1
|
Glass E, Robinson SL, Rosowski EE. Zebrafish use conserved CLR and TLR signaling pathways to respond to fungal PAMPs in zymosan. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105286. [PMID: 39536806 PMCID: PMC11740225 DOI: 10.1016/j.dci.2024.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Pattern recognition receptors (PRRs) such as C-type lectin receptors (CLRs) and Toll-like receptors (TLRs) are used by hosts to recognize pathogen-associated molecular patterns (PAMPs) in microorganisms and to initiate innate immune responses. While PRRs exist across invertebrate and vertebrate species, the functional homology of many of these receptors is still unclear. In this study, we investigate the innate immune response of zebrafish larvae to zymosan, a β-glucan-containing particle derived from fungal cell walls. Macrophages and neutrophils robustly respond to zymosan and are required for zymosan-induced activation of the NF-κB transcription factor. Full activation of NF-κB in response to zymosan depends on Card9/Syk and Myd88, conserved CLR and TLR adaptor proteins, respectively. Two putative CLRs, Clec4c and Sclra, are both required for maximal sensing of zymosan and NF-κB activation but not required for inflammatory gene expression. Altogether, we identify conserved PRRs and PRR signaling pathways in larval zebrafish that promote recognition of fungal PAMPs. These results inform modeling of human fungal infections in zebrafish and increase our knowledge of the evolution and conservation of PRR pathways in vertebrates.
Collapse
Affiliation(s)
- Erin Glass
- Department of Biological Sciences, Clemson University, Clemson, SC, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA
| | - Stephan L Robinson
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA; School of Medicine Greenville, University of South Carolina, Greenville, SC, USA
| | - Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA.
| |
Collapse
|
2
|
Long H, Liu M, Rao Z, Guan S, Chen X, Huang X, Cao L, Han R. RNA-Seq-Based Transcriptome Analysis of Chinese Cordyceps Aqueous Extracts Protective Effect against Adriamycin-Induced mpc5 Cell Injury. Int J Mol Sci 2024; 25:10352. [PMID: 39408685 PMCID: PMC11476491 DOI: 10.3390/ijms251910352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Pharmacogenomic analysis based on drug transcriptome characteristics is widely used to identify mechanisms of action. The purpose of this study was to elucidate the molecular mechanism of protective effect against adriamycin (ADM)-induced mpc5 cell injury of Chinese cordyceps aqueous extracts (WCCs) by a systematic transcriptomic analysis. The phytochemicals of WCCs were analyzed via the "phenol-sulfuric acid method", high-performance liquid chromatography (HPLC), and HPLC-mass spectrometry (MS). We analyzed the drug-reaction transcriptome profiles of mpc5 cell after treating them with WCCs. RNA-seq analysis revealed that WCCs alleviated ADM-induced mpc5 cell injury via restoring the expression of certain genes to normal level mainly in the one-carbon pool by the folate pathway, followed by the relaxin, apelin, PI3K-Akt, and nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway, enhancing DNA synthesis and repair, cell proliferation, fibrosis reduction, and immune regulation. Otherwise, WCCs also modulated the proliferation and survival of the mpc5 cell by regulating metabolic pathways, and partially restores the expression of genes related to human disease pathways. These findings provide an innovative understanding of the molecular mechanism of the protective effect of WCCs on ADM-induced mpc5 cell injury at the molecular transcription level, and Mthfd2, Dhfr, Atf4, Creb5, Apln, and Serpine1, etc., may be potential novel targets for treating nephrotic syndrome.
Collapse
Affiliation(s)
- Hailin Long
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Mengzhen Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Shanyue Guan
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou 510650, China;
| | - Xiaoting Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| |
Collapse
|
3
|
Glass E, Robinson SL, Rosowski EE. Zebrafish use conserved CLR and TLR signaling pathways to respond to fungal PAMPs in zymosan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600417. [PMID: 38979385 PMCID: PMC11230284 DOI: 10.1101/2024.06.24.600417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pattern recognition receptors (PRRs) such as C-type lectin receptors (CLRs) and Toll-like receptors (TLRs) are used by hosts to recognize pathogen-associated molecular patterns (PAMPs) in microorganisms and to initiate innate immune responses. While PRRs exist across invertebrate and vertebrate species, the functional homology of many of these receptors is still unclear. In this study, we investigate the innate immune response of zebrafish larvae to zymosan, a β-glucan-containing particle derived from fungal cell walls. Macrophages and neutrophils robustly respond to zymosan and are required for zymosan-induced activation of the NF-κB transcription factor. Full activation of NF-κB in response to zymosan depends on Card9/Syk and Myd88, conserved CLR and TLR adaptor proteins, respectively. Two putative CLRs, Clec4c and Sclra, are both required for maximal sensing of zymosan and NF-κB activation. Altogether, we identify conserved PRRs and PRR signaling pathways in larval zebrafish that promote recognition of fungal PAMPs. These results inform modeling of human fungal infections in zebrafish and increase our knowledge of the evolution and conservation of PRR pathways in vertebrates.
Collapse
Affiliation(s)
- Erin Glass
- Department of Biological Sciences, Clemson University, Clemson, SC
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
| | - Stephan L Robinson
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
- School of Medicine Greenville, University of South Carolina, Greenville, SC
| | - Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
| |
Collapse
|
4
|
Nagano R, Nakako Y, Fujii S, Kawano S, Maeda H, Kiyoshima T. The IL-1β-p65 axis stimulates quiescent odontogenic epithelial cell rests via TGF-β signalling to promote cell proliferation of the lining epithelia in radicular cysts: A laboratory investigation. Int Endod J 2024; 57:344-354. [PMID: 38204205 DOI: 10.1111/iej.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
AIM Cyst formation of the jaws is frequently accompanied by the proliferation of odontogenic epithelial cells located in the periodontal ligament (PDL), which consists of heterozygous cells and includes the most fibroblasts. The lining epithelium of radicular cyst, an odontogenic cyst of inflammatory origin, is derived from the proliferation of the remnants of the Hertwig epithelial root sheath (odontogenic epithelial cell rests of Malassez; ERMs) in the PDL. ERMs are maintained at a lower proliferative state under physiological conditions, but the regulatory mechanisms underlying the inflammation-dependent enhanced-proliferative capabilities of ERMs are not fully understood. The aim of this study was to evaluate the effects of cytokine pathway association between TGF-β signalling and IL-1β signalling on the regulation of odontogenic epithelial cell proliferation using radicular cyst pathological specimens and odontogenic epithelial cell lines. METHODOLOGY Immunofluorescence analyses were performed to clarify the expression levels of Smad2/3 and Ki-67 in ERMs of 8-week-old mouse molar specimens. In radicular cyst (n = 52) and dentigerous cysts (n = 6) specimens from human patients, the expression of p65 (a main subunit of NF-κB), Smad2/3 and Ki-67 were investigated using immunohistochemical analyses. Odontogenic epithelial cells and PDL fibroblastic cells were co-cultured with or without an inhibitor or siRNAs. Odontogenic epithelial cells were cultured with or without TGF-β1 and IL-1β. The proliferative capabilities and Smad2 phosphorylation levels of odontogenic epithelial cells were examined. RESULTS Immunohistochemically, Smad2/3-positivity was increased, and p65-positivity and Ki-67-positivity were decreased both in ERMs and in the epithelial cells in dentigerous cysts, a non-inflammatory developmental cyst. In contrast, p65-positive cells, along with the expression of Ki-67, were increased and Smad2/3-positive cells were decreased in the lining epithelia of radicular cysts. Co-culture experiments with odontogenic epithelial cells and PDL fibroblastic cells revealed that PDL cells-derived TGF-β1/2 and their downstream signalling suppressed odontogenic epithelial cell proliferation. Moreover, TGF-β1 stimulation induced Smad2 phosphorylation and suppressed odontogenic epithelial cell proliferation, while IL-1β stimulation reversed these phenotypes through p65 transactivation. CONCLUSIONS These results suggest that IL-1β-p65 signalling promotes odontogenic epithelial cell proliferation through suppressing TGF-β-Smad2 signalling, which would be involved in the pathogenesis of radicular cysts.
Collapse
Affiliation(s)
- Ryoko Nagano
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yusuke Nakako
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Sun Y, Li H, Duan X, Ma X, Liu C, Shang D. Chensinin-1b Alleviates DSS-Induced Inflammatory Bowel Disease by Inducing Macrophage Switching from the M1 to the M2 Phenotype. Biomedicines 2024; 12:345. [PMID: 38397947 PMCID: PMC10886634 DOI: 10.3390/biomedicines12020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder with an increasing prevalence worldwide. Macrophage polarization is involved in the pathogenesis of IBD. Repolarization of macrophage has thus emerged as a novel therapeutic approach for managing IBD. Chensinin-1b, derived from the skin of Rana chensinensis, is a derivative of a native antimicrobial peptide (AMP). It shows anti-inflammatory effects in sepsis models and can potentially modulate macrophage polarization. The objective of this research was to study the role of chensinin-1b in macrophage polarization and dextran sulfate sodium (DSS)-induced colitis. RAW264.7 macrophages were polarized to the M1 phenotype using lipopolysaccharide (LPS) and simultaneously administered chensinin-1b at various concentrations. The ability of chenisnin-1b to reorient macrophage polarization was assessed by ELISA, qRT-PCR, and flow cytometry analysis. The addition of chensinin-1b significantly restrained the expression of M1-associated proinflammatory cytokines and surface markers, including TNF-α, IL-6, NO, and CD86, and exaggerated the expression of M2-associated anti-inflammatory cytokines and surface markers, including IL-10, TGF-β1, Arg-1, Fizz1, Chil3, and CD206. Mechanistically, via Western Blotting, we revealed that chensinin-1b induces macrophage polarization from the M1 to the M2 phenotype by inhibiting the phosphorylation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). In mouse models of colitis, intraperitoneal administration of chensinin-1b alleviated symptoms induced by DSS, including weight loss, elevated disease activity index (DAI) scores, colon shortening, colonic tissue damage, and splenomegaly. Consistent with our in vitro data, chensinin-1b induced significant decreases in the expression of M1 phenotype biomarkers and increases in the expression of M2 phenotype biomarkers in the mouse colitis model. Furthermore, chensinin-1b treatment repressesed NF-κB phosphorylation in vivo. Overall, our data showed that chensinin-1b attenuates IBD by repolarizing macrophages from the M1 to the M2 phenotype, suggesting its potential as a therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Huiyu Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Xingpeng Duan
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Xiaoxiao Ma
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Chenxi Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
6
|
Alvarez-Arzola R, Oliver L, Messmer MM, Twum DYF, Lee KP, Muhitch JB, Mesa C, Abrams SI. A Bacterial and Ganglioside-based Nanoparticle Initiates Reprogramming of Macrophages and Promotes Antitumor Phenotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:475-486. [PMID: 38117752 DOI: 10.4049/jimmunol.2300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/19/2023] [Indexed: 12/22/2023]
Abstract
Macrophages represent the most abundant immune component of the tumor microenvironment and often exhibit protumorigenic (M2-like) phenotypes that contribute to disease progression. Despite their generally accepted protumorigenic role, macrophages can also display tumoricidal (or M1-like) behavior, revealing that macrophages can be functionally reprogrammed, depending on the cues received within the tumor microenvironment. Moreover, such plasticity may be achieved by pharmacologic or biologic interventions. To that end, we previously demonstrated that a novel immunomodulator termed the "very small size particle" (VSSP) facilitates maturation of dendritic cells and differentiation of myeloid-derived suppressor cells to APCs with reduced suppressive activity in cancer models. VSSP was further shown to act in the bone marrow to drive the differentiation of progenitors toward monocytes, macrophages, and dendritic cells during emergency myelopoiesis. However, the underlying mechanisms for VSSP-driven alterations in myeloid differentiation and function remained unclear. In this study, in mouse models, we focused on macrophages and tested the hypothesis that VSSP drives macrophages toward M1-like functional states via IRF8- and PU.1-dependent mechanisms. We further hypothesized that such VSSP-mediated actions would be accompanied by enhanced antitumor responses. Overall, we showed that (1) VSSP drives naive or M2-derived macrophages to M1-like states, (2) the M1-like state induced by VSSP occurs via IRF8- and PU.1-dependent mechanisms, and (3) single-agent VSSP induces an antitumor response that is accompanied by alterations in the intratumoral myeloid compartment. These results provide a deeper mechanistic underpinning of VSSP and strengthen its use to drive M1-like responses in host defense, including cancer.
