN phosphorylation, and mutation of the phosphorylation site of Ser380 nearly completely blocked IR-induced PTEN nuclear translocation. Furthermore, the phosphatase PP2A negatively regulated pS380-PTEN, and knockdown of YY1 completely blocked IR-induced pS380-PTEN through PP2A. In conclusion, knockdown of YY1 enhanced TSCC radiosensitivity through PP2A-mediated dephosphorylation of PTEN Ser380; thus, antagonizing the IR-induced nuclear PTEN/Rad51 axis and targeting YY1 may reverse IR resistance in TSCC.
Collapse
Affiliation(s)
- Lu Zhao
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Ran Li
- Department of Oral and Maxillo-facial Surgery, Weifang Medical University Affiliated Qingdao Stomatological Hospital, #17 Dexian Road, Qingdao, 266000, PR China
| | - Jian-Zhong Qiu
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Jiang-Bo Yu
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Yang Cao
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Rong-Tao Yuan
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China.
| |
Collapse
|
24
|
Enhancement of Sphingolipid Synthesis Improves Osmotic Tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 2020; 86:AEM.02911-19. [PMID: 32033944 PMCID: PMC7117927 DOI: 10.1128/aem.02911-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
To enhance the growth performance of Saccharomyces cerevisiae under osmotic stress, mutant XCG001, which tolerates up to 1.5 M NaCl, was isolated through adaptive laboratory evolution (ALE). Comparisons of the transcriptome data of mutant XCG001 and the wild-type strain identified ELO2 as being associated with osmotic tolerance. In the ELO2 overexpression strain (XCG010), the contents of inositol phosphorylceramide (IPC; t18:0/26:0), mannosylinositol phosphorylceramide [MIPC; t18:0/22:0(2OH)], MIPC (d18:0/22:0), MIPC (d20:0/24:0), mannosyldiinositol phosphorylceramide [M(IP)2C; d20:0/26:0], M(IP)2C [t18:0/26:0(2OH)], and M(IP)2C [d20:0/26:0(2OH)] increased by 88.3 times, 167 times, 63.3 times, 23.9 times, 27.9 times, 114 times, and 208 times at 1.0 M NaCl, respectively, compared with the corresponding values of the control strain XCG002. As a result, the membrane integrity, cell growth, and cell survival rate of strain XCG010 increased by 24.4% ± 1.0%, 21.9% ± 1.5%, and 22.1% ± 1.1% at 1.0 M NaCl, respectively, compared with the corresponding values of the control strain XCG002 (wild-type strain with a control plasmid). These findings provided a novel strategy for engineering complex sphingolipids to enhance osmotic tolerance.IMPORTANCE This study demonstrated a novel strategy for the manipulation of membrane complex sphingolipids to enhance S. cerevisiae tolerance to osmotic stress. Elo2, a sphingolipid acyl chain elongase, was related to osmotic tolerance through transcriptome analysis of the wild-type strain and an osmosis-tolerant strain generated from ALE. Overexpression of ELO2 increased the content of complex sphingolipid with longer acyl chain; thus, membrane integrity and osmotic tolerance improved.
Collapse
|
25
|
Meliala ITS, Hosea R, Kasim V, Wu S. The biological implications of Yin Yang 1 in the hallmarks of cancer. Theranostics 2020; 10:4183-4200. [PMID: 32226547 PMCID: PMC7086370 DOI: 10.7150/thno.43481] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Tumorigenesis is a multistep process characterized by the acquisition of genetic and epigenetic alterations. During the course of malignancy development, tumor cells acquire several features that allow them to survive and adapt to the stress-related conditions of the tumor microenvironment. These properties, which are known as hallmarks of cancer, include uncontrolled cell proliferation, metabolic reprogramming, tumor angiogenesis, metastasis, and immune system evasion. Zinc-finger protein Yin Yang 1 (YY1) regulates numerous genes involved in cell death, cell cycle, cellular metabolism, and inflammatory response. YY1 is highly expressed in many cancers, whereby it is associated with cell proliferation, survival, and metabolic reprogramming. Furthermore, recent studies also have demonstrated the important role of YY1-related non-coding RNAs in acquiring cancer-specific characteristics. Therefore, these YY1-related non-coding RNAs are also crucial for YY1-mediated tumorigenesis. Herein, we summarize recent progress with respect to YY1 and its biological implications in the context of hallmarks of cancer.
Collapse
|
26
|
Dong S, Xiao Y, Ma X, He W, Kang J, Peng Z, Wang L, Li Z. miR-193b Increases the Chemosensitivity of Osteosarcoma Cells by Promoting FEN1-Mediated Autophagy. Onco Targets Ther 2019; 12:10089-10098. [PMID: 31819503 PMCID: PMC6878930 DOI: 10.2147/ott.s219977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background Osteosarcoma (OS) is one of the most common malignant bone tumors and specific microRNAs (miRNAs) are closely associated with malignant OS progression. In this study, we examined the role of microRNA-193b-3p (miR-193b) and the involvement of autophagy and apoptosis in the chemosensitivity of OS cells. Methods We employed qRT-PCR, Western blot, and immunohistochemistry to examine the expression levels of miR-193b, flap endonuclease 1 (FEN1), and autophagy-related proteins. Apoptosis was determined by flow cytometry using an Annexin V-FITC/PI apoptosis detection kit. Luciferase reporter assays confirmed the relationship between miR-193b and FEN1. Results miR-193b was downregulated in OS compared to adjacent normal tissues (p < 0.05). miR-193b overexpression in the OS cell lines induced autophagy and apoptosis, as shown by Western blotting and flow cytometry. Knockdown of FEN1, a structure-specific nuclease overexpressed in OS tissues (p < 0.001), induced apoptosis through activation of autophagy. Luciferase reporter assays confirmed that FEN1 is a direct target of miR-193b, FEN1 knockdown reinforced miR-193b induced apoptosis. Moreover, miR-193b expression enhanced epirubicin-induced autophagy and apoptosis. Conclusion Collectively, the results showed that miR-193b/FEN1 may serve as a novel therapeutic target for OS aimed mainly at the induction of autophagy and apoptosis. The miR-193b/FEN1 axis increased the chemosensitivity of OS cells, while activation of autophagy enhanced the anticancer effects of epirubicin.
