1
|
Wang Y, Liu J. Modulation of the Epithelial-mesenchymal transition process by Forkhead Box C2 in the repair of airway epithelium after injury. Respir Res 2025; 26:96. [PMID: 40065336 PMCID: PMC11895206 DOI: 10.1186/s12931-025-03150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is regarded as a key process in repair of airway epithelium after injury. Forkhead Box C2 (FOXC2) is a transcription factor involved in EMT process, whether it is involved in repair of bronchial epithelium remains unknown. METHODS C57BL/6 mice were subjected to intraperitoneal injection with naphthalene (NAPH; 200 mg/kg) to induce airway injury model. qPCR, immunoblot and FOXC2 immunohistochemistry assays were conducted to detect the expression of FOXC2 in bronchial epithelium. To explore the function of FOXC2 in NAPH-induced airway injury, the mice were given intratracheal administration of shFOXC2- or shNC-lentivirus particles, followed by NAPH treatment. Hematoxylin-and-eosin staining was used to assess the histopathology of the bronchial epithelium. Immunofluorescence analysis of CCSP, a club cell marker confirmed the CCSP expression in bronchial epithelium. Immunoblot and immunofluorescence assays determined the expression of E-cadherin, vimentin, and N-cadherin. In mouse primary bronchial epithelial cells (PBECs), we overexpressed and silenced FOXC2 by lentivirus particles, respectively. Cell migration was analyzed using wound healing assay. Immunoblot assays determined the E-cadherin, vimentin, FN-EDA expression in TGF-β1-induced PBECs. mRNA sequencing (mRNA-seq) and FOXC2 ChIP sequencing (ChIP-seq) to reveal the downstream genes of FOXC2 in TGF-β1-induced PBECs. Luciferase assay, ChIP-PCR and functional rescue experiments were performed to confirm the interaction of FOXC2/formin binding protein 1 (FNBP1) in TGF-β1-induced PBECs. RESULTS FOXC2 expression was up-regulated in the lung tissues of mice at 2, 3 and 6 days post-NAPH. FOXC2 knockdown in bronchial epithelium of mice delayed CCSP+ club cell regeneration and normal repair of the airway epithelium within 14 days after injury. Knockdown of FOXC2 increased E-cadherin but decreased vimentin and N-cadherin, EMT markers during early phase after injury. In vitro, knockdown of endogenous FOXC2 repressed the migration of cells and increased TGF-β1-induced E-cadherin but decreased vimentin, N-cadherin and FN-EDA. Exogenous FOXC2 addition exerted opposite effects. Furthermore, mRNA-seq and FOXC2 ChIP-seq revealed that FNBP1 might be a downstream target of FOXC2. Overexpression of FNBP1 reversed the inhibitory role of FOXC2 knockdown in EMT. CONCLUSIONS These data highlight the important function of FOXC2 as a regulator in repair of bronchial epithelium after injury.
Collapse
Affiliation(s)
- Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, People's Republic of China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, People's Republic of China.
| |
Collapse
|
2
|
Sadeghi M, Salama MF, Chiappone SB, Huang A, Resnick AE, Kandpal M, Clarke CJ, Haley JD, Davuluri RV, Hannun YA. Biased signaling by mutant EGFR underlies dependence on PKCα in lung adenocarcinoma. Cell Rep 2024; 43:115026. [PMID: 39630579 DOI: 10.1016/j.celrep.2024.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Activating mutations in the epidermal growth factor receptor (EGFR) promote ligand-independent signaling; however, the mechanisms involved are poorly defined, and it is unknown whether this generates specific vulnerabilities. We previously observed robust expression of protein kinase Cα (PKCα) in lung adenocarcinoma (LUAD) with mutant EGFR (mEGFR), which, unlike the activation of PKCα, is independent of mEGFR activity. Here, we identify a critical role for PKCα in anchorage-independent growth and survival of lung cancer cells with mEGFR. Mechanistically, signaling pathways initiated by mEGFR show a high preference for ligand-independent phosphorylation on Y992, resulting in biased activation and dependence on phospholipase-Cγ and PKCα. Moreover, through bioinformatic approaches, we find that mEGFR LUAD demonstrates a transcriptomic profile most similar to lung basal cells, which exhibit elevated levels of PKCα, suggesting that mEGFR tumors arise in cell types with high intrinsic levels of PKCα. Taken together, these findings explain the dependence of mEGFR on PKCα.