Collapse
Affiliation(s)
- Rydell Alvarez-Arzola
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Liliana Oliver
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Danielle Y F Twum
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kelvin P Lee
- IU Simon Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jason B Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Circe Mesa
- Innovative Immunotherapy Alliance S.A., Mariel, Artemisa, Cuba
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
7
|
Di Giorgio E, Cortolezzis Y, Gualandi N, Agostini F, Rapozzi V, Xodo LE. NRF2 interacts with distal enhancer and inhibits nitric oxide synthase 2 expression in KRAS-driven pancreatic cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119606. [PMID: 37852325 DOI: 10.1016/j.bbamcr.2023.119606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Nitric oxide is a pleiotropic free radical produced by three nitric oxide synthases (NOS1-3), of which inducible NOS2 is involved in tumor initiation and progression. In this study, RNA-seq, ChIP-seq and qRT-PCR experiments combined with bioinformatic analyses showed that NRF2 is a repressor of NOS2 gene by maintaining a distal enhancer located 22 kb downstream of TSS in an inactive state. Deletion of NRF2 leads to activation of the enhancer, which exerts a pioneering function before it is fully activated. Specifically, NRF2 controls the expression of NOS2 in response to intracellular oxidative stress and extracellular oxygen pressure. We found that abrogation of NOS2 expression by siRNAs partially reduced the ability of WT Panc-1 cells to form 3D spheroids, but strongly reduced the formation of 3D spheroids by NRF2-depleted Panc-1 cells. Mechanistically, this effect correlates with the finding that NOS2 and nitric oxide stimulate epithelial-to-mesenchymal transition in NRF2-depleted Panc-1 and MIA PaCa-2 cells. We also found that knockdown of NOS2 leads to blockade of 3D matrigel invasion of NRF2-depleted PDAC cells, demonstrating that a short-circuit in the reciprocal regulation of NOS2 and NRF2 attenuates the malignancy of PDAC cells. In summary, we show for the first time that: (i) NRF2 is a suppressor of NOS2 in pancreatic cancer cells; (ii) NRF2 binds to and inactivates an enhancer located 22 kb downstream of TSS of the NOS2 gene; (iii) activation of NOS2 requires suppression of NRF2; (iv) NOS2 is required for NRF2-depleted Panc-1 cells to maintain their malignancy and invasiveness.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy.
| | - Ylenia Cortolezzis
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Nicolò Gualandi
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Francesca Agostini
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Valentina Rapozzi
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Luigi E Xodo
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
8
|
Lkhagva-Yondon E, Seo MS, Oh Y, Jung J, Jeon E, Na K, Yoo HS, Kim WC, Esser C, Song SU, Jeon MS. The aryl hydrocarbon receptor controls mesenchymal stromal cell-mediated immunomodulation via ubiquitination of eukaryotic elongation factor-2 kinase. Cell Death Dis 2023; 14:812. [PMID: 38071243 PMCID: PMC10710493 DOI: 10.1038/s41419-023-06341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Mesenchymal stem cells (MSCs) have great therapeutic advantages due to their immunosuppressive properties. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor whose signaling plays an important role in the immune system. AHR may be involved in the regulation of MSC-associated immunomodulatory functions. However, the mechanisms by which AHR controls the immunosuppressive functions of MSCs are not well understood. Here, we report that Ahr-deficient MSCs show decreased therapeutic efficacy against graft-versus-host disease (GVHD) compared to wild-type (WT)-MSCs. This was probably due to decreased iNOS protein expression, which is a key regulatory enzyme in MSC immunomodulation. The expression of eukaryotic elongation factor 2 kinase (eEF2K), which inhibits the elongation stage of protein synthesis, is significantly increased in the Ahr-deficient MSCs. Inhibition of eEF2K restored iNOS protein expression. AHR is known to act as an E3 ligase together with CUL4B. We observed constitutive binding of AHR to eEF2K. Consequently, ubiquitination and degradation of eEF2K were inhibited in Ahr-deficient MSCs and by the AHR antagonist CH223191 in WT-MSCs. In summary, AHR regulates the immunomodulatory functions of MSCs through ubiquitination of eEF2K, thereby controlling iNOS protein synthesis and its product, nitric oxide levels.
Collapse
Affiliation(s)
- Enkhmaa Lkhagva-Yondon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Myeong Seong Seo
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Yena Oh
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Jonghun Jung
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Eunhae Jeon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Kwangmin Na
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Hyun Seung Yoo
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Woo Chul Kim
- Department of Radiation Oncology, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40021, Germany
| | - Sun U Song
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
- SCM Lifescience, Incheon, 21999, Republic of Korea
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea.
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea.
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea.
- SCM Lifescience, Incheon, 21999, Republic of Korea.
| |
Collapse
|
9
|
Russell TM, Richardson DR. The good Samaritan glutathione-S-transferase P1: An evolving relationship in nitric oxide metabolism mediated by the direct interactions between multiple effector molecules. Redox Biol 2023; 59:102568. [PMID: 36563536 PMCID: PMC9800640 DOI: 10.1016/j.redox.2022.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Glutathione-S-transferases (GSTs) are phase II detoxification isozymes that conjugate glutathione (GSH) to xenobiotics and also suppress redox stress. It was suggested that GSTs have evolved not to enhance their GSH affinity, but to better interact with and metabolize cytotoxic nitric oxide (NO). The interactions between NO and GSTs involve their ability to bind and store NO as dinitrosyl-dithiol iron complexes (DNICs) within cells. Additionally, the association of GSTP1 with inducible nitric oxide synthase (iNOS) results in its inhibition. The function of NO in vasodilation together with studies associating GSTM1 or GSTT1 null genotypes with preeclampsia, additionally suggests an intriguing connection between NO and GSTs. Furthermore, suppression of c-Jun N-terminal kinase (JNK) activity occurs upon increased levels of GSTP1 or NO that decreases transcription of JNK target genes such as c-Jun and c-Fos, which inhibit apoptosis. This latter effect is mediated by the direct association of GSTs with MAPK proteins. GSTP1 can also inhibit nuclear factor kappa B (NF-κB) signaling through its interactions with IKKβ and Iκα, resulting in decreased iNOS expression and the stimulation of apoptosis. It can be suggested that the inhibitory activity of GSTP1 within the JNK and NF-κB pathways may be involved in crosstalk between survival and apoptosis pathways and modulating NO-mediated ROS generation. These studies highlight an innovative role of GSTs in NO metabolism through their interaction with multiple effector proteins, with GSTP1 functioning as a "good Samaritan" within each pathway to promote favorable cellular conditions and NO levels.
Collapse
Affiliation(s)
- Tiffany M Russell
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia.
| |
Collapse
|
10
|
Canagliflozin Attenuates Lipotoxicity in Cardiomyocytes by Inhibiting Inflammation and Ferroptosis through Activating AMPK Pathway. Int J Mol Sci 2023; 24:ijms24010858. [PMID: 36614295 PMCID: PMC9821072 DOI: 10.3390/ijms24010858] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a myocardial disease independent of other cardiovascular diseases, such as coronary heart disease, hypertension, etc. Lipotoxicity is closely related to DCM. In this study, we investigated the mechanism of lipid metabolism disturbance in DCM in HL-1 cells. Through bioinformatics and Western blotting analysis, we found that canagliflozin (CAN) significantly inhibited the expression of inflammatory factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Ferroptosis is mediated by lipid peroxidation. We demonstrated the presence of ferroptosis in cardiomyocytes by detecting intracellular Fe2+ content and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH), and mitochondrial membrane potential (MMP). CAN could significantly regulate the indicators of ferroptosis. By using specific inhibitors celecoxib (coxib), S-methylisothiourea sulfate (SMT), Ferrostatin-1 (Fer-1), and Compound C, we further found that CAN regulated inflammation and ferroptosis through AMP-activated protein (AMPK), and inflammation interacted with ferroptosis. Our study indicated that CAN attenuated lipotoxicity in cardiomyocytes by regulating inflammation and ferroptosis through activating the AMPK pathway. This study provides a new direction of myocardial lipotoxicity and some new information for the treatment of DCM.
Collapse
|
11
|
Kenaston MW, Pham OH, Petit MJ, Shah PS. Transcriptomic profiling implicates PAF1 in both active and repressive immune regulatory networks. BMC Genomics 2022; 23:787. [PMID: 36451099 PMCID: PMC9713194 DOI: 10.1186/s12864-022-09013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sitting at the interface of gene expression and host-pathogen interaction, polymerase associated factor 1 complex (PAF1C) is a rising player in the innate immune response. The complex localizes to the nucleus and associates with chromatin to modulate RNA polymerase II (RNAPII) elongation of gene transcripts. Performing this function at both proximal and distal regulatory elements, PAF1C interacts with many host factors across such sites, along with several microbial proteins during infection. Therefore, translating the ubiquity of PAF1C into specific impacts on immune gene expression remains especially relevant. RESULTS Advancing past work, we treat PAF1 knockout cells with a slate of immune stimuli to identify key trends in PAF1-dependent gene expression with broad analytical depth. From our transcriptomic data, we confirm PAF1 is an activator of traditional immune response pathways as well as other cellular pathways correlated with pathogen defense. With this model, we employ computational approaches to refine how PAF1 may contribute to both gene activation and suppression. Specifically focusing on transcriptional motifs and regulons, we predict gene regulatory elements strongly associated with PAF1, including those implicated in an immune response. Overall, our results suggest PAF1 is involved in innate immunity at several distinct axes of regulation. CONCLUSIONS By identifying PAF1-dependent gene expression across several pathogenic contexts, we confirm PAF1C to be a key mediator of innate immunity. Combining these transcriptomic profiles with potential regulatory networks corroborates the previously identified functions of PAF1C. With this, we foster new avenues for its study as a regulator of innate immunity, and our results will serve as a basis for targeted study of PAF1C in future validation studies.
