1
|
He J, He Y, Biao R, Wei Y, Dong Z, Du J. STYK1 mediates NK cell anti-tumor response through regulating CCR2 and trafficking. J Transl Med 2024; 22:943. [PMID: 39415235 PMCID: PMC11481722 DOI: 10.1186/s12967-024-05718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
The serine/threonine/tyrosine kinase 1 (STYK1) is a receptor protein-tyrosine kinase (RPTK)-like molecule that is detected in several human organs. STYK1 plays an important role in promoting tumorigenesis and metastasis in various cancers. By analyzing the expression of RTKs in immune cells in the database of 2013 Immunological Genome Project, we found that STYK1 was principally expressed in NK cells. In order to investigate the function of STYK1, we used CRISPR/Cas9 technology to generate STYK1-deleted mice, we found STYK1 deletion mice have normal number, development, and function of NK cells in spleen and bone marrow in tumor-free resting state. To examine the tumor surveillance of STYK1 in vivo, we utilized a variety of tumor models, including NK cell-specific target cell (ß2M and RMA-S) clearance experiments in vivo, subcutaneous and intravenous injection of B16F10 melanoma model, and the spontaneous breast cancer model MMTV-PyMT. Surprisingly, we discovered that deletion of the oncogenic STYK1 promoted the four-model tumor progression, and we observed a reduction of NK cell accumulation in the tumor tissues of STYK1 deletion mice compared to WT mice. In order to study the mechanism of STYK1 in NK, RNA sequence of STYK1-/- and WT NK have unveiled a disparity in the signaling pathways linked to migration and adhesion in STYK1-/- NK cells. Further analysis of chemokine receptors associated with NK cell migration revealed that STYK1-deficient NK cells exhibited a significant reduction in CCR2 expression. The STYK1 expression was negatively associated with tumor progression in glioma patients. Overall, our study found the expression of STYK1 in NK cell mediates NK cell anti-tumor response through regulating CCR2 and infiltrating into tumor tissue.
Collapse
Affiliation(s)
- Junming He
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, 102218, China
| | - Yuexi He
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Ruojia Biao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing, 100015, China
| | - Yuqing Wei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing, 100015, China
| | - Zhongjun Dong
- Department of Allergy, The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
- Innovative Institute of Tumor Immunity and Medicine (lTlM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China.
- Tsinghua University, Medical Blvd. D328, Haidian District, Beijing, 100086, China.
| | - Juan Du
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Institute of Infectious Diseases, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing, 100015, China.
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
2
|
Suwatthanarak T, Tanjak P, Chaiboonchoe A, Acharayothin O, Thanormjit K, Chanthercrob J, Suwatthanarak T, Niyomchan A, Tanaka M, Okochi M, Pongpaibul A, Chalermwai WV, Trakarnsanga A, Methasate A, Pithukpakorn M, Chinswangwatanakul V. Overexpression of TSPAN8 in consensus molecular subtype 3 colorectal cancer. Exp Mol Pathol 2024; 137:104911. [PMID: 38861838 DOI: 10.1016/j.yexmp.2024.104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Recently, consensus molecular subtypes (CMSs) have been proposed as a robust transcriptome-based classification system for colorectal cancer (CRC). Tetraspanins (TSPANs) are transmembrane proteins. They have been associated with the development of numerous malignancies, including CRC, through their role as "master organizers" for multi-molecular membrane complexes. No previous study has investigated the correlation between TSPANs and CMS classification. Herein, we investigated the expression of TSPANs in patient-derived primary CRC tissues and their CMS classifications. METHODS RNA samples were derived from primary CRC tissues (n = 100 patients diagnosed with colorectal adenocarcinoma) and subjected to RNA sequencing for transcriptome-based CMS classification and TSPAN-relevant analyses. Immunohistochemistry (IHC) and immunofluorescence (IF) stains were conducted to observe the protein expression level. To evaluate the relative biological pathways, gene-set enrichment analysis was performed. RESULTS Of the highly expressed TSPAN genes in CRC tissues (TSPAN8, TSPAN29, and TSPAN30), TSPAN8 was notably overexpressed in CMS3-classified primary tissues. The overexpression of TSPAN8 protein in CMS3 CRC was also observed by IHC and IF staining. As a result of gene-set enrichment analysis, TSPAN8 may potentially play a role in organizing signaling complexes for kinase-based metabolic deregulation in CMS3 CRC. CONCLUSIONS The present study reports the overexpression of TSPAN8 in CMS3 CRC. This study proposes TSPAN8 as a subtype-specific biomarker for CMS3 CRC. This finding provides a foundation for future CMS-based studies of CRC, a complex disease and the second leading cause of cancer mortality worldwide.