Collapse
Affiliation(s)
- Suwei Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Yanbin Xiao
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Xiang Ma
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Wei He
- Medical Services Section, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Jianping Kang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Zhuohui Peng
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Lei Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| |
Collapse
|
27
|
Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front Oncol 2019; 9:1230. [PMID: 31824839 PMCID: PMC6879672 DOI: 10.3389/fonc.2019.01230] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1), a dual function transcription factor, is known to regulate transcriptional activation and repression of many genes associated with multiple cellular processes including cellular differentiation, DNA repair, autophagy, cell survival vs. apoptosis, and cell division. Owing to its role in processes that upon deregulation are linked to malignant transformation, YY1 has been implicated as a major driver of many cancers. While a large body of evidence supports the role of YY1 as a tumor promoter, recent reports indicated that YY1 also functions as a tumor suppressor. The mechanism by which YY1 brings out opposing outcome in tumor growth vs. suppression is not completely clear and some of the recent reports have provided significant insight into this. Likewise, the mechanism by which YY1 functions both as a transcriptional activator and repressor is not completely clear. It is likely that the proteins with which YY1 interacts might determine its function as an activator or repressor of transcription as well as its role as a tumor suppressor or promoter. Hence, a collection of YY1-protein interactions in the context of different cancers would help us gain an insight into how YY1 promotes or suppresses cancers. This review focuses on the YY1 interacting partners and its target genes in different cancer models. Finally, we discuss the possibility of therapeutically targeting the YY1 in cancers where it functions as a tumor promoter.
Collapse
Affiliation(s)
| | | | - Sivakumar Vallabhapurapu
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
28
|
Li JL, Wang JP, Chang H, Deng SM, Du JH, Wang XX, Hu HJ, Li DY, Xu XB, Guo WQ, Song YH, Guo Z, Sun MX, Wu YW, Liu SB. FEN1 inhibitor increases sensitivity of radiotherapy in cervical cancer cells. Cancer Med 2019; 8:7774-7780. [PMID: 31670906 PMCID: PMC6912068 DOI: 10.1002/cam4.2615] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background Cervical cancer is one of the most common causes of cancer‐associated mortality among affected women in the world. At present, treatment with weekly cisplatin plus ionizing radiation (IR) therapy is the standard regimen for cervical cancer, especially for locally advanced cervical cancer. The purpose of this study is to determine whether FEN1 inhibitors could enhance the therapeutic effect of IR therapy. Methods Western blot was applied to determine the expression of FEN1‐ and apoptosis‐related proteins. Cell growth inhibition assay and colony formation assay were used to determine the effects of FEN1 inhibitor and IR exposure for Hela cells in vitro. CRISPR technology was used to knockdown FEN1 expression level of 293T cells, and tumor xenograft in nude mice was employed to determine the effects of FEN1 inhibitor and IR exposure on tumor growth in vivo. Results Our data revealed that FEN1 is overexpressed in HeLa cell and can be upregulated further by IR. We also demonstrated that FEN1 inhibitor enhances IR sensitivity of cervical cancer in vitro and in vivo. Conclusion FEN1 inhibitor SC13 could sensitize radiotherapy of cervical cancer cell.
Collapse
Affiliation(s)
- Jin-Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ping Wang
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Chang
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Sheng-Ming Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-Hui Du
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Xiao-Xiao Wang
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - He-Juan Hu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Dong-Yin Li
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Xiang-Bin Xu
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Wei-Qiang Guo
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Min-Xuan Sun
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yi-Wei Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
29
|
Xu X, Shi R, Zheng L, Guo Z, Wang L, Zhou M, Zhao Y, Tian B, Truong K, Chen Y, Shen B, Hua Y, Xu H. SUMO-1 modification of FEN1 facilitates its interaction with Rad9-Rad1-Hus1 to counteract DNA replication stress. J Mol Cell Biol 2019; 10:460-474. [PMID: 30184152 PMCID: PMC6231531 DOI: 10.1093/jmcb/mjy047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023] Open
Abstract
Human flap endonuclease 1 (FEN1) is a structure-specific, multi-functional endonuclease essential for DNA replication and repair. We and others have shown that during DNA replication, FEN1 processes Okazaki fragments via its interaction with the proliferating cell nuclear antigen (PCNA). Alternatively, in response to DNA damage, FEN1 interacts with the PCNA-like Rad9–Rad1–Hus1 complex instead of PCNA to engage in DNA repair activities, such as homology-directed repair of stalled DNA replication forks. However, it is unclear how FEN1 is able to switch between these interactions and its roles in DNA replication and DNA repair. Here, we report that FEN1 undergoes SUMOylation by SUMO-1 in response to DNA replication fork-stalling agents, such as UV irradiation, hydroxyurea, and mitomycin C. This DNA damage-induced SUMO-1 modification promotes the interaction of FEN1 with the Rad9–Rad1–Hus1 complex. Furthermore, we found that FEN1 mutations that prevent its SUMO-1 modification also impair its ability to interact with HUS1 and to rescue stalled replication forks. These impairments lead to the accumulation of DNA damage and heightened sensitivity to fork-stalling agents. Altogether, our findings suggest an important role of the SUMO-1 modification of FEN1 in regulating its roles in DNA replication and repair.