Collapse
Affiliation(s)
- Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Oanh H. Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,grid.301713.70000 0004 0393 3981MRC-University of Glasgow, Centre for Virus Research, G61 1HQ, Glasgow, UK
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,Department of Chemical Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
12
|
Yan H, Hu Y, Akk A, Wickline SA, Pan H, Pham CTN. Peptide-siRNA nanoparticles targeting NF-κB p50 mitigate experimental abdominal aortic aneurysm progression and rupture. BIOMATERIALS ADVANCES 2022; 139:213009. [PMID: 35891603 PMCID: PMC9378586 DOI: 10.1016/j.bioadv.2022.213009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 06/12/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a progressive vascular condition associated with high risk of mortality if left untreated. AAA is an inflammatory process with excessive local production of extracellular matrix degrading enzymes, leading to dilatation and rupture of the abdominal aorta. We posit that targeting NF-κB, a signaling pathway that controls inflammation, will halt AAA progression and prevent rupture. In an elastase-induced AAA model we observed that NF-κB activation increased progressively post-elastase perfusion. Unexpectedly, we found that AAA progression was marked by predominant nuclear accumulation of the NF-κB p50 subunit at the exclusion of p65. Using the amphipathic peptide p5RHH to form nanocomplexes with siRNA, we sought to mitigate AAA progression by knocking down the expression of different NF-κB subunits. We found that the administration of NF-κB p65 siRNA was only beneficial when given early (day 3 post-elastase perfusion) while p50 siRNA was still effective in mitigating elastase-induced AAA even when delivery was delayed until day 5. Additionally, systemic delivery of p50 siRNA, but not p65 siRNA decreased the risk of aortic rupture and sudden death in the transforming growth factor-beta blockade model of AAA. In both murine models, knockdown of NF-κB was accompanied by a significant decrease in leukocyte infiltrates, inflammatory cytokine release, inducible nitric oxide synthase expression, and cell apoptosis. These results suggest that the NF-κB p50 and p65 subunits contribute differentially at different stages of disease and the timing of in vivo siRNA delivery was of critical importance. The results also provide a rationale for selective targeting of p50 for more specific therapeutic intervention in the medical treatment of small AAA.
Collapse
Affiliation(s)
- Huimin Yan
- The John Cochran VA Medical Center, Saint Louis, MO, United States of America; The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Ying Hu
- The John Cochran VA Medical Center, Saint Louis, MO, United States of America; The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Antonina Akk
- The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Samuel A Wickline
- University of South Florida Health Heart Institute, Morsani College of Medicine, Tampa, FL, United States of America
| | - Hua Pan
- The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Christine T N Pham
- The John Cochran VA Medical Center, Saint Louis, MO, United States of America; The Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States of America.
| |
Collapse
|
13
|
Zhan X, He Q, Sheng J, Jiang X, Lin L, Huang Y, He S, Chen Y, Li L, Zeng Z, Hu S, Wang P, Zhang Y. USP12 positively regulates M-MDSC function to inhibit anti-tumor immunity through deubiquitinating and stabilizing p65. Immunol Suppl 2022; 167:544-557. [PMID: 35898171 DOI: 10.1111/imm.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
The relative abundance of myeloid-derived suppressor cells (MDSCs) compared to cytotoxic T cells determines the outcomes of diseases and the efficacy of immunotherapy. Ubiquitin-specific peptidase 12 (USP12), a member of the USP family of deubiquitinases (DUBs), targets multiple signaling pathways and regulates diverse biological processes, including cell proliferation and survival. It is well known that ubiquitylation is an important mechanism for regulating the immune response. However, it is unclear whether USP12 regulates tumor growth by influencing MDSCs. In the present study, we reported that USP12 deficiency decreased infiltration and impaired the suppressor function of monocytic (M)-MDSCs, resulting in increased CD8+ T cell response and decelerated tumor growth. USP12-knockout M-MDSCs were less potent in inhibiting the proliferation of CD8+ T cells and their ability to secrete IFN-γ. Furthermore, USP12 deficiency inhibited the suppressor function of M-MDSCs by downregulating the negative regulatory molecules iNOS and PD-L1, through deubiquitinating and stabilizing p65. Our results suggest that USP12 is a positive regulator of M-MDSCs and may serve as a potential target for antitumor therapy.
Collapse
Affiliation(s)
- Xiaoxia Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qiuying He
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junli Sheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaobing Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Letao Lin
- Minimally Invasive Interventional Division, Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yulan Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shitong He
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yitian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Laisheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhijie Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengfeng Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanling Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Johnson AO, Fowler SB, Webster CI, Brown AJ, James DC. Bioinformatic Design of Dendritic Cell-Specific Synthetic Promoters. ACS Synth Biol 2022; 11:1613-1626. [PMID: 35389220 PMCID: PMC9016764 DOI: 10.1021/acssynbio.2c00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Next-generation DNA vectors for cancer
immunotherapies and vaccine
development require promoters eliciting predefined transcriptional
activities specific to target cell types, such as dendritic cells
(DCs), which underpin immune response. In this study, we describe
the de novo design of DC-specific synthetic promoters via in silico assembly of cis-transcription
factor response elements (TFREs) that harness the DC transcriptional
landscape. Using computational genome mining approaches, candidate
TFREs were identified within promoter sequences of highly expressed
DC-specific genes or those exhibiting an upregulated expression during
DC maturation. Individual TFREs were then screened in vitro in a target DC line and off-target cell lines derived from skeletal
muscle, fibroblast, epithelial, and endothelial cells using homotypic
(TFRE repeats in series) reporter constructs. Based on these data,
a library of heterotypic promoter assemblies varying in the TFRE composition,
copy number, and sequential arrangement was constructed and tested in vitro to identify DC-specific promoters. Analysis of
the transcriptional activity and specificity of these promoters unraveled
underlying design rules, primarily TFRE composition, which govern
the DC-specific synthetic promoter activity. Using these design rules,
a second library of exclusively DC-specific promoters exhibiting varied
transcriptional activities was generated. All DC-specific synthetic
promoter assemblies exhibited >5-fold activity in the target DC
line
relative to off-target cell lines, with transcriptional activities
ranging from 8 to 67% of the nonspecific human cytomegalovirus (hCMV-IE1)
promoter. We show that bioinformatic analysis of a mammalian cell
transcriptional landscape is an effective strategy for de
novo design of cell-type-specific synthetic promoters with
precisely controllable transcriptional activities.
Collapse
Affiliation(s)
- Abayomi O. Johnson
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
- SynGenSys Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K
| | - Susan B. Fowler
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Carl I. Webster
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Adam J. Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
- SynGenSys Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K
| | - David C. James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
- SynGenSys Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K
| |
Collapse
|
15
|
Mikhailov VF, Saleeva DV, Rozhdestvensky LM, Shulenina LV, Raeva NF, Zasukhina GD. Activity of Genes and Noncoding RNAs as an Approach to Determination of Early Biomarkers of Radiation-Induced Cancer in Mice. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Li XX, Chen SG, Yue GGL, Kwok HF, Lee JKM, Zheng T, Shaw PC, Simmonds MSJ, Lau CBS. Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153625. [PMID: 34256329 DOI: 10.1016/j.phymed.2021.153625] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ulcerative colitis is a subtype of inflammatory bowel disease, characterized by relapsing inflammation in the gastrointestinal tract with limited treatment options. Previous studies suggested that the natural compound tricin, a flavone isolated from rice bran, could suppress chemically-induced colitis in mice, while our recent study also demonstrated the anti-metastatic effect of tricin in colon tumor-bearing mice. HYPOTHESIS/PURPOSE Here we further investigated the underlying mechanism of the inhibitory effects of tricin on lipopolysaccharides-activated macrophage RAW264.7 cells and explored the efficacy of tricin in acute colitis mouse model induced by 4.5% dextran sulfate sodium (DSS) for 7 days. METHODS Tricin (75, 100, and 150 mg/kg) or the positive control drug sulfasalazine (200 mg/kg) were orally administered to mice for 7 days. Stool consistency scores, stool blood scores, and body weight were recorded daily. Disease activity index (DAI) was examined on day 7, and colon tissues were collected for biochemical analyses. The fecal microbiome of colitis mice after tricin treatment was characterized for the first time in this study using 16S rDNA amplicon sequencing. RESULTS Results showed that tricin (50 µM) remarkably reduced nitric oxide production in lipopolysaccharides-activated RAW264.7 cells and the anti-inflammatory activity of tricin was shown to act through the NF-κB pathway. Besides, tricin treatment at 150 mg/kg significantly reversed colon length reduction, reduced myeloperoxidase activities and DAI scores, as well as restored the elevated myeloid-derived suppressive cells population in acute colitis mice. The influence from DSS on gut microbiota, such as the increased population of Proteobacteria phylum and Ruminococcaceae family, was shown to be relieved after tricin treatment. CONCLUSION Our present study firstly demonstrated that tricin ameliorated acute colitis by improving colonic inflammation and modulating gut microbiota profile, which supports the potential therapeutic use of tricin for colitis treatment.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Sin-Guang Chen
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Tao Zheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | - Clara Bik-San Lau
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
17
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
18
|
Withaferin A inhibits lymphocyte proliferation, dendritic cell maturation in vitro and prolongs islet allograft survival. Sci Rep 2021; 11:10661. [PMID: 34021233 PMCID: PMC8140140 DOI: 10.1038/s41598-021-90181-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/28/2021] [Indexed: 01/11/2023] Open
Abstract
The immunosuppressive regimen for clinical allogeneic islet transplantation uses beta cell–toxic compounds such as tacrolimus that cause islet graft loss. Previously we reported that the plant-derived steroidal lactone Withaferin A (WA) can protect islet grafts by inhibiting nuclear factor-kappa B (NF-κB). Since the NF-κB signaling pathway is essential for T-cell activation, we hypothesized that long-term WA administration may also provide an immunosuppressive effect. Treatment of BALB/c donor islets and C57BL/6N recipients with WA alone resulted in 80% islet graft long-term survival vs. 40% in low-dose FK506-treated mice. In vitro, WA significantly blocked mouse and human T-cell proliferation by CD3/CD28 bead stimulation and in mixed lymphocyte reaction assay. Treatment of immature dendritic cells with WA prevented their maturation in response to inflammatory stimuli, as seen by decreased expression of CD83 and human leukocyte antigen–DR isotype. Exosomes released by islets treated with WA contained significantly fewer proinflammatory molecules interleukin-6, interleukin-8, monocyte chemoattractant protein-1, interferon-gamma-induced protein-10, inducible nitric oxide synthase, and cyclooxygenase-2. In conclusion, WA treatment not only reduced inflammation but also prolonged allograft survival, possibly through suppression of dendritic cell maturation and T-cell proliferation. WA has the potential to inhibit both the innate and adaptive immune response to prolong allograft survival.