Collapse
Affiliation(s)
- Thanawat Suwatthanarak
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pariyada Tanjak
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Systems Pharmacy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellence in Precision Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onchira Acharayothin
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kullanist Thanormjit
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Systems Pharmacy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellence in Precision Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tharathorn Suwatthanarak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Apichaya Niyomchan
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wipapat Vicki Chalermwai
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Atthaphorn Trakarnsanga
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Asada Methasate
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Siriraj Center of Research Excellence in Precision Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vitoon Chinswangwatanakul
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Zhang N, Li Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (Beijing) 2023; 4:e446. [PMID: 38077251 PMCID: PMC10701465 DOI: 10.1002/mco2.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of protein kinases that play crucial roles in various cellular processes, including cell migration, morphological differentiation, cell growth, and angiogenesis. In humans, 58 RTKs have been identified and categorized into 20 distinct families based on the composition of their extracellular regions. RTKs are primarily activated by specific ligands that bind to their extracellular region. They not only regulate tumor transformation, proliferation, metastasis, drug resistance, and angiogenesis, but also initiate and maintain the self-renewal and cloning ability of cancer stem cells. Accurate diagnosis and grading of tumors with dysregulated RTKs are essential in clinical practice. There is a growing body of evidence supporting the benefits of RTKs-targeted therapies for cancer patients, and researchers are actively exploring new targets and developing targeted agents. However, further optimization of RTK inhibitors is necessary to effectively target the diverse RTK alterations observed in human cancers. This review provides insights into the classification, structure, activation mechanisms, and expression of RTKs in tumors. It also highlights the research advances in RTKs targeted anticancer therapy and emphasizes their significance in optimizing cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
4
|
STYK1/NOK affects cell cycle late mitosis and directly interacts with anaphase-promoting complex activator CDH1. Heliyon 2022; 8:e12058. [PMID: 36506394 PMCID: PMC9732331 DOI: 10.1016/j.heliyon.2022.e12058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
The novel oncogene STYK1/NOK plays critical roles in cancer development. However, its regulation during cell division is less defined. In this paper, we show that over-expression of STYK1/NOK caused mitotic arrest and cytokinesis defects. The protein level of STYK/NOK fluctuated during the cell cycle, with a peak at mitosis and a quick reduction upon mitotic exit. The cell cycle-related expression pattern of STYK1/NOK resembled the one of aurora kinases and polo-like kinase 1. Depletion of APC3 led to accumulation of STYK1/NOK and to the G2/M arrest. Co-immunoprecipitation experiment demonstrated the direct interaction of STYK1/NOK with CDH1. Overexpression of CDH1 shortened the half-life of STYK1/NOK. The kinase domain, but not the five D boxes, of STYK1/NOK was responsible for the interaction with CDH1. Altogether, our data demonstrated for the first time that STYK1/NOK could affect cell division, probably by directly targeting key components of APC/C such as CDH1 at late mitosis. Current study may provide a vital mechanistic clue for understanding the roles of STYK1/NOK in mitosis and cytokinesis during STYK1NOK mediated genomic instability and oncogenesis.
Collapse
|
5
|
Eggermont C, Giron P, Noeparast M, Vandenplas H, Aza-Blanc P, Gutierrez GJ, De Grève J. The EGFR-STYK1-FGF1 axis sustains functional drug tolerance to EGFR inhibitors in EGFR-mutant non-small cell lung cancer. Cell Death Dis 2022; 13:611. [PMID: 35840561 PMCID: PMC9287553 DOI: 10.1038/s41419-022-04994-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/21/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients harboring activating mutations in epidermal growth factor receptor (EGFR) are sensitive to therapy with EGFR tyrosine kinase inhibitors (TKI). Despite remarkable clinical responses using EGFR TKI, surviving drug tolerant cells serve as a reservoir from which drug resistant tumors may emerge. This study addresses the need for improved efficacy of EGFR TKI by identifying targets involved in functional drug tolerance against them. To this aim, a high-throughput siRNA kinome screen was performed using two EGFR TKI-sensitive EGFR-mutant NSCLC cell lines in the presence/absence of the second-generation EGFR TKI afatinib. From the screen, Serine/Threonine/Tyrosine Kinase 1 (STYK1) was identified as a target that when downregulated potentiates the effects of EGFR inhibition in vitro. We found that chemical inhibition of EGFR combined with the siRNA-mediated knockdown of STYK1 led to a significant decrease in cancer cell viability and anchorage-independent cell growth. Further, we show that STYK1 selectively interacts with mutant EGFR and that the interaction is disrupted upon EGFR inhibition. Finally, we identified fibroblast growth factor 1 (FGF1) as a downstream effector of STYK1 in NSCLC cells. Accordingly, downregulation of STYK1 counteracted the afatinib-induced upregulation of FGF1. Altogether, we unveil STYK1 as a valuable target to repress the pool of surviving drug tolerant cells arising upon EGFR inhibition. Co-targeting of EGFR and STYK1 could lead to a better overall outcome for NSCLC patients.