Collapse
Affiliation(s)
- Xiaoli Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Rongyi Shi
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Liangyan Wang
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Ye Zhao
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Khue Truong
- Department of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Yuan Chen
- Department of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Yuejin Hua
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Qi L, Zhou B, Chen J, Hu W, Bai R, Ye C, Weng X, Zheng S. Significant prognostic values of differentially expressed-aberrantly methylated hub genes in breast cancer. J Cancer 2019; 10:6618-6634. [PMID: 31777591 PMCID: PMC6856906 DOI: 10.7150/jca.33433] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/31/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Abnormal status of gene expression plays an important role in tumorigenesis, progression and metastasis of breast cancer. Mechanisms of gene silence or activation were varied. Methylation of genes may contribute to alteration of gene expression. This study aimed to identify differentially expressed hub genes which may be regulated by DNA methylation and evaluate their prognostic value in breast cancer by bioinformatic analysis. Methods: GEO2R was used to obtain expression microarray data from GSE54002, GSE65194 and methylation microarray data from GSE20713, GSE32393. Differentially expressed-aberrantly methylated genes were identified by FunRich. Biological function and pathway enrichment analysis were conducted by DAVID. PPI network was constructed by STRING and hub genes was sorted by Cytoscape. Expression and DNA methylation of hub genes was validated by UALCAN and MethHC. Clinical outcome analysis of hub genes was performed by Kaplan Meier-plotter database for breast cancer. IHC was performed to analyze protein levels of EXO1 and Kaplan-Meier was used for survival analysis. Results: 677 upregulated-hypomethylated and 361 downregulated-hypermethylated genes were obtained from GSE54002, GSE65194, GSE20713 and GSE32393 by GEO2R and FunRich. The most significant biological process, cellular component, molecular function enriched and pathway for upregulated-hypomethylated genes were viral process, cytoplasm, protein binding and cell cycle respectively. For downregulated-hypermethylated genes, the result was peptidyl-tyrosine phosphorylation, plasma membrane, transmembrane receptor protein tyrosine kinase activity and Rap1 signaling pathway (All p< 0.05). 12 hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2) were sorted from 677 upregulated-hypomethylated genes. 4 hub genes (EGFR, FGF2, BCL2, PIK3R1) were sorted from 361 downregulated-hypermethylated genes. Differential expression of 16 hub genes was validated in UALCAN database (p<0.05). 7 in 12 upregulated-hypomethylated and 2 in 4 downregulated-hypermethylated hub genes were confirmed to be significantly hypomethylated or hypermethylated in breast cancer using MethHC database (p<0.05). Finally, 12 upregulated hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2) and 3 downregulated genes (FGF2, BCL2, PIK3R1) contributed to significant unfavorable clinical outcome in breast cancer (p<0.05). High expression level of EXO1 protein was significantly associated with poor OS in breast cancer patients (p=0.03). Conclusion: Overexpression of TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2 and downregulation of FGF2, BCL2, PIK3R1 might serve as diagnosis and poor prognosis biomarkers in breast cancer by more research validation. EXO1 was identified as an individual unfavorable prognostic factor. Methylation might be one of the major causes leading to abnormal expression of those genes. Functional analysis and pathway enrichment analysis of those genes would provide novel ideas for breast cancer research.
Collapse
Affiliation(s)
- Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Biting Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Rui Bai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xingyue Weng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
31
|
Zeng X, Qu X, Zhao C, Xu L, Hou K, Liu Y, Zhang N, Feng J, Shi S, Zhang L, Xiao J, Guo Z, Teng Y, Che X. FEN1 mediates miR-200a methylation and promotes breast cancer cell growth via MET and EGFR signaling. FASEB J 2019; 33:10717-10730. [PMID: 31266372 DOI: 10.1096/fj.201900273r] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flap endonuclease 1 (FEN1) is recognized as a pivotal factor in DNA replication, long-patch excision repair, and telomere maintenance. Excessive FEN1 expression has been reported to be closely associated with cancer progression, but the specific mechanism has not yet been explored. In the present study, we demonstrated that FEN1 promoted breast cancer cell proliferation via an epigenetic mechanism of FEN1-mediated up-regulation of DNA methyltransferase (DNMT)1 and DNMT3a. FEN1 was proved to interact with DNMT3a through proliferating cell nuclear antigen (PCNA) to suppress microRNA (miR)-200a-5p expression mediated by methylation. Furthermore, miR-200a-5p was identified to repress breast cancer cell proliferation by inhibiting the expression of its target genes, hepatocyte growth factor (MET), and epidermal growth factor receptor (EGFR). Overall, our data surprisingly demonstrate that FEN1 promotes breast cancer cell growth via the formation of FEN1/PCNA/DNMT3a complex to inhibit miR-200a expression by DNMT-mediated methylation and to recover the target genes expression of miR-200a, MET, and EGFR. The novel epigenetic mechanism of FEN1 on proliferation promotion provides a significant clue that FEN1 might serve as a predictive biomarker and therapeutic target for breast cancer.-Zeng, X., Qu, X., Zhao, C., Xu, L., Hou, K., Liu, Y., Zhang, N., Feng, J., Shi, S., Zhang, L., Xiao, J., Guo, Z., Teng, Y., Che, X. FEN1 mediates miR-200a methylation and promotes breast cancer cell growth via MET and EGFR signaling.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, China Medical University, Shenyang, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Na Zhang
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Feng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Shenyang, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yuee Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene 2019; 39:234-247. [PMID: 31471584 DOI: 10.1038/s41388-019-0986-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 01/18/2023]
Abstract
An increased DNA repair capacity is associated with drug resistance and limits the efficacy of chemotherapy in breast cancers. Flap endonuclease 1 (FEN1) participates in various DNA repair pathways and contributes to cancer progression and drug resistance in chemotherapy. Inhibition of FEN1 serves as a potent strategy for cancer therapy. Here, we demonstrate that microRNA-140 (miR-140) inhibits FEN1 expression via directly binding to its 3' untranslated region, leading to impaired DNA repair and repressed breast cancer progression. Overexpression of miR-140 sensitizes breast cancer cells to chemotherapeutic agents and overcomes drug resistance in breast cancer. Notably, ectopic expression of FEN1 abates the effects of miR-140 on DNA damage and the chemotherapy response in breast cancer cells. Furthermore, the transcription factor/repressor Ying Yang 1 (YY1) directly binds to the miR-140 promoter and activates miR-140 expression, which is attenuated in doxorubicin resistance. Our results demonstrate that miR-140 acts as a tumor suppressor in breast cancer by inhibiting FEN1 to repress DNA damage repair and reveal miR-140 to be a new anti-tumorigenesis factor for adjunctive breast cancer therapy. This novel mechanism will enhance the treatment effect of chemotherapy in breast cancer.