Collapse
Affiliation(s)
- Mojtaba Sadeghi
- Department of Biochemistry, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Mohamed F Salama
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sam B Chiappone
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Amy Huang
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Andrew E Resnick
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Manoj Kandpal
- Centre for Clinical and Translational Science, Rockefeller University, New York, NY 10065, USA
| | - Christopher J Clarke
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - John D Haley
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA; Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ramana V Davuluri
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA; Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Biochemistry, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Veterans Affairs, Northport VA Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
3
|
Wu F, Cao L, Zhang J, Cai S, Wu H, Miao J, Zhao L, Zhao C, Wang X, Ramzan MA, Ali S, Wu F, Ni L, Liu L, Qin Y, Huang C. FUT3 promotes gastric cancer cell migration by synthesizing Lea on ITGA6 and GLG1, affecting adhesion and vesicle distribution. Life Sci 2024; 359:123193. [PMID: 39477144 DOI: 10.1016/j.lfs.2024.123193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
AIMS Lewis antigen plays an important role in the progression of gastric cancer (GC), FUT3 is a key enzyme in the synthesis of Lewis antigen, but the molecular mechanism of its promotion of GC progression remains unclear. MAIN METHODS We used Lea-antibody capturing coupled with mass spectrometry to identify the target proteins of FUT3, immunofluorescence (IF), molecular biology and cell function experiments were conducted to clarify the molecular mechanism of FUT3 promoting the migration and invasion of GC cells by regulating Lea glycosylation on ITGA6 and GLG1. KEY FINDINGS FUT3 promote migration and invasion of GC cells. FUT3 silencing in GC cells led to the aggregation of integrin α6β4 on the plasma membrane, associated with focal adhesion and hemidesmosome, and decreased GLG1 distribution in cellular vesicles. IGP analysis revealed Lea structure in 10 N-glycans of 2 glycosites for ITGA6 and 31 N-glycans of 4 glycosites for GLG1. Silencing ITGA6 promoted migration and invasion, while silencing GLG1 inhibited these processes in GC cells, regulated by FUT3-mediated Lea synthesis. SIGNIFICANCE In conclusion, FUT3's promotion of GC cell migration and invasion is attributed to Lea synthesis on ITGA6, impacting cell adhesion, and on GLG1, influencing distribution in intracellular vesicles. These findings may contribute to developing novel therapeutic targets for inhibiting or controlling the metastatic behavior of GC cells and enhancing our understanding of Lea's role in regulating protein functions.
Collapse
Affiliation(s)
- Fei Wu
- Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Li Cao
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Jinyuan Zhang
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Shuang Cai
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Huizi Wu
- Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Changan Zhao
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Muhammad Anas Ramzan
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Sadiq Ali
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Feng Wu
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Lei Ni
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Liying Liu
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Yannan Qin
- Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| | - Chen Huang
- Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China; Department of Cell Biology and Genetics, Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medical Sciences, Biomedical Experimental Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| |
Collapse
|
4
|
Yu J, Xiang Y, Gao Y, Chang S, Kong R, Lv X, Yu J, Jin Y, Li C, Ma Y, Wang Z, Zhou J, Yuan H, Shang S, Hua F, Zhang X, Cui B, Li P. PKC α inhibitors promote breast cancer immune evasion by maintaining PD-L1 stability. Acta Pharm Sin B 2024; 14:4378-4395. [PMID: 39525583 PMCID: PMC11544271 DOI: 10.1016/j.apsb.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 11/16/2024] Open
Abstract
Protein kinase C α (PKCα) regulates diverse biological functions of cancer cells and is a promising therapeutic target. However, clinical trials of PKC-targeted therapies have not yielded satisfactory results. Recent studies have also indicated a tumor-suppressive role of PKCs via unclear molecular mechanisms. In this study, we found that PKCα inhibition enhances CD8+ T-cell-mediated tumor evasion and abolishes antitumor activity in immunocompetent mice. We further identified PKCα as a critical regulator of programmed cell death-ligand 1 (PD-L1) and found that it enhances T-cell-dependent antitumor immunity in breast cancer by interacting with PD-L1 and suppressing PD-L1 expression. We demonstrated that PKCα-mediated PD-L1 phosphorylation promotes PD-L1 degradation through β transducin repeat-containing protein. Notably, the