Collapse
Affiliation(s)
- Carolien Eggermont
- grid.8767.e0000 0001 2290 8069Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Philippe Giron
- grid.8767.e0000 0001 2290 8069Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium ,grid.411326.30000 0004 0626 3362Center of Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Maxim Noeparast
- grid.8767.e0000 0001 2290 8069Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium ,grid.10253.350000 0004 1936 9756Present Address: Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University, 35043 Marburg, Germany
| | - Hugo Vandenplas
- grid.8767.e0000 0001 2290 8069Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Pedro Aza-Blanc
- grid.479509.60000 0001 0163 8573Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Gustavo J. Gutierrez
- grid.8767.e0000 0001 2290 8069Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.476376.70000 0004 0603 3591Present Address: Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium. .,Center of Medical Genetics, UZ Brussel, Brussels, Belgium.
| |
Collapse
|
6
|
Wilkinson S, Sowalsky AG. Comment on: Intratumor heterogeneity and clonal evolution revealed in castration-resistant prostate cancer by longitudinal genomic analysis by Jing Li et al. Transl Oncol 2022; 17:101347. [PMID: 35078018 PMCID: PMC8790658 DOI: 10.1016/j.tranon.2022.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
7
|
Lai Y, Lin F, Wang X, Zhang J, Xia J, Sun Y, Wen M, Li X, Zhang Z, Zhao J. STYK1/NOK Promotes Metastasis and Epithelial-Mesenchymal Transition in Non-small Cell Lung Cancer by Suppressing FoxO1 Signaling. Front Cell Dev Biol 2021; 9:621147. [PMID: 34295886 PMCID: PMC8290174 DOI: 10.3389/fcell.2021.621147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Aims Serine/threonine/tyrosine kinase 1 (STYK1) has been previously shown to have oncogenic properties, and emerging evidence suggests that STYK1 expression correlates with epithelial-mesenchymal transition (EMT). However, the mechanism of STYK1 involvement in oncogenesis remains unknown. The present study aimed to elucidate how STYK1 expression level relates to the metastasis, migration, invasion, and EMT in non-small cell lung cancer (NSCLC) and to determine the molecular mechanism of STYK1 effects. Methods Serine/threonine/tyrosine kinase 1 (STYK1) expression level and its relationship with the prognosis of NSCLC were determined using the ONCOMINE database and clinical cases. Non-small cell lung cancer cell lines with the overexpression or knockdown of STYK1 were established to determine whether STYK1 promotes cell migration, invasion, and EMT in vitro and in vivo. In addition, a constitutively active FoxO1 mutant (FoxO1AAA) was used to examine the role of FoxO1 in the STYK1-mediated upregulation of metastasis and EMT in NSCLC. Results Serine/threonine/tyrosine kinase 1 (STYK1) was upregulated in NSCLC tissues and cell lines, and its overexpression correlated with poor prognosis in patients with NSCLC after surgery. Enhanced expression of STYK1 potentiated the migration, invasion, and EMT in SW900 cells, thereby promoting metastasis, whereas knockdown of STYK1 inhibited these cellular phenomena in Calu-1 cells. Furthermore, STYK1 expression was positively related to the level of phosphorylated-FoxO1, whereas the constitutively active FoxO1 mutant protected against the positive effect of STYK1 overexpression on cell migration, invasion, and EMT. Conclusion Serine/threonine/tyrosine kinase 1 (STYK1) was upregulated in NSCLC and correlated with poor clinical outcomes. In addition, STYK1 suppressed FoxO1 functions, thereby promoting metastasis and EMT in NSCLC.