Collapse
|
33
|
Du J, Ren W, Yao F, Wang H, Zhang K, Luo M, Shang Y, O'Connell D, Bei Z, Wang H, Xiong R, Yang Y. YY1 cooperates with TFEB to regulate autophagy and lysosomal biogenesis in melanoma. Mol Carcinog 2019; 58:2149-2160. [PMID: 31448838 DOI: 10.1002/mc.23105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 11/07/2022]
Abstract
Autophagy is a self-proteolytic process that degrades intracellular material to maintain cellular homeostasis. Transcription factor EB (TFEB) is the master activator that regulates the transcription of genes involved in autophagy and lysosomal biogenesis. However, the cotranscriptional factors of TFEB are rarely identified. Here, we found that Yin Yang 1 (YY1) regulated autophagy and lysosome biogenesis in melanoma cells. YY1 cooperates with TFEB to regulate autophagy through controlling the transcription of autophagy and lysosome biogenesis related genes. Moreover, suppression of YY1 enhanced the antitumor efficiency of vemurafenib both in vitro and in vivo. Collectively, these studies identify YY1 as a novel cotranscription factor of TFEB in regulating autophagy and lysosomal functions and suggest YY1 could be a therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China.,State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenyan Ren
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Fengping Yao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kexin Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Meiying Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuxue Shang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Douglas O'Connell
- College of Osteopathic Medicine, Touro University California, Vallejo, California
| | - Zhuchun Bei
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongquan Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ran Xiong
- Research and Development Division, Shenzhen Gentarget Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Yongfei Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
34
|
Hays E, Bonavida B. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug Resist Updat 2019; 43:10-28. [PMID: 31005030 DOI: 10.1016/j.drup.2019.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
Recent advances in the treatment of various cancers have resulted in the adaptation of several novel immunotherapeutic strategies. Notably, the recent intervention through immune checkpoint inhibitors has resulted in significant clinical responses and prolongation of survival in patients with several therapy-resistant cancers (melanoma, lung, bladder, etc.). This intervention was mediated by various antibodies directed against inhibitory receptors expressed on cytotoxic T-cells or against corresponding ligands expressed on tumor cells and other cells in the tumor microenvironment (TME). However, the clinical responses were only observed in a subset of the treated patients; it was not clear why the remaining patients did not respond to checkpoint inhibitor therapies. One hypothesis stated that the levels of PD-L1 expression correlated with poor clinical responses to cell-mediated anti-tumor immunotherapy. Hence, exploring the underlying mechanisms that regulate PD-L1 expression on tumor cells is one approach to target such mechanisms to reduce PD-L1 expression and, therefore, sensitize the resistant tumor cells to respond to PD-1/PD-L1 antibody treatments. Various investigations revealed that the overexpression of the transcription factor Yin Yang 1 (YY1) in most cancers is involved in the regulation of tumor cells' resistance to cell-mediated immunotherapies. We, therefore, hypothesized that the role of YY1 in cancer immune resistance may be correlated with PD-L1 overexpression on cancer cells. This hypothesis was investigated and analysis of the reported literature revealed that several signaling crosstalk pathways exist between the regulations of both YY1 and PD-L1 expressions. Such pathways include p53, miR34a, STAT3, NF-kB, PI3K/AKT/mTOR, c-Myc, and COX-2. Noteworthy, many clinical and pre-clinical drugs have been utilized to target these above pathways in various cancers independent of their roles in the regulation of PD-L1 expression. Therefore, the direct inhibition of YY1 and/or the use of the above targeted drugs in combination with checkpoint inhibitors should result in enhancing the cell-mediated anti-tumor cell response and also reverse the resistance observed with the use of checkpoint inhibitors alone.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
35
|
Han J, Meng J, Chen S, Wang X, Yin S, Zhang Q, Liu H, Qin R, Li Z, Zhong W, Zhang C, Zhang H, Tang Y, Lin T, Gao W, Zhang X, Yang L, Liu Y, Zhou HG, Sun T, Yang C. YY1 Complex Promotes Quaking Expression via Super-Enhancer Binding during EMT of Hepatocellular Carcinoma. Cancer Res 2019; 79:1451-1464. [PMID: 30760518 DOI: 10.1158/0008-5472.can-18-2238] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/13/2018] [Accepted: 02/06/2019] [Indexed: 11/16/2022]
Abstract
Quaking (QKI) is an alternative splicing factor that can regulate circRNA formation in the progression of epithelial-mesenchymal transition, but the mechanism remains unclear. High expression of QKI is correlated with short survival time, metastasis, and high clinical stage and pathology grade in hepatocellular carcinoma (HCC). Here we report that transcription of the QKI gene was activated by the Yin-Yang 1 (YY1)/p65/p300 complex, in which YY1 bound to the super-enhancer and promoter of QKI, p65 combined with the promoter, and p300 served as a mediator to maintain the stability of the complex. This YY1/p65/p300 complex increased QKI expression to promote the malignancy of HCC as well as an increased circRNA formation in vitro and in vivo. Hyperoside is one of several plant-derived flavonol glycoside compounds. Through virtual screening and antitumor activity analysis, we found that hyperoside inhibited QKI expression by targeting the YY1/p65/p300 complex. Overall, our study suggests that the regulatory mechanism of QKI depends on the YY1/p65/p300 complex and that it may serve as a potential target for treatment of HCC. SIGNIFICANCE: These findings identify the YY1/p65/p300 complex as a regulator of QKI expression, identifying several potential therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing Meng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaorui Wang