efficacy of PKCα inhibitors was intensified by synergizing with anti-PD-L1 mAb therapy to boost antitumor T-cell immunity in vivo. Clinical analysis revealed that PKCα expression is positively correlated with T-cell function and the interferon-gamma signature in patients with breast cancer. This study demonstrated the antitumor capability of PKCα, identified potential therapeutic strategies to avoid tumor evasion via PKC-targeted therapies, and provided a proof of concept for targeting PKCα in combination with anti-PD-L1 mAb therapy as a potential therapeutic approach against breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Jiaojiao Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujin Xiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuzhen Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaoxi Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinmei Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yunjie Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chenxi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiran Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhenhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jichao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyu Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fang Hua
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Hou Q, Shang L, Chen X, Luo Q, Wei L, Zhang C. Convergent evolution of allele-specific gene expression that leads to non-small cell lung cancer in different human populations. J Appl Genet 2024; 65:493-504. [PMID: 38036772 DOI: 10.1007/s13353-023-00813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Phenotypical innovations during evolution are caused by novel mutations, which are usually heterozygous at the beginning. The gene expressions on two alleles of these mutation sites are not necessarily identical, leading to flexible allele-specific regulation in cell systems. We retrieve the transcriptome data of normal and non-small cell lung cancer (NSCLC) tissues from 47 African Americans (AA) and 50 European Americans (EA). We analyze the differentially expressed genes (DEGs) in NSCLC as well as the tumor-specific mutations. Expression and mutation profiles show convergent evolution in AA and EA populations. The tumor-specific mutations are poorly overlapped, but many of them are located in the same genes, mainly oncogenes and tumor suppressor genes. The DEGs in tumors are majorly caused by the mutated alleles rather than normal alleles. The relative expressions of mutated alleles are highly correlated between AA and EA. The differential expression in NSCLC is predominantly mediated by the mutated alleles on heterozygous sites. This molecular mechanism underlying NSCLC oncogenesis is conserved across different human populations, exhibiting convergent evolution. We present this novel angle that differential expression analysis should be performed separately for different alleles. Our ideas should greatly benefit the cancer community.
Collapse
Affiliation(s)
- Qiuyu Hou
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Lifeng Shang
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Xu Chen
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Qiang Luo
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Liang Wei
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China
| | - Chence Zhang
- Department of Thoracic Surgery, Qingdao Eighth People's Hospital, Qingdao, 266100, Shandong, China.
| |
Collapse
|
6
|
Zeng P, Shu LZ, Zhou YH, Huang HL, Wei SH, Liu WJ, Deng H. Stem Cell Division and Its Critical Role in Mammary Gland Development and Tumorigenesis: Current Progress and Remaining Challenges. Stem Cells Dev 2024; 33:449-467. [PMID: 38943275 DOI: 10.1089/scd.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
The origin of breast cancer (BC) has traditionally been a focus of medical research. It is widely acknowledged that BC originates from immortal mammary stem cells and that these stem cells participate in two division modes: symmetric cell division (SCD) and asymmetrical cell division (ACD). Although both of these modes are key to the process of breast development and their imbalance is closely associated with the onset of BC, the molecular mechanisms underlying these phenomena deserve in-depth exploration. In this review, we first outline the molecular mechanisms governing ACD/SCD and analyze the role of ACD/SCD in various stages of breast development. We describe that the changes in telomerase activity, the role of polar proteins, and the stimulation of ovarian hormones subsequently lead to two distinct consequences: breast development or carcinogenesis. Finally, gene mutations, abnormalities in polar proteins, modulation of signal-transduction pathways, and alterations in the microenvironment disrupt the balance of BC stem cell division modes and cause BC. Important regulatory factors such as mammalian Inscuteable mInsc, Numb, Eya1, PKCα, PKCθ, p53, and IL-6 also play significant roles in regulating pathways of ACD/SCD and may constitute key targets for future research on stem cell division, breast development, and tumor therapy.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Animals