Collapse
Affiliation(s)
- Yuanyang Lai
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Fang Lin
- Department of Clinical Diagnosis, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Xuejiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Jinghua Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|
8
|
Fu Y, Liu Q, Bao Q, Wen J, Liu Z, Hu Y, He G, Peng C, Xu Y, Zhang W. Development and analysis of long non-coding RNA-associated competing endogenous RNA network for osteosarcoma metastasis. Hereditas 2021; 158:9. [PMID: 33593435 PMCID: PMC7887822 DOI: 10.1186/s41065-021-00174-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background Osteosarcoma is the primary bone malignant neoplasm that often develops metastasis. Increasing evidences have shown that non-coding RNAs (ncRNAs) relate to the progression of osteosarcoma. However, the ncRNAs’ roles in osteosarcoma metastasis are still unknown. Methods Differentially expressed (DE) RNAs were identified from Gene Expression Omnibus (GEO) database. Protein-protein interaction (PPI) of DE messenger RNAs (DEmRNAs) was built through STRING database. The target mRNAs and long ncRNAs (lncRNAs) of microRNAs (miRNA) were predicted through miRDB, Targetscan and Genecode databases, which then cross-checked with previously obtained DERNAs to construct competing endogenous RNA (ceRNA) network. All networks were visualized via Cytoscape and the hub RNAs were screened out through Cytoscape plug-in Cytohubba. The gene functional and pathway analyses were performed through DAVID and MirPath databases. The survival analyses of hub RNAs were obtained through Kaplan-Meier (KM) survival curves. Results Five hundred sixty-four DEmRNAs, 16 DElncRNAs and 22 DEmiRNAs were screened out. GO functional and KEGG pathway analyses showed that DERNAs were significantly associated with tumor metastasis. The ceRNA network including 6 lncRNAs, 55 mRNAs and 20 miRNAs were constructed and the top 10 hub RNAs were obtained. Above all, PI3K/AKT signaling pathway was identified as the most important osteosarcoma metastasis-associated pathway and its hub ceRNA module was constructed. The survival analyses showed that the RNAs in hub ceRNA module closely related to osteosarcoma patients’ prognosis. Conclusions The current study provided a new perspective on osteosarcoma metastasis. More importantly, the RNAs in hub ceRNA module might act as the novel therapeutic targets and prognostic factors for osteosarcoma patients. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00174-0.
Collapse
Affiliation(s)
- Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Qi Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Qiyuan Bao
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Junxiang Wen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Zhuochao Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Yuehao Hu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Guoyu He
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Cheng Peng
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Yiqi Xu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China.
| |
Collapse
|
9
|
Huang Z, Ma N, Xiong YL, Wang L, Li WM, Lai YY, Zhang CX, Zhang ZP, Li XF, Zhao JB. Aberrantly High Expression Of NOK/STYK1 Is Tightly Associated With The Activation Of The AKT/GSK3β/N-Cadherin Pathway In Non-Small Cell Lung Cancer. Onco Targets Ther 2019; 12:10299-10309. [PMID: 31819514 PMCID: PMC6885570 DOI: 10.2147/ott.s210014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose High metastasis is a leading risk factor for the survival of non-small cell lung cancer (NSCLC) and epithelial-mesenchymal transition (EMT) is a vital step of metastasis. The expression of novel oncogene with kinase domain (NOK) has been observed in some human malignancies, including non-small cell lung cancer (NSCLC); however, the biological function of NOK in NSCLC remains unclear. In the study, we explored the function of NOK in NSCLC, with an aim to elucidate the relevant underlying mechanisms. Patients and methods We investigate the expression of NOK, p-Akt, p-GSK-3β, E-cadherin and N-cadherin expression by immunohistochemical analysis using tissue microarrays of 72 paired NSCLC samples of cancerous and adjacent normal tissues. The associations between NOK expression and clinicopathological factors, overall survival, other proteins were assessed. Immunofluorescence analysis of NSCLC tissues was performed to study the location of NOK, Akt and GSK-3β. Up or down-regulated of NOK were conducted in two NSCLC cell lines to analyze its impact on AKT/GSK3β pathway. Results Statistical analysis revealed NOK expression increased in NSCLC tissues compared with normal tissues (P<0.05). It also showed that low NOK expression were associated with a higher possibility of non-lymphatic metastasis, an early pN stage and clinical stage (P<0.05). Moreover, NOK expression was positively correlated with the expression of oncogene p-Akt (Thr308), p-GSK-3β (Ser9) and N-cadherin (P<0.05). Immunofluorescence analysis of NSCLC tissues revealed that NOK is co-located with Akt and GSK-3β. Further study in NSCLC cell lines revealed that NOK overexpression can activate the AKT/GSK3β pathway. Conversely, knockdown of NOK can suppress the AKT/GSK3β pathway. Conclusion Our results suggest that NOK overexpression correlated significantly with lymphatic metastasis, advanced pN and clinical stage in NSCLC. And NOK may promote EMT by activating the AKT/GSK3β/N-cadherin pathway in NSCLC.