- College of Life Science, Nankai University, Tianjin, China
| | - Shan Yin
- OBiO Technology (Shanghai) Corp., Ltd., China
| | - Qiang Zhang
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,College of Life Science, Nankai University, Tianjin, China
| | - Rong Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhongwei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Weilong Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Chao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yuanhao Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tingting Lin
- Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology, TMU, Tianjin Medical University Eye Institute, Tianjin, China
| | - Wanfeng Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaoyun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Lan Yang
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yanrong Liu
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hong-Gang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China. .,Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
36
|
Wang Y, Li S, Zhu L, Zou J, Jiang X, Chen M, Chen B. Letrozole improves the sensitivity of breast cancer cells overexpressing aromatase to cisplatin via down-regulation of FEN1. Clin Transl Oncol 2019; 21:1026-1033. [PMID: 30712236 DOI: 10.1007/s12094-018-02019-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE Flap endonuclease 1 (FEN1) is up-regulated by estrogen (17β-estradiol, E2) and related to cisplatin resistance of human breast cancer cells. Letrozole, an aromatase inhibitor, suppresses the change of testosterone into estrogen and is frequently used to treat breast cancer. However, the effects of letrozole on FEN1 expression and cisplatin sensitivity in breast cancer cells overexpressing aromatase have not been revealed. METHODS The expression of FEN1 and the proteins in ERK/Elk-1 signaling were evaluated by RT-PCR and Western blot. Cisplatin sensitivity was explored through CCK-8 and flow cytometry analysis, respectively. FEN1 siRNAs and FEN1 expression plasmid were transfected into cells to down-regulate or up-regulate FEN1 expression. The promotor activity of FEN1 was detected using luciferase reporter assay. RESULTS FEN1 down-regulation improved cisplatin sensitivity of breast cancer cells overexpressing aromatase. Letrozole down-regulated FEN1 expression and increased cisplatin sensitivity. The sensitizing effect of letrozole to cisplatin was dependent on FEN1 down-regulation. FEN1 overexpression could block the sensitizing effect of letrozole to cisplatin. Testosterone up-regulated the promotor activity, protein expression of FEN1, and phosphorylation of ERK/Elk-1, which could be eliminated by both letrozole and MEK1/2 inhibitor U0126. Letrozole down-regulated FEN1 expression in an ERK/Elk-1-dependent manner. CONCLUSIONS Our findings clearly demonstrate that letrozole improves cisplatin sensitivity of breast cancer cells overexpressing aromatase via down-regulation of FEN1 and suggest that a combined use of letrozole and cisplatin may be a potential treatment protocol for relieving cisplatin resistance in human breast cancer.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China.,Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - S Li
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - L Zhu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - J Zou
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - X Jiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - M Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China. .,College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - B Chen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
37
|
Su H, Liu L, Zhang Y, Wang J, Zhao Y. Long noncoding RNA NPCCAT1 promotes nasopharyngeal carcinoma progression via upregulating YY1. Biochimie 2018; 157:184-194. [PMID: 30481541 DOI: 10.1016/j.biochi.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) are frequently implicated in various cancers. However, the significances of lncRNAs in nasopharyngeal carcinoma (NPC) are largely unclear. In this study, we identified a novel lncRNA nasopharyngeal carcinoma copy number amplified transcript-1 (NPCCAT1), whose expression is increased in NPC tissues compared with nasopharyngeal normal tissues. Furthermore, we found the genomic copy number of NPCCAT1 is amplified in NPC, which contributes to the upregulation of NPCCAT1 in NPC. Functional experiments demonstrated that overexpression of NPCCAT1 promotes NPC cell growth and migration in vitro and NPC tumor growth in vivo. Knockdown of NPCCAT1 suppresses NPC cell grow and migration. Mechanistically, we found that NPCCAT1 directly binds YY1 mRNA 5'UTR, promotes YY1 mRNA translation, and upregulates YY1 protein level. Gain-of-function and loss-of-function assays revealed that YY1 promoted NPC cell proliferation and migration. Moreover, rescue assays showed that depletion of YY1 attenuated the roles of NPCCAT1 overexpression in promoting NPC cell growth and migration in vitro and NPC tumor growth in vivo. Overall, our study identified NPCCAT1 as an oncogenic lncRNA which promotes NPC progression via upregulating YY1, and suggested that lncRNA NPCCAT1 may be a promising therapeutic target for NPC.