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/metabolism
- Carcinogenesis/genetics
- Stem Cells/metabolism
- Stem Cells/cytology
- Cell Division
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/metabolism
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Lin-Zhen Shu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Hong Zhou
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Hai-Lin Huang
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Shu-Hua Wei
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Wen-Jian Liu
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Huan Deng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Rezapour M, Wesolowski R, Gurcan MN. Identifying Key Genes Involved in Axillary Lymph Node Metastasis in Breast Cancer Using Advanced RNA-Seq Analysis: A Methodological Approach with GLMQL and MAS. Int J Mol Sci 2024; 25:7306. [PMID: 39000413 PMCID: PMC11242629 DOI: 10.3390/ijms25137306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Our study aims to address the methodological challenges frequently encountered in RNA-Seq data analysis within cancer studies. Specifically, it enhances the identification of key genes involved in axillary lymph node metastasis (ALNM) in breast cancer. We employ Generalized Linear Models with Quasi-Likelihood (GLMQLs) to manage the inherently discrete and overdispersed nature of RNA-Seq data, marking a significant improvement over conventional methods such as the t-test, which assumes a normal distribution and equal variances across samples. We utilize the Trimmed Mean of M-values (TMMs) method for normalization to address library-specific compositional differences effectively. Our study focuses on a distinct cohort of 104 untreated patients from the TCGA Breast Invasive Carcinoma (BRCA) dataset to maintain an untainted genetic profile, thereby providing more accurate insights into the genetic underpinnings of lymph node metastasis. This strategic selection paves the way for developing early intervention strategies and targeted therapies. Our analysis is exclusively dedicated to protein-coding genes, enriched by the Magnitude Altitude Scoring (MAS) system, which rigorously identifies key genes that could serve as predictors in developing an ALNM predictive model. Our novel approach has pinpointed several genes significantly linked to ALNM in breast cancer, offering vital insights into the molecular dynamics of cancer development and metastasis. These genes, including ERBB2, CCNA1, FOXC2, LEFTY2, VTN, ACKR3, and PTGS2, are involved in key processes like apoptosis, epithelial-mesenchymal transition, angiogenesis, response to hypoxia, and KRAS signaling pathways, which are crucial for tumor virulence and the spread of metastases. Moreover, the approach has also emphasized the importance of the small proline-rich protein family (SPRR), including SPRR2B, SPRR2E, and SPRR2D, recognized for their significant involvement in cancer-related pathways and their potential as therapeutic targets. Important transcripts such as H3C10, H1-2, PADI4, and others have been highlighted as critical in modulating the chromatin structure and gene expression, fundamental for the progression and spread of cancer.
Collapse
Affiliation(s)
- Mostafa Rezapour
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Robert Wesolowski
- Division of Medical Oncology, James Cancer Hospital and the Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Metin Nafi Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
8
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Hamshaw I, Ellahouny Y, Malusickis A, Newman L, Ortiz-Jacobs D, Mueller A. The role of PKC and PKD in CXCL12 and CXCL13 directed malignant melanoma and acute monocytic leukemic cancer cell migration. Cell Signal 2024; 113:110966. [PMID: 37949381 DOI: 10.1016/j.cellsig.2023.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Cancer metastasis is the leading cause of cancer related mortality. Chemokine receptors and proteins in their downstream signalling axis represent desirable therapeutic targets for the prevention of metastasis. Despite this, current therapeutics have experienced limited success in clinical trials due to a lack of insight into the downstream signalling pathway of specific chemokine receptor cascades in different tumours. In this study, we investigated the role of protein kinase C (PKC) and protein kinase D (PKD) in CXCL12 and CXCL13 stimulated SK-MEL-28 (malignant melanoma) and THP-1 (acute monocytic leukaemia) cell migration. While PKC and PKD had no active role in CXCL12 or CXCL13 stimulated THP-1 cell migration, PKC and PKD inhibition reduced CXCL12 stimulated migration and caused profound effects upon the cytoskeleton of SK-MEL-28 cells. Furthermore, only PKC and not PKD inhibition reduced CXCL13 stimulated migration in SK-MEL-28 cells however PKC inhibition failed to stimulate any changes to the actin cytoskeleton. These findings indicate that PKC inhibitors would be a useful therapeutic for the prevention of both CXCL12 and CXCL13 stimulated migration and PKD inhibitors for CXCL12 stimulated migration in malignant melanoma.