Collapse
|
19
|
Veluthakal R, Oh E, Ahn M, Chatterjee Bhowmick D, Thurmond DC. Syntaxin 4 Mediates NF-κB Signaling and Chemokine Ligand Expression via Specific Interaction With IκBβ. Diabetes 2021; 70:889-902. [PMID: 33526588 PMCID: PMC7980198 DOI: 10.2337/db20-0868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Enrichment of human islets with syntaxin 4 (STX4) improves functional β-cell mass through a nuclear factor-κB (NF-κB)-dependent mechanism. However, the detailed mechanisms underlying the protective effect of STX4 are unknown. For determination of the signaling events linking STX4 enrichment and downregulation of NF-κB activity, STX4 was overexpressed in human islets, EndoC-βH1 and INS-1 832/13 cells in culture, and the cells were challenged with the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ individually and in combination. STX4 expression suppressed cytokine-induced proteasomal degradation of IκBβ but not IκBα. Inhibition of IKKβ prevented IκBβ degradation, suggesting that IKKβ phosphorylates IκBβ. Moreover, the IKKβ inhibitor, as well as a proteosomal degradation inhibitor, prevented the loss of STX4 caused by cytokines. This suggests that STX4 may be phosphorylated by IKKβ in response to cytokines, targeting STX4 for proteosomal degradation. Expression of a stabilized form of STX4 further protected IκBβ from proteasomal degradation, and like wild-type STX4, stabilized STX4 coimmunoprecipitated with IκBβ and the p50-NF-κB. This work proposes a novel pathway wherein STX4 regulates cytokine-induced NF-κB signaling in β-cells via associating with and preventing IκBβ degradation, suppressing chemokine expression, and protecting islet β-cells from cytokine-mediated dysfunction and demise.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Diti Chatterjee Bhowmick
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| |
Collapse
|
20
|
Bi W, Cheng X, Zeng Z, Zhou R, Luo R, Zhang J, Zhu L. Rifampicin ameliorates lipopolysaccharide-induced cognitive and motor impairments via inhibition of the TLR4/MyD88/NF-κB signaling pathway in mice. Neurol Res 2021; 43:358-371. [PMID: 33749522 DOI: 10.1080/01616412.2020.1866353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Aberrant microglial responses promote neuroinflammation in neurodegenerative diseases. However, rifampicin's effect on cognitive and motor sequelae of inflammation remains unknown. Therefore, we investigated whether rifampicin exerts neuroprotection against lipopolysaccharide (LPS)-induced cognitive and motor impairments. METHODS A mouse model of LPS-induced cognitive and motor impairment was established. Adult C57BL/6 mice were injected intraperitoneally with 25 mg/kg rifampicin 30 min before intraperitoneal microinjection of LPS (750 μg/kg) daily until study end. Treatments and behavioral experiments were performed once daily for 7 days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced damage to the hippocampus and substantia nigra (SN). RESULTS Rifampicin attenuated LPS-induced cognitive and motor impairments, based on performance in the behavioral tests. Rifampicin suppressed the release of pro-inflammatory mediators, including tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 in the serum and nitric oxide (NO) in brain tissue, and cyclooxygenase-2 and inducible nitric oxide synthase levels. Immunofluorescence revealed that rifampicin inhibited LPS-induced microglial activation in the hippocampus and SN, thus protecting the neurons. Rifampicin inhibited the activation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway. Rifampicin downregulated TLR4 and MyD88 protein levels and inhibited NF-κB inhibitor alpha and NF-κB inhibitor kinase beta phosphorylation, thus reducing p65 nuclear transfer by inhibiting NF-κB signaling activation in LPS-treated mice. CONCLUSION Rifampicin protects against LPS-induced neuroinflammation and attenuates cognitive and motor impairments by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Our findings might aid the development of novel therapies to treat progressive neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou PR China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaofeng Cheng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou PR China
| | - Zhaohao Zeng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou PR China
| | - Ruiyi Zhou
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou PR China
| | - Rixin Luo
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou PR China
| | - Jiawei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, PR China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, PR China
| |
Collapse
|
21
|
Effect of irradiation on the expression of E-cadherin and β-catenin in early and late radiation sequelae of the urinary bladder and its modulation by NF-κB inhibitor thalidomide. Strahlenther Onkol 2021; 197:537-546. [PMID: 33688971 PMCID: PMC8154806 DOI: 10.1007/s00066-021-01751-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Purpose In a previous study we have shown in a mouse model that administration of nuclear factor-kappa B (NF-κB) inhibitor thalidomide has promising therapeutic effects on early radiation cystitis (ERC) and late radiation sequelae (LRS) of the urinary bladder. The aim of this study was to evaluate in the same mice the effect of thalidomide on adherens junction (AJ) proteins in ERC and LRS. Methods Urothelial expressions of E‑cadherin and β‑catenin were assessed by immunohistochemistry in formalin-fixed paraffin-embedded (FFPE) bladder specimens over 360 days post single-dose irradiation on day 0. First, the effect of irradiation on AJ expression and then effects of thalidomide on irradiation-induced AJ alterations were assessed using three different treatment times. Results Irradiation provoked a biphasic upregulation of E‑cadherin and β‑catenin in the early phase. After a mild decrease of E‑cadherin and a pronounced decrease of β‑catenin at the end of the early phase, both increased again in the late phase. Early administration of thalidomide (day 1–15) resulted in a steeper rise in the first days, an extended and increased expression at the end of the early phase and a higher expression of β‑catenin alone at the beginning of the late phase. Conclusion Upregulation of AJ proteins is an attempt to compensate irradiation-induced impairment of urothelial barrier function. Early administration of thalidomide improves these compensatory mechanisms by inhibiting NF-κB signaling and its interfering effects.
Collapse
|
22
|
Kumar M, Dhaka N, Raza T, Dadhwal P, Atreya HS, Mukherjee SP. Domain Stability Regulated through the Dimer Interface Controls the Formation Kinetics of a Specific NF-κB Dimer. Biochemistry 2021; 60:513-523. [PMID: 33555182 DOI: 10.1021/acs.biochem.0c00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The NF-κB family of transcription factors is a key regulator of the immune response in the vertebrates. The family comprises five proteins that function as dimers formed in various combinations among the members, with the RelA-p50 dimer being physiologically the most abundant. While most of the 15 possible dimers are scarcely present in the cell with some remaining experimentally undetected to date, there are specific gene sets that are only activated by certain sparsely populated NF-κB dimers. The mechanism of transcription activation of such specific genes that are activated only by specific NF-κB dimers remains unclear. Here we show that the dimer interfacial residues control the stabilization of the global hydrogen bond network of the NF-κB dimerization domain, which, in turn, controls the thermodynamic stabilization of different NF-κB dimers. The relatively low thermodynamic stability of the RelA-RelA homodimer is critical as it facilitates the formation of the more stable RelA-p50 heterodimer. Through the modulation of the thermodynamic stability of the RelA-RelA homodimer, the kinetics of the RelA-p50 heterodimer formation can be regulated. This phenomenon provides an insight into the mechanism of RelA-RelA specific target gene regulation in physiology.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Nitin Dhaka
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tahseen Raza
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prikshat Dadhwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sulakshana P Mukherjee
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
23
|
Wu D, Jin J, Qiu Z, Liu D, Luo H. Functional Analysis of O-GlcNAcylation in Cancer Metastasis. Front Oncol 2020; 10:585288. [PMID: 33194731 PMCID: PMC7653022 DOI: 10.3389/fonc.2020.585288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
One common and reversible type of post-translational modification (PTM) is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), and its dynamic balance is controlled by O-GlcNAc transferase (OGT) and glycoside hydrolase O-GlcNAcase (OGA) through the addition or removal of O-GlcNAc groups. A large amount of research data confirms that proteins regulated by O-GlcNAcylation play a pivotal role in cells. In particularly, imbalanced levels of OGT and O-GlcNAcylation have been found in various types of cancers. Recently, increasing evidence shows that imbalanced O-GlcNAcylation directly or indirectly impacts the process of cancer metastasis. This review summarizes the current understanding of the influence of O-GlcNAc-proteins on the regulation of cancer metastasis. It will provide a theoretical basis to further elucidate of the molecular mechanisms underlying cancer emergence and progression.
Collapse
Affiliation(s)
- Donglu Wu
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingji Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
24
|
NF-κB and pSTAT3 synergistically drive G6PD overexpression and facilitate sensitivity to G6PD inhibition in ccRCC. Cancer Cell Int 2020; 20:483. [PMID: 33041664 PMCID: PMC7541270 DOI: 10.1186/s12935-020-01576-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Background Glucose 6-phosphate dehydrogenase (G6PD) serves key roles in cancer cell metabolic reprogramming, and has been reported to be involved in certain carcinogenesis. Previous results from our laboratory demonstrated that overexpressed G6PD was a potential prognostic biomarker in clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer. G6PD could stimulate ccRCC growth and invasion through facilitating reactive oxygen species (ROS)-phosphorylated signal transducer and activator of transcription 3 (pSTAT3) activation and ROS-MAPK-MMP2 axis pathway, respectively. However, the reasons for ectopic G6PD overexpression and the proliferation repressive effect of G6PD inhibition in ccRCC are still unclear. Methods The impact of ROS accumulation on NF-κB signaling pathway and G6PD expression was determined by real-time RT-PCR and Western blot in ccRCC cells following treatment with ROS stimulator or scavenger. The regulatory function of NF-κB signaling pathway in G6PD transcription was analyzed by real-time RT-PCR, Western blot, luciferase and ChIP assay in ccRCC cells following treatment with NF-κB signaling activator/inhibitor or lentivirus infection. ChIP and Co-IP assay was performed to demonstrate protein-DNA and protein-protein interaction of NF-κB and pSTAT3, respectively. MTS assay, human tissue detection and xenograft model were conducted to characterize the association between NF-κB, pSTAT3, G6PD expression level and proliferation functions. Results ROS-stimulated NF-κB and pSTAT3 signaling over-activation could activate each other, and exhibit cross-talks in G6PD aberrant transcriptional regulation. The underlying mechanism was that NF-κB signaling pathway facilitated G6PD transcription via direct DNA-protein interaction with p65 instead of p50. p65 and pSTAT3 formed a p65/pSTAT3 complex, occupied the pSTAT3-binding site on G6PD promoter, and contributed to ccRCC proliferation following facilitated G6PD overexpression. G6PD, pSTAT3, and p65 were highly expressed and positively correlated with each other in ccRCC tissues, confirming that NF-κB and pSTAT3 synergistically promote G6PD overexpression. Moreover, G6PD inhibitor exhibited tumor-suppressor activities in ccRCC and attenuated the growth of ccRCC cells both in vitro and in vivo. Conclusion ROS-stimulated aberrations of NF-κB and pSTAT3 signaling pathway synergistically drive G6PD transcription through forming a p65/pSTAT3 complex. Moreover, G6PD activity inhibition may be a promising therapeutic strategy for ccRCC treatment.