Collapse
Affiliation(s)
- Hongxia Su
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Lei Liu
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yuan Zhang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jia Wang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yulin Zhao
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
38
|
Dong S, Ma X, Wang Z, Han B, Zou H, Wu Z, Zang Y, Zhuang L. YY1 promotes HDAC1 expression and decreases sensitivity of hepatocellular carcinoma cells to HDAC inhibitor. Oncotarget 2018; 8:40583-40593. [PMID: 28489564 PMCID: PMC5522268 DOI: 10.18632/oncotarget.17196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/05/2017] [Indexed: 01/02/2023] Open
Abstract
YY1 is a DNA-binding transcription factor and reported to be involved in cancer progression. Histone deacetylase inhibitor (HDACi) could inhibit proliferation and promote apoptosis of Hepatocellular carcinoma (HCC) cells. However, it is unclear about the roles of YY1 in the sensitivity of HCC cells to HDACi. In this study, firstly, we identified two drug-response profiles to HDACi in HCC cell lines, while our results showed that HDAC1 expression was positively correlated with YY1 in HCC cell lines and primary tumor tissues. Secondly, YY1 decreased the sensitivity of HCC cells to HDACi in vitro and in vivo. Furthermore, we found that YY1 promoted HDAC1 expression by binding to its promoter, while HDAC1 in turn up-regulated the expression of YY1. In conclusion, our results showed that YY1 could reduce the sensitivity of HCC cells to HDACi and might be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiang Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zusen Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hao Zou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zehua Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yunjin Zang
- Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Likun Zhuang
- Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
39
|
Zou J, Zhu L, Jiang X, Wang Y, Wang Y, Wang X, Chen B. Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget 2018. [PMID: 29541412 PMCID: PMC5834274 DOI: 10.18632/oncotarget.24109] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Flap endonuclease 1 (FEN1) overexpression promotes breast cancer. We investigated the role of FEN1 in cisplatin resistance and the chemosensitizing effects of curcumin in breast cancer cells. We demonstrated that FEN1 overexpression promotes cisplatin resistance in breast cancer cells, and that FEN1 knockdown enhances cisplatin sensitivity. Curcumin down-regulated FEN1 expression in a dose-dependent manner. A combination of cisplatin and curcumin enhanced breast cancer cell sensitivity to cisplatin by down-regulating FEN1 expression in vitro and in vivo. Increased ERK phosphorylation contributed to cisplatin resistance and cisplatin-induced FEN1 overexpression in breast cancer cells. Inhibiting ERK phosphorylation stimulated the chemosensitizing effect of curcumin to cisplatin by targeting FEN1. These data reveal that FEN1 overexpression promotes cisplatin resistance, and suggest FEN1 could be a potential therapeutic target to relieve cisplatin resistance in breast cancer. We also demonstrated that curcumin sensitizes breast cancer cells to cisplatin through FEN1 down-regulation.
Collapse
Affiliation(s)
- Jiao Zou
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Linlin Zhu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Xiaomei Jiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Yang Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Xiangwei Wang
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518060, Guangdong, China
| | - Bin Chen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
40
|
Zhang K, Keymeulen S, Nelson R, Tong TR, Yuan YC, Yun X, Liu Z, Lopez J, Raz DJ, Kim JY. Overexpression of Flap Endonuclease 1 Correlates with Enhanced Proliferation and Poor Prognosis of Non-Small-Cell Lung Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:242-251. [PMID: 29037854 PMCID: PMC5745529 DOI: 10.1016/j.ajpath.2017.09.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/31/2023]
Abstract
Flap endonuclease 1 (FEN1) plays a crucial role in both DNA replication and damage repair. In this study, FEN1 expression and its clinical-pathologic significance in non-small-cell lung cancer (NSCLC) was investigated. Quantitative RT-PCR and immunohistochemistry analysis identified that both FEN1 mRNA and protein were highly overexpressed in about 36% of 136 cancer tissues compared to adjacent tissues, in which FEN1 was generally undetectable. Notably, patients with FEN1-overexpressed cancers were prone to have poor differentiation and poor prognosis. A strong positive correlation between the levels of FEN1 and Ki-67 staining was identified in these NSCLC tissues (r = 0.485), suggesting overexpressed FEN1 conferred a proliferative advantage to NSCLC. Furthermore, knockdown of FEN1 resulted in G1/S or G2/M phase cell cycle arrest and suppressed in vitro cellular proliferation in NSCLC cancer cells. Consistently, a selective FEN1 inhibitor was shown to effectively inhibit cellular proliferation of NSCLC cells in a dose-dependent manner. Additionally, knockdown of FEN1 significantly attenuated homologous DNA repair efficiency and enhanced cytotoxic effects of cisplatin in NSCLC cells. Taken together, these findings have indicated that overexpressed FEN1 represents a prognostic biomarker and potential therapeutic target for NSCLC treatment, which warrants further study.