Collapse
Affiliation(s)
- Isabel Hamshaw
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Artur Malusickis
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | - Lia Newman
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Anja Mueller
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
10
|
Dwivedi PSR, Shastry CS. System biology mediated assessment of molecular mechanism for sinapic acid against breast cancer: via network pharmacology and molecular dynamic simulation. Sci Rep 2023; 13:21982. [PMID: 38081857 PMCID: PMC10713517 DOI: 10.1038/s41598-023-47901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Sinapic acid is a hydroxycinnamic acid widespread in the plant kingdom, known to be a potent anti-oxidant used for the treatment of cancer, infections, oxidative stress, and inflammation. However, the mode of action for its chemotherapeutic properties has yet not been unleashed. Hence, we aimed to identify potential targets to propose a possible molecular mechanism for sinapic acid against breast cancer. We utilized multiple system biology tools and databases like DisGeNET, DIGEP-Pred, Cytoscape, STRING, AutoDock 4.2, AutoDock vina, Schrodinger, and gromacs to predict a probable molecular mechanism for sinapic acid against breast cancer. Targets for the disease breast cancer, were identified via DisGeNET database which were further matched with proteins predicted to be modulated by sinapic acid. In addition, KEGG pathway analysis was used to identify pathways; a protein-pathway network was constructed via Cytoscape. Molecular docking was performed using three different algorithms followed by molecular dynamic simulations and MMPBSA analysis. Moreover, cluster analysis and gene ontology (GO) analysis were performed. A total of 6776 targets were identified for breast cancer; 95.38% of genes predicted to be modulated by sinapic acid were common with genes of breast cancer. The 'Pathways in cancer' was predicted to be modulated by most umber of proteins. Further, PRKCA, CASP8, and CTNNB1 were predicted to be the top 3 hub genes. In addition, molecular docking studies revealed CYP3A4, CYP1A1, and SIRT1 to be the lead proteins identified from AutoDock 4.2, AutoDock Vina, and Schrodinger suite Glide respectively. Molecular dynamic simulation and MMPBSA were performed for the complex of sinapic acid with above mentioned proteins which revealed a stable complex throughout simulation. The predictions revealed that the mechanism of sinapic acid in breast cancer may be due to regulation of multiple proteins like CTNNB1, PRKCA, CASP8, SIRT1, and cytochrome enzymes (CYP1A1 & CYP3A4); the majorly regulated pathway was predicted to be 'Pathways in cancer'. This indicates the rationale for sinapic acid to be used in the treatment of breast cancer. However, these are predictions and need to be validated and looked upon in-depth to confirm the exact mechanism of sinapic acid in the treatment of breast cancer; this is future scope as well as a drawback of the current study.
Collapse
Affiliation(s)
- Prarambh S R Dwivedi
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, 575018, India.
| | - C S Shastry
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
11
|
Singh RK, Kumar S, Kumar S, Shukla A, Kumar N, Patel AK, Yadav LK, Kaushalendra, Antiwal M, Acharya A. Potential implications of protein kinase Cα in pathophysiological conditions and therapeutic interventions. Life Sci 2023; 330:121999. [PMID: 37536614 DOI: 10.1016/j.lfs.2023.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PKCα is a molecule with many functions that play an important role in cell survival and death to maintain cellular homeostasis. Alteration in the normal functioning of PKCα is responsible for the complicated etiology of many pathologies, including cancer, cardiovascular diseases, kidney complications, neurodegenerative diseases, diabetics, and many others. Several studies have been carried out over the years on this kinase's function, and regulation in normal physiology and pathological conditions. A lot of data with antithetical results have therefore accumulated over time to create a complex framework of physiological implications connected to the PKCα function that needs comprehensive elucidation. In light of this information, we critically analyze the multiple roles played by PKCα in basic cellular processes and their molecular mechanism during various pathological conditions. This review further discusses the current approaches to manipulating PKCα signaling amplitude in the patient's favour and proposed PKCα as a therapeutic target to reverse pathological states.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Lab of Hematopoiesis and Leukemia, KSBS, Indian Institute of Technology, Delhi, New Delhi 110016, India; Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Alok Shukla
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Naveen Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Patel
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Lokesh Kumar Yadav
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl 796001, India
| | - Meera Antiwal
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arbind Acharya
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
12
|
Shete N, Calabrese J, Tonetti DA. Revisiting Estrogen for the Treatment of Endocrine-Resistant Breast Cancer: Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3647. [PMID: 37509308 PMCID: PMC10377916 DOI: 10.3390/cancers15143647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is the most common subtype, representing 70-75% of all breast cancers. Several ER-targeted drugs commonly used include the selective estrogen receptor modulator (SERM), tamoxifen (TAM), aromatase inhibitors (AIs) and selective estrogen receptor degraders (SERDs). Through different mechanisms of action, all three drug classes reduce estrogen receptor signaling. Inevitably, resistance occurs, resulting in disease progression. The counterintuitive action of estrogen to inhibit ER-positive breast cancer was first observed over 80 years ago. High-dose estrogen and diethylstilbestrol (DES) were used to treat metastatic breast cancer accompanied by harsh side effects until the approval of TAM in the 1970s. After the development of TAM, randomized trials comparing TAM to estrogen found similar or slightly inferior efficacy but much better tolerability. After decades of research, it was learned that estrogen induces tumor regression only after a period of long-term estrogen deprivation, and the mechanisms of tumor regression were described. Despite the long history of breast cancer treatment with estrogen, this therapeutic modality is now revitalized due to the development of novel estrogenic compounds with improved side effect profiles, newly discovered predictive biomarkers, the development of non-estrogen small molecules and new combination therapeutic approaches.