Collapse
Affiliation(s)
- Zhao Huang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Wei-Miao Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Yuan-Yang Lai
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Chen-Xi Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Zhi-Pei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Xiao-Fei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, People's Republic of China
| |
Collapse
|
10
|
STYK1 promotes tumor growth and metastasis by reducing SPINT2/HAI-2 expression in non-small cell lung cancer. Cell Death Dis 2019; 10:435. [PMID: 31164631 PMCID: PMC6547759 DOI: 10.1038/s41419-019-1659-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. However, the molecular mechanisms underlying NSCLC progression remains not fully understood. In this study, 347 patients with complete clinicopathologic characteristics who underwent NSCLC surgery were recruited for the investigation. We verified that elevated serine threonine tyrosine kinase 1 (STYK1) or decreased serine peptidase inhibitor Kunitz type 2 (SPINT2/HAI-2) expression significantly correlated with poor prognosis, tumor invasion, and metastasis of NSCLC patients. STYK1 overexpression promoted NSCLC cells proliferation, migration, and invasion. STYK1 also induced epithelial–mesenchymal transition by E-cadherin downregulation and Snail upregulation. Moreover, RNA-seq, quantitative polymerase chain reaction (qRT-PCR), and western blot analyses confirmed that STYK1 overexpression significantly decreased the SPINT2 level in NSCLC cells, and SPINT2 overexpression obviously reversed STYK1-mediated NSCLC progression both in vitro and in vivo. Further survival analyses showed that NSCLC patients with high STYK1 level and low SPINT2 level had the worst prognosis and survival. These results indicated that STYK1 facilitated NSCLC progression via reducing SPINT2 expression. Therefore, targeting STYK1 and SPINT2 may be a novel therapeutic strategy for NSCLC.
Collapse
|
11
|
García-Aranda M, Redondo M. Targeting Protein Kinases to Enhance the Response to anti-PD-1/PD-L1 Immunotherapy. Int J Mol Sci 2019; 20:E2296. [PMID: 31075880 PMCID: PMC6540309 DOI: 10.3390/ijms20092296] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
The interaction between programmed cell death protein (PD-1) and its ligand (PD-L1) is one of the main pathways used by some tumors to escape the immune response. In recent years, immunotherapies based on the use of antibodies against PD-1/PD-L1 have been postulated as a great promise for cancer treatment, increasing total survival compared to standard therapy in different tumors. Despite the hopefulness of these results, a significant percentage of patients do not respond to such therapy or will end up evolving toward a progressive disease. Besides their role in PD-L1 expression, altered protein kinases in tumor cells can limit the effectiveness of PD-1/PD-L1 blocking therapies at different levels. In this review, we describe the role of kinases that appear most frequently altered in tumor cells and that can be an impediment for the success of immunotherapies as well as the potential utility of protein kinase inhibitors to enhance the response to such treatments.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, Hospital Costa del Sol. Autovía A7, km 187. Marbella, 29603 Málaga, Spain.
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), 28029 Madrid, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain.
| | - Maximino Redondo
- Research Unit, Hospital Costa del Sol. Autovía A7, km 187. Marbella, 29603 Málaga, Spain.
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), 28029 Madrid, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain.
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Campus Universitario de Teatinos, 29010 Málaga, Spain.
| |
Collapse
|
12
|
Decreased expression levels of DAL-1 and TOB1 are associated with clinicopathological features and poor prognosis in gastric cancer. Pathol Res Pract 2019; 215:152403. [PMID: 30962003 DOI: 10.1016/j.prp.2019.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/19/2019] [Accepted: 03/31/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE We previously demonstrated that the functional inactivation of DAL-1 and TOB1 promotes an aggressive phenotype in gastric cancer cells, but the links between both genes and the survival of patients with gastric cancer are unknown. Here, we investigated the correlations of the expression levels of DAL-1 and TOB1 with the progression of gastric cancer. METHODS A total of 270 patients who underwent resectable gastrectomy were included. The expression of DAL-1 and TOB1 was detected by immunohistochemistry. RESULTS Low expression of DAL-1 in cancer tissue was significantly associated with tumor site (p < 0.05), histological grade (p < 0.01), depth of invasion (p < 0.05), lymph node metastasis status (p < 0.05), Lauren classification (p < 0.001), and clinical stage (p < 0.01). A lower level of TOB1 was observed in gastric cancer patients with diffuse type disease compared to patients with either intestinal or mixed type disease (p < 0.001). Additionally, Spearman's correlation analysis revealed that decreased expression of DAL-1 was positively correlated with low TOB1 expression (r=0.304, p < 0.001). The survival analysis showed that low levels of DAL-1 and TOB1 were significantly associated with poor survival of gastric cancer patients (p <0.001 and p < 0.05, respectively). CONCLUSION The downregulation of DAL-1 and TOB1 expression is associated with shorter survival of gastric cancer patients. Hence, DAL-1 and TOB1 may be considered potential novel markers for predicting the outcomes of patients with gastric cancer.