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California.
| | - Sawa Keymeulen
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Rebecca Nelson
- Division of Biostatistics, City of Hope National Medical Center, Duarte, California
| | - Tommy R Tong
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| | - Xinwei Yun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Zheng Liu
- Bioinformatics Core Facility, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| | - Joshua Lopez
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Jae Y Kim
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
41
|
Huang T, Wang G, Yang L, Peng B, Wen Y, Ding G, Wang Z. Transcription Factor YY1 Modulates Lung Cancer Progression by Activating lncRNA-PVT1. DNA Cell Biol 2017; 36:947-958. [PMID: 28972861 DOI: 10.1089/dna.2017.3857] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tonghai Huang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Guangsuo Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Lin Yang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Bin Peng
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Yuxin Wen
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Guanggui Ding
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Zheng Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
42
|
Ho YJ, Lin YM, Huang YC, Shi B, Yeh KT, Gong Z, Lu JW. Prognostic significance of high YY1AP1 and PCNA expression in colon adenocarcinoma. Biochem Biophys Res Commun 2017; 494:173-180. [PMID: 29037809 DOI: 10.1016/j.bbrc.2017.10.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023]
Abstract
To investigate the relationship between YY1AP1 and various clinicopathological features of colon adenocarcinoma (COAD), we conducted immunohistochemical (IHC) analyses of human tissue microarrays. We found that YY1AP1 protein expression was significantly higher in tumor tissue of the colon and liver, and was significantly lower in tumor tissue of the kidney. An analysis that employed the SurvExpress database indicated that increased expression of YY1AP1 mRNA was significantly associated with the overall survival of COAD patients. To clarify the validity of YY1AP1 or PCNA as determined by the IHC analysis was performed on 59 paired samples from COAD and adjacent normal tissue. Statistically significant differences of immunoreactivity for YY1AP1 or PCNA protein expression was observed between COAD tissue and adjacent normal tissue. High protein expression levels of YY1AP1 and PCNA were also found to be significantly correlated with M-class and distant metastasis. We also determined that YY1AP1 was correlated with PCNA expression in COAD samples, and Kaplan-Meier survival curves indicated that YY1AP1 protein expression was significantly associated with poor survival. Finally, a univariate analysis demonstrated that YY1AP1 protein expression was related to YY1AP1 score, and multivariate analysis revealed that the YY1AP1 protein expression level was an independent risk factor of overall COAD survival. Taken together, our findings indicate that YY1AP1 expression plays an important role in the tumorigenesis and progression of COAD and could serve as a clinical prognostic indicator for COAD.
Collapse
Affiliation(s)
- Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Yen-Chi Huang
- Department of Styling & Cosmetology, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, PR China
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
43
|
Zeng X, Che X, Liu YP, Qu XJ, Xu L, Zhao CY, Zheng CL, Hou KZ, Teng Y. FEN1 knockdown improves trastuzumab sensitivity in human epidermal growth factor 2-positive breast cancer cells. Exp Ther Med 2017; 14:3265-3272. [PMID: 28912877 DOI: 10.3892/etm.2017.4873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Trastuzumab has been widely applied as a treatment for human epidermal growth factor 2 (HER2)-overexpressing breast cancer. However, the therapeutic efficacy of trastuzumab is limited. Flap endonuclease 1 (FEN1) is a multifunctional endonuclease that has a crucial role in DNA recombination and repair. Inhibition of FEN1 is associated with the reversal of anticancer drug resistance. However, it is unclear whether FEN1 is involved in trastuzumab resistance. In the present study, it was demonstrated that trastuzumab increases the expression of FEN1, and FEN1 knockdown significantly enhanced the sensitivity of BT474 cells to trastuzumab (P<0.05). It was also revealed that trastuzumab induced HER receptor activation, increased binding with FEN1 and estrogen receptor α (ERα), and upregulated ERα-target gene transcription (P<0.05). Upon silencing of FEN1 expression with siRNA, activation of HER receptor and FEN1 binding to ERα were decreased, and trastuzumab-induced ERα target gene upregulation was partially ameliorated (P<0.05). These results suggest that FEN1 may mediate trastuzumab resistance via inducing HER receptor activation and enhancing ERα-target gene transcription. The findings of the present study indicate a novel role of FEN1 in trastuzumab resistance, suggesting that targeting FEN1 may enhance the efficiency of trastuzumab as a treatment for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chen-Yang Zhao
- Central Laboratory, The Fourth Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Chun-Lei Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuee Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
44
|
He L, Luo L, Zhu H, Yang H, Zhang Y, Wu H, Sun H, Jiang F, Kathera CS, Liu L, Zhuang Z, Chen H, Pan F, Hu Z, Zhang J, Guo Z. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer. Mol Oncol 2017; 11:640-654. [PMID: 28371273 PMCID: PMC5467497 DOI: 10.1002/1878-0261.12058] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer mortality worldwide. The therapeutic effect of chemotherapy is limited due to the resistance of cancer cells, which remains a challenge in cancer therapeutics. In this work, we found that flap endonuclease 1 (FEN1) is overexpressed in lung cancer cells. FEN1 is a major component of the base excision repair pathway for DNA repair systems and plays important roles in maintaining genomic stability through DNA replication and repair. We showed that FEN1 is critical for the rapid proliferation of lung cancer cells. Suppression of FEN1 resulted in decreased DNA replication and accumulation of DNA damage, which subsequently induced apoptosis. Manipulating the amount of FEN1 altered the response of lung cancer cells to chemotherapeutic drugs. A small‐molecule inhibitor (C20) was used to target FEN1 and this enhanced the therapeutic effect of cisplatin. The FEN1 inhibitor significantly suppressed cell proliferation and induced DNA damage in lung cancer cells. In mouse models, the FEN1 inhibitor sensitized lung cancer cells to a DNA damage‐inducing agent and efficiently suppressed cancer progression in combination with cisplatin treatment. Our study suggests that targeting FEN1 may be a novel and efficient strategy for a tumor‐targeting therapy for lung cancer.