Collapse
Affiliation(s)
- Nivida Shete
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jordan Calabrese
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Debra A Tonetti
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Soghli N, Yousefi H, Naderi T, Fallah A, Moshksar A, Darbeheshti F, Vittori C, Delavar MR, Zare A, Rad HS, Kazemi A, Bitaraf A, Hussen BM, Taheri M, Jamali E. NRF2 signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer. Pathol Res Pract 2023; 243:154341. [PMID: 36739754 DOI: 10.1016/j.prp.2023.154341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Breast cancer is the most frequently diagnosed malignant tumor in women and a major public health concern. NRF2 axis is a cellular protector signaling pathway protecting both normal and cancer cells from oxidative damage. NRF2 is a transcription factor that binds to the gene promoters containing antioxidant response element-like sequences. In this report, differential expression of NRF2 signaling pathway elements, as well as the correlation of NRF2 pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade, tumor stage, and methylation status, has been investigated in breast cancer using METABRIC and TCGA datasets. In the current report, our findings revealed the deregulation of several NRF2 signaling elements in breast cancer patients. Moreover, there were negative correlations between the methylation of NRF2 genes and mRNA expression. The expression of NRF2 genes significantly varied between different breast cancer subtypes. In conclusion, substantial deregulation of NRF2 signaling components suggests an important role of these genes in breast cancer. Because of the clear associations between mRNA expression and methylation status, DNA methylation could be one of the mechanisms that regulate the NRF2 pathway in breast cancer. Differential expression of Hippo genes among various breast cancer molecular subtypes suggests that NRF2 signaling may function differently in different subtypes of breast cancer. Our data also highlights an interesting link between NRF2 components' transcription and tumor grade/stage in breast cancer.
Collapse
Affiliation(s)
- Negin Soghli
- Babol University of Medical Sciences, Faculty of Dentistry, Babol, Iran
| | - Hassan Yousefi
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA; Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tohid Naderi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Fallah
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moshksar
- University of Texas Medical Branch (UTMB), Interventional Radiology, Galveston, TX, USA
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Cecilia Vittori
- Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Sadeghi Rad
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Abtin Kazemi
- Fasa University of Medical Sciences, School of Medicine, Fasa, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Hargadon KM, Strong EW. The FOXC2 Transcription Factor: A Master Regulator of Chemoresistance in Cancer. Technol Cancer Res Treat 2023; 22:15330338231155284. [PMID: 36740986 PMCID: PMC9903043 DOI: 10.1177/15330338231155284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FOXC2, a member of the forkhead box family of transcription factors, is an emerging oncogene that has been linked to several hallmarks of cancer progression. Among its many oncogenic functions is the promotion of drug resistance, with evidence supporting roles for FOXC2 in escape from broad classes of chemotherapeutics across an array of cancer types. In this Mini-Review, we highlight the current understanding of the mechanisms by which FOXC2 drives cancer chemoresistance, including its roles in the promotion of epithelial-mesenchymal transition, induction of multidrug transporters, activation of the oxidative stress response, and deregulation of cell survival signaling pathways. We discuss the clinical implications of these findings, including strategies for modulating FOXC2-associated chemoresistance in cancer. Particular attention is given to ways in which FOXC2 and its downstream gene products and pathways can be targeted to restore chemosensitivity in cancer cells. In addition, the utility of FOXC2 expression as a predictor of patient response to chemotherapy is also highlighted, with emphasis on the value of FOXC2 as a novel biomarker that can be used to guide therapeutic choice towards regimens most likely to achieve clinical benefit during frontline therapy.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA,Kristian M. Hargadon, PhD, Hampden-Sydney College, Brown Student Center, Box 837, Hampden-Sydney, VA 23943, USA.