Collapse
|
25
|
Stachon T, Latta L, Seitz B, Szentmáry N. Hypoxic stress increases NF-κB and iNOS mRNA expression in normal, but not in keratoconus corneal fibroblasts. Graefes Arch Clin Exp Ophthalmol 2020; 259:449-458. [PMID: 32886165 PMCID: PMC7843574 DOI: 10.1007/s00417-020-04900-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/30/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background Keratoconus (KC) is associated with oxidative stress and hypoxia and as several times discussed, potentially with inflammatory components. Inflammation, hypoxia, and oxidative stress may result in metabolic dysfunction and are directly linked to each other. In the current study, we investigate the effect of hypoxia through NF-κB signaling pathways on iNOS, hypoxia-induced factors (HIF), ROS, and proliferation of normal and KC human corneal fibroblasts (HCFs), in vitro. Methods Primary human KC-HCFs and normal HCFs were isolated and cultured in DMEM/Ham’s F12 medium supplemented with 5% fetal calf serum. Hypoxic conditions were generated and quantitative PCR and Western blot analysis were performed to examine NF-κB, iNOS, HIF, and PHD2 expression in KC and normal HCFs. ROS level was analyzed using flow cytometry and proliferation by BrdU-ELISA. Results Hypoxia increased NF-κB mRNA and protein expression in normal HCFs, but in KC-HCFs NF-κB mRNA and protein expression remained unchanged. Hypoxic conditions upregulated iNOS mRNA expression of normal HCFs, but iNOS mRNA expression of KC-HCFs and iNOS protein expression of both HCF types remained unchanged. Hypoxia downregulated HIF-1α and HIF-2α mRNA expression in normal and KC-HCFs. PHD2 mRNA expression is upregulated under hypoxia in KC-HCFs, but not in normal HCFs. PHD2 protein expression was upregulated by hypoxia in both HCF types. Total ROS concentration is downregulated in normal and KC-HCFs under hypoxic conditions. Proliferation rate of KC-HCFs was upregulated through hypoxia, but did not change in normal HCFs. Conclusions Hypoxia increases NF-κB and iNOS mRNA expression in normal HCFs, but there does not seem to be enough capacity in KC-HCFs to increase NF-κB and iNOS mRNA expression under hypoxia, maybe due to the preexisting oxidative stress. HIF and PHD2 do not show altered iNOS regulation under hypoxic conditions in KC-HCFs, and therefore do not seem to play a role in keratoconus pathogenesis. An increased proliferation of cells may refer to compensatory mechanisms under hypoxia in KC. Understanding the mechanism of the altered regulation of NF-κB and iNOS in KC-HCFs will provide better insight into the potential inflammatory component of the KC pathogenesis.![]()
Collapse
Affiliation(s)
- Tanja Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany. .,Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.
| | - Lorenz Latta
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Zhao J, Bi W, Zhang J, Xiao S, Zhou R, Tsang CK, Lu D, Zhu L. USP8 protects against lipopolysaccharide-induced cognitive and motor deficits by modulating microglia phenotypes through TLR4/MyD88/NF-κB signaling pathway in mice. Brain Behav Immun 2020; 88:582-596. [PMID: 32335193 DOI: 10.1016/j.bbi.2020.04.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-specific protease 8 (USP8) regulates inflammation in vitro; however, the mechanisms by which USP8 inhibits neuroinflammation and its pathophysiological functions are not completely understood. In this study, we aimed to determine whether USP8 exerts neuroprotective effects in a mouse model of lipopolysaccharide (LPS)-induced cognitive and motor impairment. We commenced intracerebroventricular USP8 administration 7 days prior to i.p. injection of LPS (750 μg/kg). All treatments and behavioral experiments were performed once per day for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. USP8 attenuated LPS-induced cognitive and motor impairments in mice. Moreover, USP8 downregulated several pro-inflammatory cytokines [nitric oxide (NO), tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), and interleukin-1β (IL-1β)] in the serum and brain, and the relevant protein factors [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)] in the brain. Furthermore, USP8 upregulated the anti-inflammatory mediators interleukin (IL)-4 and IL-10 in the serum and brain, and promoted a shift from pro-inflammatory to anti-inflammatory microglial phenotypes. The LPS-induced microglial pro-inflammatory phenotype was abolished by TLR4 inhibitor and in TLR4-/- mice; these effects were similar to those of USP8 treatment. Mechanistically, we found that USP8 increased the expression of neuregulin receptor degradation protein-1 (Nrdp1), potently downregulated the expression of TLR4 and myeloid differentiation primary response protein 88 (MyD88) protein, and inhibited the phosphorylation of IκB kinase (IKK) β and kappa B-alpha (IκBα), thereby reducing nuclear translocation of p65 by inhibiting the activation of the nuclear factor-kappaB (NF-κB) signaling pathway in LPS-induced mice. Our results demonstrated that USP8 exerts protective effects against LPS-induced cognitive and motor deficits in mice by modulating microglial phenotypes via TLR4/MyD88/NF-κB signaling.
Collapse
Affiliation(s)
- JiaYi Zhao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - JiaWei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Shu Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - RuiYi Zhou
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - Chi Kwan Tsang
- Clinical Neuoscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province 510630, China
| | - DaXiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China.
| |
Collapse
|
27
|
Choi JH, Moon CM, Shin TS, Kim EK, McDowell A, Jo MK, Joo YH, Kim SE, Jung HK, Shim KN, Jung SA, Kim YK. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Exp Mol Med 2020; 52:423-437. [PMID: 32123288 PMCID: PMC7156483 DOI: 10.1038/s12276-019-0359-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022] Open
Abstract
Lactobacillus paracasei is a major probiotic and is well known for its anti-inflammatory properties. Thus, we investigated the effects of L. paracasei-derived extracellular vesicles (LpEVs) on LPS-induced inflammation in HT29 human colorectal cancer cells and dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice. ER stress inhibitors (salubrinal or 4-PBA) or CHOP siRNA were utilized to investigate the relationship between LpEV-induced endoplasmic reticulum (ER) stress and the inhibitory effect of LpEVs against LPS-induced inflammation. DSS (2%) was administered to male C57BL/6 mice to induce inflammatory bowel disease, and disease activity was measured by determining colon length, disease activity index, and survival ratio. In in vitro experiments, LpEVs reduced the expression of the LPS-induced pro-inflammatory cytokines IL-1α, IL-1β, IL-2, and TNFα and increased the expression of the anti-inflammatory cytokines IL-10 and TGFβ. LpEVs reduced LPS-induced inflammation in HT29 cells and decreased the activation of inflammation-associated proteins, such as COX-2, iNOS and NFκB, as well as nitric oxide. In in vivo mouse experiments, the oral administration of LpEVs also protected against DSS-induced colitis by reducing weight loss, maintaining colon length, and decreasing the disease activity index (DAI). In addition, LpEVs induced the expression of endoplasmic reticulum (ER) stress-associated proteins, while the inhibition of these proteins blocked the anti-inflammatory effects of LpEVs in LPS-treated HT29 cells, restoring the pro-inflammatory effects of LPS. This study found that LpEVs attenuate LPS-induced inflammation in the intestine through ER stress activation. Our results suggest that LpEVs have a significant effect in maintaining colorectal homeostasis in inflammation-mediated pathogenesis. Tiny vesicles released by a bacterial species found in the human gut can reduce symptoms of inflammatory bowel disease (IBD) and prevent disease progression. People with IBD have a decreased abundance of Lactobacilli bacteria in their gut, creating an imbalance that perpetuates the disease. Replenishment of this bacteria may become a valuable therapy. Chang Mo Moon at Ewha Womans University, Yoon-Keun Kim at MD Healthcare, both in Seoul, South Korea, and co-workers demonstrated how extracellular vesicles (EVs) released by Lactobacilli paracasei can actively prevent bowel inflammation. These EVs contain a mixture of proteins, nucleic acids and other biomolecules. The team administered EV to cultured human colorectal cancer cells and to mice with induced colitis. The EVs decreased pro-inflammatory protein activity and boosted levels of protective cellular membrane proteins via augmenting ER stress pathway.
Collapse
Affiliation(s)
- Ji Hyun Choi
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Chang Mo Moon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea. .,Tissue Injury Defense Research Center, Ewha Womans University, Seoul, Republic of Korea.
| | | | | | | | - Min-Kyung Jo
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yang Hee Joo
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye-Kyung Jung
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ki-Nam Shim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | | |
Collapse
|
28
|
Kowaliuk J, Sarsarshahi S, Hlawatsch J, Kastsova A, Kowaliuk M, Krischak A, Kuess P, Duong L, Dörr W. Translational Aspects of Nuclear Factor-Kappa B and Its Modulation by Thalidomide on Early and Late Radiation Sequelae in Urinary Bladder Dysfunction. Int J Radiat Oncol Biol Phys 2020; 107:377-385. [PMID: 32035188 DOI: 10.1016/j.ijrobp.2020.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This preclinical study aimed to investigate the role of nuclear factor (NF)-κB in early and late radiogenic sequelae of urinary bladder dysfunction in mice. Thalidomide was applied either during the early or late response phase to determine potential effects of NF-κB inhibition on functional bladder impairment. METHODS AND MATERIALS After pelvic irradiation on day 0, female C3H/Neu mice were observed over a period of 360 days and radiation response was evaluated for alterations in bladder functionality and NF-κB activation. Functionality was determined in graded dose experiments (14-24 Gy) and assessed by micturition frequency analysis and transurethral cystotonometry to reveal alterations in voiding and volume. The induction of the NF-κB proteins p50 and p65 was evaluated by immunohistochemistry in response to a single dose of 23 Gy (ED90). Thalidomide (100 mg/kg/d) was applied intraperitoneally in 3 treatment groups: daily from day 1 to 15, daily from day 16 to 30, and in 2-day-intervals from day 150 to 180. RESULTS Immunohistochemical analysis showed a biphasic activation of p50 and p65 during the early radiation cystitis phase (day 1-30). After a transient decrease, p50, but not p65, was reactivated permanently leading to increased levels, which suggests an occurrence of chronic inflammation correlated with functional impairment. Both early thalidomide treatments reduced NF-κB activation and shifted the ED50 value for early radiation cystitis and late radiation sequelae to higher doses. CONCLUSIONS These data clearly demonstrate the involvement of NF-κB signaling in the pathogenesis of radiation-induced urinary bladder dysfunction. Additionally, this study emphasizes that biological targeting of early radiogenic processes has enormous effect on chronic symptoms. The late administration of thalidomide showed no significant effect on functionality.
Collapse
Affiliation(s)
- Jakob Kowaliuk
- ATRAB-Applied and Translational Radiobiology, Medical University of Vienna, Vienna, Austria.
| | - Sina Sarsarshahi
- ATRAB-Applied and Translational Radiobiology, Medical University of Vienna, Vienna, Austria; Department of Molecular Medicine, Iran University of Medical Science, Tehran, Iran
| | - Johanna Hlawatsch
- ATRAB-Applied and Translational Radiobiology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kastsova
- ATRAB-Applied and Translational Radiobiology, Medical University of Vienna, Vienna, Austria
| | - Maria Kowaliuk
- ATRAB-Applied and Translational Radiobiology, Medical University of Vienna, Vienna, Austria
| | - Alexander Krischak
- ATRAB-Applied and Translational Radiobiology, Medical University of Vienna, Vienna, Austria; Platform Radiooncology and Nuclear Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine of Vienna, Vienna, Austria
| | - Peter Kuess
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Lisa Duong
- ATRAB-Applied and Translational Radiobiology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Dörr
- ATRAB-Applied and Translational Radiobiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Aguilar EC, Navia-Pelaez JM, Fernandes-Braga W, Soares FLP, Dos Santos LC, Leonel AJ, Capettini LDSA, de Oliveira RP, de Faria AMC, Lemos VS, Alvarez-Leite JI. Gluten exacerbates atherosclerotic plaque formation in ApoE -/- mice with diet-induced obesity. Nutrition 2019; 75-76:110658. [PMID: 32305657 DOI: 10.1016/j.nut.2019.110658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Atherosclerosis is an underlying cause of cardiovascular disease, and obesity is one of the risk factors for atherogenesis. Although a gluten-free diet (GFD) has gained popularity as a strategy for weight loss, little is known about the effects of gluten on obesity. We have previously shown a negative effect of gluten on obesity in mice. However, its effects on atherogenesis are still unknown. Therefore, the aim of this study was to determine the effects of gluten on atherosclerosis progression during obesity. METHODS Atherosclerosis-susceptible ApoE knockout mice were subjected to an obesogenic GFD or a diet with 4.5% gluten (GD) for 10 wk. RESULTS Results from the study found that food intake and lipid profile were similar between the groups. However, GD promoted an increase in weight gain, adiposity, and plasma glucose. Pro-inflammatory factors such as tumor necrosis factor, interleukin-6, chemokine ligand-2, and matrix metalloproteinase-2 and -9 also were increased in the adipose tissue of gluten-fed mice. This inflammatory profile was associated with reduced phosphorylation of Akt, and consequently with the intensification of insulin resistance. The GD-enhanced vascular inflammation contributed to the worsening of atherosclerosis in the aorta and aortic root. Inflammatory cells, such as monocyte/macrophage and natural killer cells, and oxidative stress markers, such as superoxide and nitrotyrosine, were increased in atherosclerotic lesions of the GD group. Furthermore, the lesions presented higher necrotic core and lower collagen content, characterizing the less stable plaques. CONCLUSION The gluten-containing high-fat diet was associated with a more severe proatherogenic profile than the gluten-free high-fat diet owing to increased inflammatory and oxidative status at atherosclerotic lesions in obese mice.