Collapse
Affiliation(s)
- Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Libo Luo
- Changzhou No. 7 People's Hospital, China
| | - Hong Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Huan Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Yilan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Huan Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Hongfang Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Chandra S Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Lingjie Liu
- Southern University of Science and Technology of China, Shenzhen, China
| | - Ziheng Zhuang
- Changzhou No. 7 People's Hospital, China.,School of Pharmaceutical Engineering and Life Sciences, Changzhou University, China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
45
|
He L, Zhang Y, Sun H, Jiang F, Yang H, Wu H, Zhou T, Hu S, Kathera CS, Wang X, Chen H, Li H, Shen B, Zhu Y, Guo Z. Targeting DNA Flap Endonuclease 1 to Impede Breast Cancer Progression. EBioMedicine 2016; 14:32-43. [PMID: 27852524 PMCID: PMC5161424 DOI: 10.1016/j.ebiom.2016.11.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/26/2022] Open
Abstract
DNA flap endonuclease 1 (FEN1) plays critical roles in maintaining genome stability and integrity by participating in both DNA replication and repair. Suppression of FEN1 in cells leads to the retardation of DNA replication and accumulation of unrepaired DNA intermediates, resulting in DNA double strand breaks (DSBs) and apoptosis. Therefore, targeting FEN1 could serve as a potent strategy for cancer therapy. In this study, we demonstrated that FEN1 is overexpressed in breast cancers and is essential for rapid proliferation of cancer cells. We showed that manipulating FEN1 levels in cells alters the response of cancer cells to chemotherapeutic drugs. Furthermore, we identified a small molecular compound, SC13 that specifically inhibits FEN1 activity, thereby interfering with DNA replication and repair in vitro and in cells. SC13 suppresses cancer cell proliferation and induces chromosome instability and cytotoxicity in cells. Importantly, SC13 sensitizes cancer cells to DNA damage-inducing therapeutic modalities and impedes cancer progression in a mouse model. These findings could establish a paradigm for the treatment of breast cancer and other cancers as well. FEN1 is overexpressed in cancer cells and essential for cancer cell growth; Down regulation of FEN1 leads to retarded cell growth and sensitizes cancer cells to chemotherapeutic agents; SC13, a FEN1 specific inhibitor, inhibits cancer growth in vitro and in xenograft tumor mice. Most anticancer agents used in clinic today kill cells by interfering DNA replication or inducing DNA damage, which in turn lead to cell apoptosis. However, cancer cells have evolved a compilation of highly effective DNA replication and repair systems to meet up the requirement of rapidly dividing of cancer cells and protect DNA against both endogenous and exogenous DNA damage. FEN1 has been shown to be an important factor in both DNA replication and repair pathways, making FEN1 a logical target for developing anticancer drugs as stand-alone agents for treating cancers that rely on its activity and as a therapy in combination with chemotherapeutic agents that cause DNA damage.
Collapse
Affiliation(s)
- Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yilan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Hongfang Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Huan Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Huan Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ting Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Sencai Hu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Chandra Sekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaojun Wang
- Isotope Laboratory, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Hongzhi Li
- Department of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Binghui Shen
- Department of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte 91010, CA, USA; Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Yongqiang Zhu
- Center for New Drug Research & Development, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
46
|
Liu L, Wang JF, Fan J, Rao YS, Liu F, Yan YE, Wang H. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism. Int J Mol Sci 2016; 17:ijms17091477. [PMID: 27598153 PMCID: PMC5037755 DOI: 10.3390/ijms17091477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/10/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000, China.
| | - Jian-Fei Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Jie Fan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Yi-Song Rao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Fang Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - You-E Yan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
47
|
Interaction between APC and Fen1 during breast carcinogenesis. DNA Repair (Amst) 2016; 41:54-62. [PMID: 27088617 DOI: 10.1016/j.dnarep.2016.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Aberrant DNA base excision repair (BER) contributes to malignant transformation. However, inter-individual variations in DNA repair capacity plays a key role in modifying breast cancer risk. We review here emerging evidence that two proteins involved in BER - adenomatous polyposis coli (APC) and flap endonuclease 1 (Fen1) - promote the development of breast cancer through novel mechanisms. APC and Fen1 expression and interaction is increased in breast tumors versus normal cells, APC interacts with and blocks Fen1 activity in Pol-β-directed LP-BER, and abrogation of LP-BER is linked with cigarette smoke condensate-induced transformation of normal breast epithelial cells. Carcinogens increase expression of APC and Fen1 in spontaneously immortalized human breast epithelial cells, human colon cancer cells, and mouse embryonic fibroblasts. Since APC and Fen1 are tumor suppressors, an increase in their levels could protect against carcinogenesis; however, this does not seem to be the case. Elevated Fen1 levels in breast and lung cancer cells may reflect the enhanced proliferation of cancer cells or increased DNA damage in cancer cells compared to normal cells. Inactivation of the tumor suppressor functions of APC and Fen1 is due to their interaction, which may act as a susceptibility factor for breast cancer. The increased interaction of APC and Fen1 may occur due to polypmorphic and/or mutational variation in these genes. Screening of APC and Fen1 polymorphic and/or mutational variations and APC/Fen1 interaction may permit assessment of individual DNA repair capability and the risk for breast cancer development. Such individuals might lower their breast cancer risk by reducing exposure to carcinogens. Stratifying individuals according to susceptibility would greatly assist epidemiologic studies of the impact of suspected environmental carcinogens. Additionally, a mechanistic understanding of the interaction of APC and Fen1 may provide the basis for developing new and effective targeted chemopreventive and chemotherapeutic agents.
Collapse
|