Collapse
|
13
|
García-Aranda M, Redondo M. Targeting Receptor Kinases in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11040433. [PMID: 30934752 PMCID: PMC6521260 DOI: 10.3390/cancers11040433] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the third most common malignancy in men and the second most common cancer in women. Despite the success of screening programs and the development of adjuvant therapies, the global burden of colorectal cancer is expected to increase by 60% to more than 2.2 million new cases and 1.1 million deaths by 2030. In recent years, a great effort has been made to demonstrate the utility of protein kinase inhibitors for cancer treatment. Considering this heterogeneous disease is defined by mutations that activate different Receptor Tyrosine Kinases (RTKs) and affect downstream components of RTK-activated transduction pathways, in this review we analyze the potential utility of different kinase inhibitors for colorectal cancer treatment.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, Hospital Costa del Sol. Autovía A7, km 187. 29603 Marbella, Málaga, Spain.
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), 28029 Madrid, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain.
| | - Maximino Redondo
- Research Unit, Hospital Costa del Sol. Autovía A7, km 187. 29603 Marbella, Málaga, Spain.
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), 28029 Madrid, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain.
- Facultad de Medicina, Campus Universitario de Teatinos, Universidad de Málaga, 29010 Málaga, Spain.
| |
Collapse
|
14
|
Fang J, Wang H, Fang X, Li N, Hu H, Bian M, Yang P. Low STYK1 expression indicates poor prognosis in gastric cancer. Cancer Manag Res 2018; 10:6669-6676. [PMID: 30584361 PMCID: PMC6289209 DOI: 10.2147/cmar.s181910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The expression of serine threonine tyrosine kinase 1 (STYK1), a member of the receptor protein tyrosine kinase (RPTK) family, is abnormal in several cancers. However, the molecular mechanism of STYK1 regulation of gastric cancer (GC) progression is unknown. Materials and methods We evaluated STYK1 expression in GC tissues and the corresponding normal tissues. Specimens from 93 patients with GC were examined with immunohistochemical staining. The relationship between STYK1 protein expression and the patients' clinicopathological features was assessed. Kaplan-Meier and Cox proportional regression analyses were used to evaluate the association between STYK1 expression and survival. Results STYK1 expression was decreased in GC tissues. Low STYK1 expression was significantly associated with poor tumor differentiation (P=0.023), advanced clinical stage (P=0.021), and poor overall survival (OS; P=0.034). Univariate and multivariate analyses revealed that STYK1expression was an independent prognostic indicator (HR =0.53, 95% CI =0.29-0.95, P=0.039; HR =0.51, 95% CI =0.24-0.91, P=0.030, respectively). Conclusion Downregulated STYK1 expression correlated significantly with poor tumor differentiation, advanced clinical stage, and poor OS in GC. STYK1 might be a diagnostic and prognostic indicator in patients with GC.
Collapse
Affiliation(s)
- Jian Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| | - Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, Jiangsu, China
| | - Xiao Fang
- Department of Orthopaedics, Hefei Orthopaedics Hospital, Hefei 230000, Anhui, China
| | - Na Li
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| | - Hailiang Hu
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| | - Peng Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| |
Collapse
|
15
|
Xiong Y, Wang K, Zhou H, Peng L, You W, Fu Z. Profiles of immune infiltration in colorectal cancer and their clinical significant: A gene expression-based study. Cancer Med 2018; 7:4496-4508. [PMID: 30117315 PMCID: PMC6144159 DOI: 10.1002/cam4.1745] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/29/2018] [Accepted: 08/01/2018] [Indexed: 12/25/2022] Open
Abstract
Immune infiltration of colorectal cancer (CRC) is closely associated with clinical outcome. However, previous work has not accounted for the diversity of functionally distinct cell types that make up the immune response. In this study, based on a deconvolution algorithm (known as CIBERSORT) and clinical annotated expression profiles, we comprehensively analyzed the tumor‐infiltrating immune cells present in CRC for the first time. The fraction of 22 immune cells subpopulations was evaluated to determine the associations between each cell type and survival and response to chemotherapy. As a result, profiles of immune infiltration vary significantly between paired cancer and paracancerous tissue and the variation could characterize the individual differences. Of the cell subpopulations investigated, tumors lacking M1 macrophages or with an increased number of M2 macrophages, eosinophils, and neutrophils were associated with the poor prognosis. Unsupervised clustering analysis using immune cell proportions revealed five subgroups of tumors, largely defined by the balance between macrophages M1, M2, and NK resting cells, with distinct survival patterns, and associated with well‐established molecular subtype. Collectively, our data suggest that subtle differences in the cellular composition of the immune infiltrate in CRC appear to exist, and these differences are likely to be important determinants of both prognosis and response to treatment.