Collapse
Affiliation(s)
- Edenil Costa Aguilar
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| | | | - Weslley Fernandes-Braga
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | - Alda Jusceline Leonel
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | - Virginia Soares Lemos
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | |
Collapse
|
30
|
Brookes C, Ribbans WJ, El Khoury LY, Raleigh SM. Variability within the human iNOS gene and Achilles tendon injuries: Evidence for a heterozygous advantage effect. J Sci Med Sport 2019; 23:342-346. [PMID: 31761559 DOI: 10.1016/j.jsams.2019.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/30/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this case control genetic association study was to explore whether two variants within the inducible nitric oxide synthase (iNOS) gene, rs2779249 (C/A) and rs2248814 (A/G), influenced the risk of Achilles tendinopathy in a British population. DESIGN Candidate gene, case control association study. METHOD We recruited 145 individuals diagnosed with Achilles tendon pathology and 132 asymptomatic controls. All participants were genotyped for the iNOS variants using qPCR and significant associations were discovered using a combination of Chi squared and ANOVA type analysis. RESULTS The CA genotype of the iNOS rs2779249 variant was protective and conformed to a heterozygous advantage model of inheritance as it was overrepresented in the control participants (p=0.009). In sex specific analysis the protective association persisted in male participants (p=0.016) but not in females. Unlike the rs2779249 variant, the rs2248814 variant was not associated with Achilles tendinopathy or Achilles tendon rupture. CONCLUSION The rs2779249 CA genotype within the human iNOS gene appears to protect individuals from Achilles tendinopathy. This study further supports a genetic contribution to modifying the risk of Achilles tendon problems. The study also infers an important role for nitric oxide in tendon healing and/or degradation.
Collapse
Affiliation(s)
| | | | - Louis Y El Khoury
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, The University of Northampton, USA
| | - Stuart M Raleigh
- Centre for Sport, Exercise and Life Sciences, Coventry University, The University of Northampton, UK.
| |
Collapse
|
31
|
Yuan X, Li Z, Kong Y, Zhong Y, He Y, Zhang A, Zhou X, Jiang Y, Zhang Z, Zhang H, Li J. P65 Targets FGFR1 to Regulate the Survival of Ovarian Granulosa Cells. Cells 2019; 8:cells8111334. [PMID: 31671754 PMCID: PMC6912588 DOI: 10.3390/cells8111334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
In female mammals, the abnormal apoptosis of ovarian granulosa cells (GCs) impairs follicular development and causes reproductive dysfunction. Many studies have indicated that the FGFR1 gene of the PI3K signaling pathway and the p65 subunit of the transcription factor NF-κB may regulate the proliferation and apoptosis of GCs involved in follicular development. However, little is known about whether p65 regulates the transcription of FGFR1, as well as the biological effects of p65 and FGFR1 on the survival of GCs and follicular development. In porcine follicles and GCs, we found that p65 and FGFR1 were exclusively expressed in the GCs of follicles, and the mRNA and protein levels of p65 and FGFR1 significantly increased from small to large follicles. Both p65 and FGFR1 were found to activate the PI3K signaling pathway, and the expressions of proliferation markers (PCNA and MKI67) and the anti-apoptotic gene BCL2 were significantly increased by p65 and FGFR1. Furthermore, both p65 and FGFR1 were observed to promote cell proliferation and inhibit the cell apoptosis of GCs, and p65 was confirmed to bind at the −348/−338 region of FGFR1 to positively regulate its transcription. Moreover, p65 was further found to enhance the pro-proliferation and anti-apoptotic effects of FGFR1. Taken together, p65 may target the −348/−338 region of FGFR1, promote the transcription of FGFR1, and enhance the pro-proliferation effect and anti-apoptotic effect of FGFR1 to facilitate the growth of follicles. This study will provide useful information for further investigations on the p65-mediated-FGFR1 signaling pathway during folliculogenesis in mammals.
Collapse
Affiliation(s)
- Xiaolong Yuan
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhonghui Li
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China.
| | - Yaru Kong
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yuyi Zhong
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yingting He
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Ailing Zhang
- College of Biology and Food Engineering/Development, Center of Applied Ecology and Ecological Engineering in Universities, Guangdong University of Education, Guangzhou 510303, China.
| | - Xiaofeng Zhou
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yao Jiang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe Zhang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Zhang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqi Li
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
32
|
miR-129-5p Regulates the Immunomodulatory Functions of Adipose-Derived Stem Cells via Targeting Stat1 Signaling. Stem Cells Int 2019; 2019:2631024. [PMID: 31772586 PMCID: PMC6854172 DOI: 10.1155/2019/2631024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have become one of the most promising stem cell populations for cell-based therapies in regenerative medicine and for autoimmune disorders owing to their multilineage differentiation and immunomodulatory capacities, respectively. One advantage of ASC-based therapy lies in their immunosuppressive potential. However, how to get ASCs to provide consistent immunosuppression remains unclear. In the current study, we found that miR-129-5p was induced in ASCs treated with inflammatory factors. ASCs with miR-129-5p knockdown exhibited enhanced immunosuppressive capacity, as evidenced by reduced expression of proinflammatory factors, with concurrent increased expression of inducible nitric oxide synthases (iNOS) and nitric oxide (NO) production. These cells also had an increased capacity to inhibit T cell proliferation in vitro. ASCs with miR-129-5p knockdown alleviated inflammatory bowel diseases and promoted tumor growth in vivo. Consistently, ASCs that overexpressed miR-129-5p exhibited reduced iNOS expression. Furthermore, we show that miR-129-5p knockdown in ASCs results in hyperphosphorylation of signal transducer and activator of transcription 1 (Stat1). When fludarabine, an inhibitor of Stat1 activation, was added to ASCs with miR-129-5p knockdown, iNOS mRNA and protein levels were significantly reduced. Collectively, these results reveal a new role for miR-129-5p in regulating the immunomodulatory activities of ASCs by targeting Stat1 activation. These novel insights into the mechanisms of ASC immunoregulation may lead to the consistent production of ASCs with strong immunosuppressive functions and thus better clinical utility of these cells.
Collapse
|
33
|
Feng J, Dong C, Long Y, Mai L, Ren M, Li L, Zhou T, Yang Z, Ma J, Yan L, Yang X, Gao G, Qi W. Elevated Kallikrein-binding protein in diabetes impairs wound healing through inducing macrophage M1 polarization. Cell Commun Signal 2019; 17:60. [PMID: 31182110 PMCID: PMC6558923 DOI: 10.1186/s12964-019-0376-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background The accumulation of M1-polarized macrophages and excessive inflammation are important in the pathogenesis of diabetic foot ulcer (DFU). However, the underlying mechanism of DFU pathogenesis and the crucial regulators of DFU are less well known. Our previous study reported that kallikrein-binding protein (KBP), an angiogenesis inhibitor, was significantly upregulated in diabetic patients compared to its levels in controls. The effects of KBP on monocyte chemotaxis and macrophage M1 polarization were elucidated in this study. Methods Plasma KBP levels and monocyte counts were assessed by ELISA and flow cytometry. Wound closure rates in different groups were monitored daily. The phenotype and recruitment of macrophages were measured by real-time PCR, western blot and immunofluorescence assays. The expression of Notch and NF-κB signalling pathway members was determined by the methods mentioned above. ChIP and dual-luciferase reporter gene assays were employed to explore the binding and transcriptional regulation of Hes1 and iNOS. Results We found that plasma KBP levels and circulating monocytes were elevated in diabetic patients compared to those in nondiabetic controls, and both were higher in diabetic patients with DFU than in diabetic patients without DFU. KBP delayed wound healing in normal mice; correspondingly, KBP-neutralizing antibody ameliorated delayed wound healing in diabetic mice. Circulating monocytes and macrophage infiltration in the wound were upregulated in KBP-TG mice compared to those in control mice. KBP promoted the recruitment and M1 polarization of macrophages. Mechanistically, KBP upregulated iNOS by activating the Notch1/RBP-Jκ/Hes1 signalling pathway. Hes1 downregulated CYLD, a negative regulator of NF-κB signalling, and then activated the IKK/IκBα/NF-κB signalling pathway. Conclusions Our findings demonstrate that KBP is the key regulator of excessive inflammation in DFUs and provide a novel target for DFU therapy. Electronic supplementary material The online version of this article (10.1186/s12964-019-0376-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Feng
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,School of stomatology and medicine, Foshan University, Foshan, 528000, China
| | - Chang Dong
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yanlan Long
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Lifang Mai
- Department of Endocrinology, the Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Meng Ren
- Department of Endocrinology, the Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Lingyi Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jianxing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Li Yan
- Department of Endocrinology, the Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510030, China.
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China.