| | - Elijah W. Strong
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA
| |
Collapse
|
15
|
Hamidi AA, Taghehchian N, Zangouei AS, Akhlaghipour I, Maharati A, Basirat Z, Moghbeli M. Molecular mechanisms of microRNA-216a during tumor progression. Cancer Cell Int 2023; 23:19. [PMID: 36740668 PMCID: PMC9899407 DOI: 10.1186/s12935-023-02865-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) as the members of non-coding RNAs family are involved in post-transcriptional regulation by translational inhibiting or mRNA degradation. They have a critical role in regulation of cell proliferation and migration. MiRNAs aberrations have been reported in various cancers. Considering the importance of these factors in regulation of cellular processes and their high stability in body fluids, these factors can be suggested as suitable non-invasive markers for the cancer diagnosis. MiR-216a deregulation has been frequently reported in different cancers. Therefore, in the present review we discussed the molecular mechanisms of the miR-216a during tumor progression. It has been reported that miR-216a mainly functioned as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review paves the way to suggest the miR-216a as a probable therapeutic and diagnostic target in cancer patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Tabbal M, Hachim MY, Jan RK, Adrian TE. Using publicly available datasets to identify population-based transcriptomic landscape contributing to the aggressiveness of breast cancer in young women. Front Genet 2023; 13:1039037. [PMID: 36685821 PMCID: PMC9845274 DOI: 10.3389/fgene.2022.1039037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: Although the risk of breast cancer increases with advancing age, some regions have larger number of young breast cancer patients (≤45 years-old), such as the Middle East, Eastern Asia, and North Africa, with more aggressive and poorly differentiated tumors. We aimed to conduct an in-silico analysis in an attempt to understand the aggressive nature of early-onset breast cancer, and to identify potential drivers of early-onset breast cancer using gene expression profiling datasets in a population-dependent manner. Methods: Functional genomics experiments data were acquired from cBioPortal database for cancer genomics, followed by the stratification of patients based on the age at representation of breast cancer and race. Differential gene expression analysis and gene amplification status analysis were carried out, followed by hub gene, transcription factor, and signalling pathway identification. Results: PAM50 subtype analysis revealed that young patients (≤45 years-old) had four-fold more basal tumors and worst progression-free survival (median of 101 months), compared with the 45-65 years group (median of 168 months). Fourteen genes were amplified in more than 14% of patients with an early-onset breast cancer. Interestingly, FREM2, LINC00332, and LINC00366 were exclusively amplified in younger patients. Gene expression data from three different populations (Asian, White, and African) revealed a unique transcriptomic profile of young patients, which was also reflected on the PAM50 subtype analysis. Our data indicates a higher tendency of young African patients to develop basal tumors, while young Asian patients are more prone to developing Luminal A tumors. Most genes that were found to be upregulated in younger patients are involved in important signaling pathways that promote cancer progression and metastasis, such as MAPK pathway, Reelin pathway and the PI3K/Akt pathway. Conclusion: This study provides strong evidence that the molecular profile of tumors derived from young breast cancer patients of different populations is unique and may explain the aggressiveness of these tumors, stressing the need to conduct population- based multi-omic analyses to identify the potential drivers for tumorigenesis and molecular profiles of young breast cancer patients.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| |
Collapse
|
17
|
Hargadon KM, Goodloe TB, Lloyd ND. Oncogenic functions of the FOXC2 transcription factor: a hallmarks of cancer perspective. Cancer Metastasis Rev 2022; 41:833-852. [PMID: 35701636 DOI: 10.1007/s10555-022-10045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
Epigenetic regulation of gene expression is a fundamental determinant of molecular and cellular function, and epigenetic reprogramming in the context of cancer has emerged as one of the key enabling characteristics associated with acquisition of the core hallmarks of this disease. As such, there has been renewed interest in studying the role of transcription factors as epigenetic regulators of gene expression in cancer. In this review, we discuss the current state of knowledge surrounding the oncogenic functions of FOXC2, a transcription factor that frequently becomes dysregulated in a variety of cancer types. In addition to highlighting the clinical impact of aberrant FOXC2 activity in cancer, we discuss mechanisms by which this transcription factor becomes dysregulated in both tumor and tumor-associated cells, placing particular emphasis on the ways in which FOXC2 promotes key hallmarks of cancer progression. Finally, we bring attention to important issues related to the oncogenic dysregulation of FOXC2 that must be addressed going forward in order to improve our understanding of FOXC2-mediated cancer progression and to guide prognostic and therapeutic applications of this knowledge in clinical settings.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA.