Collapse
Affiliation(s)
- Yongfu Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - He Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxian You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Chen L, Ma C, Bian Y, Shao C, Wang T, Li J, Chong X, Su L, Lu J. Aberrant expression of STYK1 and E-cadherin confer a poor prognosis for pancreatic cancer patients. Oncotarget 2017; 8:111333-111345. [PMID: 29340057 PMCID: PMC5762325 DOI: 10.18632/oncotarget.22794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed that aberrant Serine/threonine/tyrosine kinase 1 (STYK1, also known as NOK) or/and E-cadherin were involved in the progression of some types of human cancers. However, whether they contributed to the development of pancreatic cancer was unknown. Here, we investigated the prognostic significance of aberrant STYK1 and E-cadherin in pancreatic cancer. Our results showed that STYK1 expression increased while E-cadherin decreased in pancreatic cancer tissues compared with normal pancreas tissues. STYK1 level was positively correlated with lymph node metastasis and clinical stage in pancreatic cancer patients. E-cadherin expression was inversely correlated with STYK1 expression in pancreatic cancer tissue samples. Patients with high STYK1 and low E-cadherin expression had the worst prognosis. In addition, STYK1 knockdown in pancreatic cancer cell lines inhibited cell proliferation, enhanced cell apoptosis, induced cell cycle arrest, and prohibited cell migration, while STYK1 over-expression showed the opposite effects. Silencing STYK1 also increased E-cadherin expression and inhibited epithelial-to-mesenchymal transition (EMT) and p-p38 expression in vitro. Over-expression had showed the opposite trends, and treatment with p38 inhibitor, SB203580, could reverse the trends. Thus, STYK1 repressed E-cadherin expression and promoted EMT, mediated by p38 MAPK signaling pathway, which was the possible mechanism for STYK1-mediated pancreatic cancer cell proliferation and migration. In summary, our results showed that STYK1 might be a prognostic marker for pancreatic cancer patients and might be a novel strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Luguang Chen
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Tiegong Wang
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Jing Li
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Xiaodan Chong
- Cancer Institute, Institute of Translational Medicine, Second Military Medical University, Shanghai, China
| | - Li Su
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
Prediction and Validation of Hub Genes Associated with Colorectal Cancer by Integrating PPI Network and Gene Expression Data. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2421459. [PMID: 29209625 PMCID: PMC5676348 DOI: 10.1155/2017/2421459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/04/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022]
Abstract
Although hundreds of colorectal cancer- (CRC-) related genes have been screened, the significant hub genes still need to be further identified. The aim of this study was to identify the hub genes based on protein-protein interaction network and uncover their clinical value. Firstly, 645 CRC patients' data from the Tumor Cancer Genome Atlas were downloaded and analyzed to screen the differential expression genes (DEGs). And then, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed, and PPI network of the DEGs was constructed by Cytoscape software. Finally, four hub genes (CXCL3, ELF5, TIMP1, and PHLPP2) were obtained from four subnets and further validated in our clinical setting and TCGA dataset. The results showed that mRNA expression of CXCL3, ELF5, and TIMP1 was increased in CRC tissues, whereas PHLPP2 mRNA expression was decreased. More importantly, high expression of CXCL3, ELF5, and TIMP1 was significantly associated with lymphatic invasion, distance metastasis, and advanced tumor stage. In addition, a shorter overall survival was observed in patients with increased CXCL3, TIMP1, and ELF5 expression and decreased PHLPP2 expression. In conclusion, the four hub genes screened by our strategy could serve as novel biomarkers for prognosis prediction of CRC patients.
Collapse
|
18
|
Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M. Identification of six polymorphisms as novel susceptibility loci for ischemic or hemorrhagic stroke by exome-wide association studies. Int J Mol Med 2017; 39:1477-1491. [PMID: 28487959 PMCID: PMC5428971 DOI: 10.3892/ijmm.2017.2972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/20/2017] [Indexed: 11/05/2022] Open
Abstract
In this study, we performed exome-wide association studies (EWASs) to identify genetic variants that confer susceptibility to ischemic stroke, intracerebral hemorrhage (ICH), or subarachnoid hemorrhage (SAH). EWAS for ischemic stroke was performed using 1,575 patients with this condition and 9,210 controls, and EWASs for ICH and SAH were performed using 673 patients with ICH, 265 patients with SAH and 9,158 controls. Analyses were performed with Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of allele frequencies for 41,339 or 41,332 single nucleotide polymorphisms (SNPs) that passed quality control to ischemic or hemorrhagic stroke, respectively, was examined with Fisher's exact test. Based on Bonferroni's correction, a P-value of <1.21x10-6 was considered statistically significant. EWAS for ischemic stroke revealed that 77 SNPs were significantly associated with this condition. Multivariable logistic regression analysis with adjustment for age, sex and the prevalence of hypertension and diabetes mellitus revealed that 4 of these SNPs [rs3212335 of GABRB3 (P=0.0036; odds ratio, 1.29), rs147783135 of TMPRSS7 (P=0.0024; odds ratio, 0.37), rs2292661 of PDIA5 (P=0.0054; odds ratio, 0.35) and rs191885206 of CYP4F12 (P=0.0082; odds ratio, 2.60)] were related (P<0.01) to ischemic stroke. EWASs for ICH or SAH revealed that 48 and 12 SNPs, respectively, were significantly associated with these conditions. Multivariable logistic regression analysis with adjustment for age, sex and the prevalence of hypertension revealed that rs138533962 of STYK1 (P<1.0x10-23; odds ratio, 111.3) was significantly (P<2.60x10-4) associated with ICH and that rs117564807 of COL17A1 (P=0.0009; odds ratio, 2.23x10-8) was significantly (P<0.0010) associated with SAH. GABRB3, TMPRSS7, PDIA5 and CYP4F12 may thus be novel susceptibility loci for ischemic stroke, whereas STYK1 and COL17A1 may be such loci for ICH and SAH, respectively.