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Weiwei Qi
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Twum DY, Colligan SH, Hoffend NC, Katsuta E, Cortes Gomez E, Hensen ML, Seshadri M, Nemeth MJ, Abrams SI. IFN regulatory factor-8 expression in macrophages governs an antimetastatic program. JCI Insight 2019; 4:e124267. [PMID: 30728331 PMCID: PMC6413790 DOI: 10.1172/jci.insight.124267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
High macrophage infiltration in cancer is associated with reduced survival in animal models and in patients. This reflects a shift in the macrophage response from a tumor-suppressive to tumor-supportive program governed by transcriptional events regulated by the inflammatory milieu. Although several transcription factors are known to drive a prometastatic program, those that govern an antimetastatic program are less understood. IFN regulatory factor-8 (IRF8) is integral for macrophage responses against infections. Using a genetic loss-of-function approach, we tested the hypothesis that IRF8 expression in macrophages governs their capacity to inhibit metastasis. We found that: (a) metastasis was significantly increased in mice with IRF8-deficient macrophages; (b) IRF8-deficient macrophages displayed a program enriched for genes associated with metastasis; and (c) lower IRF8 expression correlated with reduced survival in human breast and lung cancer, as well as melanoma, with high or low macrophage infiltration. Thus, a macrophagehiIRF8hi signature was more favorable than a macrophagehiIRF8lo signature. The same held true for a macrophageloIRF8hi vs. a macrophageloIRF8lo signature. These data suggest that incorporating IRF8 expression levels within a broader macrophage signature or profile strengthens prognostic merit. Overall, to our knowledge, our findings reveal a previously unrecognized role for IRF8 in macrophage biology to control metastasis or predict outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael J. Nemeth
- Department of Immunology
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, USA
| | | |
Collapse
|
35
|
Regulation of iNOS on Immune Cells and Its Role in Diseases. Int J Mol Sci 2018; 19:ijms19123805. [PMID: 30501075 PMCID: PMC6320759 DOI: 10.3390/ijms19123805] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, there have been many studies on the function of nitric oxide synthase (NOS) in experimental animals and humans. This review analyzes and explores the relationship between inducible nitric oxide synthase (iNOS) and T cells, macrophages, and dendritic cell et al. differentiation using data based on laboratory research, highlighting recent NOS laboratory research. Our insights into research prospects and directions are also presented.
Collapse
|
36
|
Gogoi M, Chandra K, Sarikhani M, Ramani R, Sundaresan NR, Chakravortty D. Salmonella escapes adaptive immune response via SIRT2 mediated modulation of innate immune response in dendritic cells. PLoS Pathog 2018; 14:e1007437. [PMID: 30452468 PMCID: PMC6277114 DOI: 10.1371/journal.ppat.1007437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 12/03/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
Salmonella being a successful pathogen, employs a plethora of immune evasion mechanisms. This contributes to pathogenesis, persistence and also limits the efficacy of available treatment. All these contributing factors call upon for new drug targets against Salmonella. For the first time, we have demonstrated that Salmonella upregulates sirtuin 2 (SIRT2), an NAD+ dependent deacetylase in dendritic cells (DC). SIRT2 upregulation results in translocation of NFκB p65 to the nucleus. This further upregulates NOS2 transcription and nitric oxide (NO) production. NO subsequently shows antibacterial activity and suppresses T cell proliferation. NOS2 mediated effect of SIRT2 is further validated by the absence of effect of SIRT2 inhibition in NOS2-/- mice. Inhibition of SIRT2 increases intracellular survival of the pathogen and enhances antigen presentation in vitro. However, in vivo SIRT2 inhibition shows lower bacterial organ burden and reduced tissue damage. SIRT2 knockout mice also demonstrate reduced bacterial organ burden compared to wild-type mice. Collectively, our results prove the role of SIRT2 in Salmonella pathogenesis and the mechanism of action. This can aid in designing of host-targeted therapeutics directed towards inhibition of SIRT2.
Collapse
Affiliation(s)
- Mayuri Gogoi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mohsen Sarikhani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ramya Ramani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nagalingam Ravi Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
37
|
Wierzbicki M, Sawosz E, Strojny B, Jaworski S, Grodzik M, Chwalibog A. NF-κB-related decrease of glioma angiogenic potential by graphite nanoparticles and graphene oxide nanoplatelets. Sci Rep 2018; 8:14733. [PMID: 30283098 PMCID: PMC6170400 DOI: 10.1038/s41598-018-33179-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Gliomas develop an expanded vessel network and a microenvironment characterized by an altered redox environment, which produces high levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that fuel its growth and malignancy. ROS and RNS can influence tumor cell malignancy via the redox-regulated transcription factor NF-κB, whose activation is further regulated by the mutation status of p53. The objective of this study was to assess the influence of graphite nanoparticles (NG) and graphene oxide nanoplatelets (nGO) on the angiogenic potential of glioma cell lines with different p53 statuses. Nanoparticle treatment of glioma cells decreased the angiogenesis of human umbilical vein endothelial cells (HUVEC) cocultured with U87 (p53 wild type) and was not effective for U118 (p53 mutant) cells. Nanoparticle activity was related to the decreased level of intracellular ROS and RNS, which downregulated NF-κB signaling depending on the p53 status of the cell line. Activation of NF-κB signaling affected downstream protein levels of interleukin 6, interleukin 8, growth-regulated oncogene α, and monocyte chemotactic protein 1. These results indicate that the activity of NG and nGO can be regulated by the mutation status of glioma cells and therefore give new insights into the use of nanoparticles in personalized biomedical applications regarding glioma angiogenesis and its microenvironment.
Collapse
Affiliation(s)
- Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870, Frederiksberg, Denmark
| |
Collapse
|
38
|
Yu J, Liu M, Zhu L, Zhu S, Lv F, Wang Y, Wang L, Peng B. The Expression of Interferon Regulatory Factor 8 in Human Periapical Lesions. J Endod 2018; 44:1276-1282. [PMID: 29935870 DOI: 10.1016/j.joen.2018.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/01/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
|
39
|
Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo. Exp Cell Res 2018; 368:236-247. [DOI: 10.1016/j.yexcr.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
|
40
|
Sun C, Chen SY. RGC32 Promotes Bleomycin-Induced Systemic Sclerosis in a Murine Disease Model by Modulating Classically Activated Macrophage Function. THE JOURNAL OF IMMUNOLOGY 2018; 200:2777-2785. [PMID: 29507108 DOI: 10.4049/jimmunol.1701542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/10/2018] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disorder that is characterized by inflammation and fibrosis in the skin and internal organs. Previous studies indicate that inflammatory cells and cytokines play essential roles in the pathogenesis of SSc; however, the mechanisms that underlie the inflammation-driven development of SSc are not fully understood. In this study, we show that response gene to complement 32 (RGC32) is abundantly expressed in mouse macrophages in the early stage of bleomycin-induced SSc. Importantly, RGC32 is required to induce the inflammatory response during the onset of SSc, because RGC32 deficiency in mice significantly ameliorates skin and lung sclerosis and inhibits the expression of inflammatory mediators inducible NO synthase (iNOS) and IL-1β in macrophages. RGC32 appears to be a novel regulator for the differentiation of classically activated macrophages (M1 macrophages). IFN-γ and LPS stimulation induces RGC32 expression in primary peritoneal macrophages and bone marrow-derived macrophages. RGC32 deficiency impairs the polarization of M1 macrophages and attenuates iNOS and IL-1β production. Mechanistically, RGC32 interacts with NF-κB proteins and promotes iNOS and IL-1β expression by binding to their promoters. Collectively, our data reveal that RGC32 promotes the onset of SSc by regulating the inflammatory response of M1 macrophages, and it may serve as a promising therapeutic target for treating SSc.
Collapse
Affiliation(s)
- Chenming Sun
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| |
Collapse
|
41
|
Chiba Y, Mizoguchi I, Furusawa J, Hasegawa H, Ohashi M, Xu M, Owaki T, Yoshimoto T. Interleukin-27 Exerts Its Antitumor Effects by Promoting Differentiation of Hematopoietic Stem Cells to M1 Macrophages. Cancer Res 2017; 78:182-194. [PMID: 29093008 DOI: 10.1158/0008-5472.can-17-0960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/25/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022]
Abstract
The interleukin IL27 promotes expansion and differentiation of hematopoietic stem cells into myeloid progenitor cells. Many tumor-infiltrating myeloid cells exert immunosuppressive effects, but we hypothesized that the myeloid cells induced by IL27 would have antitumor activity. In this study, we corroborated this hypothesis as investigated in two distinct mouse transplantable tumor models. Malignant mouse cells engineered to express IL27 exhibited reduced tumor growth in vivo Correlated with this effect was a significant increase in the number of tumor-infiltrating CD11b+ myeloid cells exhibiting a reduced immunosuppressive activity. Notably, these CD11b+ cells were characterized by an activated M1 macrophage phenotype, on the basis of increased expression of inducible nitric oxide synthase and other M1 biomarkers. In vivo depletion of these cells by administering anti-Gr-1 eradicated the antitumor effects of IL27. When admixed with parental tumors, CD11b+ cells inhibited tumor growth and directly killed the tumor in a nitric oxide-dependent manner. Mechanistically, IL27 expanded Lineage-Sca-1+c-Kit+ cells in bone marrow. Transplant experiments in Ly5.1/5.2 congenic mice revealed that IL27 directly acted on these cells and promoted their differentiation into M1 macrophages, which mobilized into tumors. Overall, our results illustrated how IL27 exerts antitumor activity by enhancing the generation of myeloid progenitor cells that can differentiate into antitumorigenic M1 macrophages.Significance: These findings show how the interleukin IL27 exerts potent antitumor activity by enhancing the generation of myeloid progenitor cells that can differentiate into antitumorigenic M1 macrophages.Cancer Res; 78(1); 182-94. ©2017 AACR.
Collapse
Affiliation(s)
- Yukino Chiba
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Junichi Furusawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Mio Ohashi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Toshiyuki Owaki
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
42
|
Wu BC, Lee AHY, Hancock REW. Mechanisms of the Innate Defense Regulator Peptide-1002 Anti-Inflammatory Activity in a Sterile Inflammation Mouse Model. THE JOURNAL OF IMMUNOLOGY 2017; 199:3592-3603. [DOI: 10.4049/jimmunol.1700985] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
|
43
|
Guo C, Pei L, Xiao X, Wei Q, Chen JK, Ding HF, Huang S, Fan G, Shi H, Dong Z. DNA methylation protects against cisplatin-induced kidney injury by regulating specific genes, including interferon regulatory factor 8. Kidney Int 2017; 92:1194-1205. [PMID: 28709638 DOI: 10.1016/j.kint.2017.03.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is an epigenetic mechanism that regulates gene transcription without changing primary nucleotide sequences. In mammals, DNA methylation involves the covalent addition of a methyl group to the 5-carbon position of cytosine by DNA methyltransferases (DNMTs). The change of DNA methylation and its pathological role in acute kidney injury (AKI) remain largely unknown. Here, we analyzed genome-wide DNA methylation during cisplatin-induced AKI by reduced representation bisulfite sequencing. This technique identified 215 differentially methylated regions between the kidneys of control and cisplatin-treated animals. While most of the differentially methylated regions were in the intergenic, intronic, and coding DNA sequences, some were located in the promoter or promoter-regulatory regions of 15 protein-coding genes. To determine the pathological role of DNA methylation, we initially examined the effects of the DNA methylation inhibitor 5-aza-2'-deoxycytidine and showed it increased cisplatin-induced apoptosis in a rat kidney proximal tubular cell line. We further established a kidney proximal tubule-specific DNMT1 (PT-DNMT1) knockout mouse model, which showed more severe AKI during cisplatin treatment than wild-type mice. Finally, interferon regulatory factor 8 (Irf8), a pro-apoptotic factor, was identified as a hypomethylated gene in cisplatin-induced AKI, and this hypomethylation was associated with a marked induction of Irf8. In the rat kidney proximal tubular cells, the knockdown of Irf8 suppressed cisplatin-induced apoptosis, supporting a pro-death role of Irf8 in renal tubular cells. Thus, DNA methylation plays a protective role in cisplatin-induced AKI by regulating specific genes, such as Irf8.