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514‑8507, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514‑8507, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514‑8507, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514‑8507, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe 511-0428, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi 507-8522, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shuichi Obuchi
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hisashi Kawai
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| |
Collapse
|
19
|
Wang Z, Qu L, Deng B, Sun X, Wu S, Liao J, Fan J, Peng Z. STYK1 promotes epithelial-mesenchymal transition and tumor metastasis in human hepatocellular carcinoma through MEK/ERK and PI3K/AKT signaling. Sci Rep 2016; 6:33205. [PMID: 27628214 PMCID: PMC5024114 DOI: 10.1038/srep33205] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
Serine/threonine/tyrosine kinase 1 (STYK1) is known to be involved in tumor progression. However, its molecular role and mechanism in hepatocellular carcinoma (HCC) remains unknown. We evaluated the effect of STYK1 expression in HCC tissues and investigated the underlying mechanisms associated with progression. HCC tissues expressed greater levels of STYK1 than paired non-tumor tissues. Patients with HCC expressing low levels of STYK1 showed both, greater disease-free (p < 0.0001) and overall (p = 0.0004) survival than those expressing high levels of STYK1. Decreased expression of STYK1 was significantly associated with decreased cell proliferation, reduced migratory capability, and reduced invasive capability. Overexpression of STYK1 was significantly associated with increased cell proliferation, migratory capability, and invasive capability in vitro, as well as increased volume of tumor, weight of tumor, and number of pulmonary metastases in vivo. Furthermore, STYK1's mechanism of promoting cancer cell mobility and epithelial-mesenchymal transition (EMT) was found to be via the MEK/ERK and PI3K/AKT pathways, resulting in increased expression of mesenchymal protein markers: snail, fibronectin, and vimentin, and decreased E-cadherin expression. Our results suggest that STYK1 acts as an oncogene by inducing cell invasion and EMT via the MEK/ERK and PI3K/AKT signaling pathways and it therefore may be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Lei Qu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Biao Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Shaohan Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Jianhua Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| |
Collapse
|
20
|
A20 suppresses hepatocellular carcinoma proliferation and metastasis through inhibition of Twist1 expression. Mol Cancer 2015; 14:186. [PMID: 26538215 PMCID: PMC4634191 DOI: 10.1186/s12943-015-0454-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/09/2015] [Indexed: 12/29/2022] Open
Abstract
Background Aberrant expression of A20 has been reported in several human malignancies including hepatocellular carcinoma (HCC). However, its clinical relevance and potential role in HCC remain unknown. Methods Quantitative PCR, Western blots and immunohistochemistry analyses were used to quantify A20 expression in HCC samples and cell lines. The correlation of A20 expression with clinicopathologic features was analyzed in a cohort containing 143 patients with primary HCC. Kaplan-Meier curves were used to evaluate the association between A20 expression and patient survival. Functional studies were performed to determine the effects of A20 on proliferation and metastasis of HCC cells in vitro and in vivo. Results Expression of A20 was increased in HCC tissues and cell lines. Increased expression of A20 was negatively correlated with the tumor size, TNM stage, tumor thrombus formation, capsular invasion and serum AFP levels. Patients with higher A20 expression had a prolonged disease-free survival and overall survival than those with lower A20 expression. Forced expression of A20 significantly inhibited the proliferative and invasive properties of HCC cells both in vitro and in vivo, whereas knockdown of A20 expression showed the opposite effects. Further studies revealed that expression of A20 was inversely correlated with Twist1 levels and NF-κB activity in HCC tissues and cell lines. A20-induced suppression of proliferation and migration of HCC cells were mainly mediated through inhibition of Twist1 expression that was regulated at least partly by A20-induced attenuation of NF-κB activity. Conclusions Our results demonstrate that A20 plays a negative role in the development and progression of HCC probably through inhibiting Twist1 expression. A20 may serve as a novel prognostic biomarker and potential therapeutic target for HCC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0454-6) contains supplementary material, which is available to authorized users.
Collapse
|