Collapse
Affiliation(s)
- Chunyuan Guo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia 30912, USA
| | - Lirong Pei
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, USA
| | - Xiao Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia 30912, USA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia 30912, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia 30912, USA
| | - Han-Fei Ding
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32611, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, California 90095
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia 30912, USA.
| |
Collapse
|
44
|
de Oliveira GA, Cheng RYS, Ridnour LA, Basudhar D, Somasundaram V, McVicar DW, Monteiro HP, Wink DA. Inducible Nitric Oxide Synthase in the Carcinogenesis of Gastrointestinal Cancers. Antioxid Redox Signal 2017; 26:1059-1077. [PMID: 27494631 PMCID: PMC5488308 DOI: 10.1089/ars.2016.6850] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Gastrointestinal (GI) cancer taken together constitutes one of the most common cancers worldwide with a broad range of etiological mechanisms. In this review, we have examined the impact of nitric oxide (NO) on the etiology of colon, colorectal, gastric, esophageal, and liver cancers. Recent Advances: Despite differences in etiology, initiation, and progression, chronic inflammation has been shown to be a common element within these cancers showing interactions of numerous pathways. NO generated at the inflammatory site contributes to the initiation and progression of disease. The amount of NO generated, time, and site vary and are an important determinant of the biological effects initiated. Among the nitric oxide synthase enzymes, the inducible isoform has the most diverse range, participating in numerous carcinogenic processes. There is emerging evidence showing that inducible nitric oxide synthase (NOS2) plays a central role in the process of tumor initiation and/or development. CRITICAL ISSUES Redox inflammation through NOS2 and cyclooxygenase-2 participates in driving the mechanisms of initiation and progression in GI cancers. FUTURE DIRECTIONS Understanding the underlying mechanism involved in NOS2 activation can provide new insights into important prevention and treatment strategies. Antioxid. Redox Signal. 26, 1059-1077.
Collapse
Affiliation(s)
- Graciele Almeida de Oliveira
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Robert Y S Cheng
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Lisa A Ridnour
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Debashree Basudhar
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Veena Somasundaram
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Daniel W McVicar
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Hugo Pequeno Monteiro
- 2 Laboratório de Sinalização Celular, Universidade Federal de São Paulo , São Paulo, Brazil
| | - David A Wink
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| |
Collapse
|
45
|
Redd PS, Ibrahim ML, Klement JD, Sharman SK, Paschall AV, Yang D, Nayak-Kapoor A, Liu K. SETD1B Activates iNOS Expression in Myeloid-Derived Suppressor Cells. Cancer Res 2017; 77:2834-2843. [PMID: 28381543 DOI: 10.1158/0008-5472.can-16-2238] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/19/2016] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
Abstract
Inducible nitric oxide synthase (iNOS) generates nitric oxide (NO) in myeloid cells that acts as a defense mechanism to suppress invading microorganisms or neoplastic cells. In tumor-bearing mice, elevated iNOS expression is a hallmark of myeloid-derived suppressor cells (MDSC). MDSCs use NO to nitrate both the T-cell receptor and STAT1, thus inhibiting T-cell activation and the antitumor immune response. The molecular mechanisms underlying iNOS expression and regulation in tumor-induced MDSCs are unknown. We report here that deficiency in IRF8 results in diminished iNOS expression in both mature CD11b+Gr1- and immature CD11b+Gr1+ myeloid cells in vivo Strikingly, although IRF8 was silenced in tumor-induced MDSCs, iNOS expression was significantly elevated in tumor-induced MDSCs, suggesting that the expression of iNOS is regulated by an IRF8-independent mechanism under pathologic conditions. Furthermore, tumor-induced MDSCs exhibited diminished STAT1 and NF-κB Rel protein levels, the essential inducers of iNOS in myeloid cells. Instead, tumor-induced MDSCs showed increased SETD1B expression as compared with their cellular equivalents in tumor-free mice. Chromatin immunoprecipitation revealed that H3K4me3, the target of SETD1B, was enriched at the nos2 promoter in tumor-induced MDSCs, and inhibition or silencing of SETD1B diminished iNOS expression in tumor-induced MDSCs. Our results show how tumor cells use the SETD1B-H3K4me3 epigenetic axis to bypass a normal role for IRF8 expression in activating iNOS expression in MDSCs when they are generated under pathologic conditions. Cancer Res; 77(11); 2834-43. ©2017 AACR.
Collapse
Affiliation(s)
- Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Asha Nayak-Kapoor
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia. .,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
46
|
All-Trans Retinoic Acid Modulates TLR4/NF- κB Signaling Pathway Targeting TNF- α and Nitric Oxide Synthase 2 Expression in Colonic Mucosa during Ulcerative Colitis and Colitis Associated Cancer. Mediators Inflamm 2017; 2017:7353252. [PMID: 28408791 PMCID: PMC5376956 DOI: 10.1155/2017/7353252] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/05/2017] [Accepted: 02/19/2017] [Indexed: 12/24/2022] Open
Abstract
Colitis associated cancer (CAC) is the colorectal cancer (CRC) subtype that is associated with bowel disease such as ulcerative colitis (UC). The data on role of NF-κB signaling in development and progression of CAC were derived from preclinical studies, whereas data from human are rare. The aim of this work was to study the contribution of NF-κB pathway during UC and CAC, as well as the immunomodulatory effect of all-trans retinoic acid (AtRA). We analyzed the expression of NOS2, TNF-α, TLR4, and NF-κB, in colonic mucosa. We also studied NO/TNF-α modulation by LPS in colonic mucosa pretreated with AtRA. A marked increase in TLR4, NF-κB, TNF-α, and NOS2 expression was reported in colonic mucosa. The relationship between LPS/TLR4 and TNF-α/NO production, as well as the role of NF-κB signaling, was confirmed by ex vivo experiments and the role of LPS/TLR4 in NOS2/TNF-α induction through NF-κB pathway was suggested. AtRA downregulates NOS2 and TNF-α expression. Collectively, our study indicates that AtRA modulates in situ LPS/TLR4/NF-κB signaling pathway targeting NOS2 and TNF-α expression. Therefore, we suggest that AtRA has a potential value in new strategies to improve the current therapy, as well as in the clinical prevention of CAC development and progression.
Collapse
|
47
|
Lu C, Redd PS, Lee JR, Savage N, Liu K. The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology 2016; 5:e1247135. [PMID: 28123883 DOI: 10.1080/2162402x.2016.1247135] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is an inhibitory ligand that binds to PD-1 to suppress T cell activation. PD-L1 is constitutively expressed and inducible in tumor cells, but the expression profiles and regulatory mechanism of PD-L1 in myeloid-derived suppressor cells (MDSCs) are largely unknown. We report that PD-L1 is abundantly expressed in tumor-infiltrating leukocytes in human patients with both microsatellite instable and microsatellite stable colon cancer. About 60% CD11b+CD33+HLA-DR- MDSCs from peripheral blood of human colon cancer patients are PD-L1+. PD-L1+ MDSCs are also significantly higher in tumor-bearing mice than in tumor-free mice. Interestingly, the highest PD-L1+ MDSCs were observed in the tumor microenvironment in which 56-71% tumor-infiltrating MDSCs are PD-L1+in vivo. In contrast, PD-L1+ MDSCs are significantly less in secondary lymphoid organs and peripheral blood as compared to the tumor tissues, whereas bone marrow MDSCs are essentially PD-L1- in tumor-bearing mice. IFNγ is highly expressed in cells of the tumor tissues and IFNγ neutralization significantly decreased PD-L1+ MDSCs in the tumor microenvironment in vivo. However, IFNγ-activated pSTAT1 does not bind to the cd274 promoter in MDSCs. Instead, pSTAT1 activates expression of IRF1, IRF5, IRF7 and IRF8 in MDSCs, and only pSTAT1-activated IRF1 binds to a unique IRF-binding sequence element in vitro and chromatin in vivo in the cd274 promoter to activate PD-L1 transcription. Our data determine that PD-L1 is highly expressed in tumor-infiltrating MDSCs and in a lesser degree in lymphoid organs, and the pSTAT1-IRF1 axis regulates PD-L1 expression in MDSCs.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Jeffrey R Lee
- Charlie Norwood VA Medical Center, Augusta, GA, USA; Pathology, Medical College of Georgia, Augusta, GA, USA
| | - Natasha Savage
- Pathology, Medical College of Georgia , Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
48
|
Guo Y, Yang Z, Wu S, Xu P, Peng Y, Yao M. Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing. Inflammation 2016; 40:68-78. [DOI: 10.1007/s10753-016-0454-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Amri M, Touil-Boukoffa C. In vitro anti-hydatic and immunomodulatory effects of ginger and [6]-gingerol. ASIAN PAC J TROP MED 2016; 9:749-56. [PMID: 27569883 DOI: 10.1016/j.apjtm.2016.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To study in vitro anti-hydatic and immunomodulatory effects of ginger and [6]-gingerol as an alternative therapy for cystic echinococcosis. METHODS Effect of a commonly used herbal product and ginger (Zingiber officinale) towards protoscoleces (PSC) and cyst wall in vitro was studied. The effect of [6]-gingerol, and the pungent constituent of ginger, was also evaluated on PSC culture. Furthermore, the activity of both extracts in association with interferon-gamma (IFN-γ) on PSC co-cultured with mononuclear cells of hydatic patients was evaluated. The nitric oxide (NO) production was measured in each co-culture. RESULTS Ginger exhibited a concentration- and time-dependent cytotoxic effect against PSC and cyst wall. Interestingly, ginger was more effective than the [6]-gingerol. Moreover, additional parasitic effect between extracts and IFN-γ are also observed in co-cultures. Furthermore, both extracts attenuated the NO production elicited by this infection or by the IFN-γ. CONCLUSIONS Ginger has an important anti-hydatic effect in vitro. This effect is amplified in the presence of IFN-γ. Moreover, this herbal product may protect against host's cell death by reducing the high levels of NO. Ginger may act, at least, through the [6]-gingerol. All our data suggest the promising use of ginger in the treatment of Echinococcus granulosus infection.
Collapse
Affiliation(s)
- Manel Amri
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Science, Laboratory of Cellular and Molecular Biology, Team 'Cytokines and NO Synthases', PB 32 El-Alia, Algiers 16111, Algeria
| | - Chafia Touil-Boukoffa
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Science, Laboratory of Cellular and Molecular Biology, Team 'Cytokines and NO Synthases', PB 32 El-Alia, Algiers 16111, Algeria.
| |
Collapse
|
50
|
Simon PS, Bardhan K, Chen MR, Paschall AV, Lu C, Bollag RJ, Kong FC, Jin J, Kong FM, Waller JL, Pollock RE, Liu K. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression. Oncotarget 2016; 7:23395-415. [PMID: 27014915 PMCID: PMC5029635 DOI: 10.18632/oncotarget.8246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/28/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression.
Collapse
Affiliation(s)
- Priscilla S. Simon
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Kankana Bardhan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - May R. Chen
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - Amy V. Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Roni J. Bollag
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Feng-Chong Kong
- Radiation Oncology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - JianYue Jin
- Radiation Oncology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Feng-Ming Kong
- Radiation Oncology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jennifer L. Waller
- Biostatistics and Epidemiology, Medical College of Georgia, Augusta, GA, USA
| | | | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|