| | - Travis B Goodloe
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| | - Nathaniel D Lloyd
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| |
Collapse
|
18
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
19
|
Filippone MG, Freddi S, Zecchini S, Restelli S, Colaluca IN, Bertalot G, Pece S, Tosoni D, Di Fiore PP. Aberrant phosphorylation inactivates Numb in breast cancer causing expansion of the stem cell pool. J Cell Biol 2022; 221:213525. [PMID: 36200956 PMCID: PMC9545709 DOI: 10.1083/jcb.202112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/19/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
Asymmetric cell division is a key tumor suppressor mechanism that prevents the uncontrolled expansion of the stem cell (SC) compartment by generating daughter cells with alternative fates: one retains SC identity and enters quiescence and the other becomes a rapidly proliferating and differentiating progenitor. A critical player in this process is Numb, which partitions asymmetrically at SC mitosis and inflicts different proliferative and differentiative fates in the two daughters. Here, we show that asymmetric Numb partitioning per se is insufficient for the proper control of mammary SC dynamics, with differential phosphorylation and functional inactivation of Numb in the two progeny also required. The asymmetric phosphorylation/inactivation of Numb in the progenitor is mediated by the atypical PKCζ isoform. This mechanism is subverted in breast cancer via aberrant activation of PKCs that phosphorylate Numb in both progenies, leading to symmetric division and expansion of the cancer SC compartment, associated with aggressive disease. Thus, Numb phosphorylation represents a target for breast cancer therapy.
Collapse
Affiliation(s)
- Maria Grazia Filippone
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Stefano Freddi
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Zecchini
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Restelli
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Ivan Nicola Colaluca
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Giovanni Bertalot
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Salvatore Pece
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Daniela Tosoni
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy,Correspondence to Pier Paolo Di Fiore:
| |
Collapse
|
20
|
Jin X, Zhen Z, Wang Z, Gao X, Li M. GPRC6A is a key mediator of palmitic acid regulation of lipid synthesis in bovine mammary epithelial cells. Cell Biol Int 2022; 46:1747-1758. [PMID: 35979663 DOI: 10.1002/cbin.11886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/29/2021] [Accepted: 03/07/2022] [Indexed: 11/07/2022]
Abstract
Fatty acids (FAs) can promote lipid synthesis in the mammary gland via stimulating lipogenic gene expression, but the underlying molecular mechanism is still not fully understood. Here, we showed the dose-dependent effects of palmitic acid (PA) on lipid synthesis in primary bovine mammary epithelial cells (BMECs) and explored the corresponding molecular mechanism. BMECs were treated with PA (0, 50, 100, 150, and 200 μM), and the 100 μM treatment had the best stimulatory effect on lipid synthesis and expression and maturation of sterol regulatory element-binding protein 1c (SREBP-1c) in cells. Inhibition of phosphatidylinositol 3-kinase (PI3K) almost totally blocked the stimulation of PA on SREBP-1c expression, whereas protein kinase Cα (PKCα) knockdown only partially decreased the stimulation of PA on SREBP-1c expression but abolished the stimulation of PA on its maturation. Knockdown of GPR120 did not change the stimulation of PA on the SREBP-1c signaling. G protein-coupled receptor family C group 6 member A (GPRC6A) knockdown almost totally blocked the stimulation of FA on PI3K and PKCα phosphorylation as well as SREBP-1c expression and maturation. Furthermore, PA dose-dependently promoted GPRC6A expression and plasma membrane localization. Together, these above results reveal that GPRC6A is a key mediator of PA signaling to lipid synthesis in BMECs via the PI3K/PKCα-SREBP-1c pathways.
Collapse
Affiliation(s)
- Xin Jin
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhen Zhen
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhaoxiong Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Meng Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
21
|
ling J, Peng N, luo L. ACE2 maybe serve as a prognostic biomarker in breast invasive carcinoma. J Clin Lab Anal 2022; 36:e24362. [PMID: 35373393 PMCID: PMC9169220 DOI: 10.1002/jcla.24362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is a frequently occurring malignant tumor in women. Angiotensin-converting enzyme 2 (ACE2) is widely expressed in most organs; however, the association of ACE2 with prognosis and immune infiltration in breast invasive carcinoma (BRCA) remains elusive. METHODS We explored the expression level and prognostic value of ACE2 in patients with BRCA using a series of online bioinformatics analysis databases encompassing Oncomine, UALCAN, Kaplan-Meier plotter, TIMER, LinkedOmics, and GEO. qRT-PCR was performed to verify our findings. RESULTS Angiotensin-converting enzyme 2 mRNA and protein expression levels were decreased in BRCA tissues, and patients with low ACE2 expression levels had a poor prognosis. DNA promoter methylation of ACE2 significantly downregulated ACE2 expression in BRCA, while the expression of this protein was positively linked to immune infiltration of B cells, CD8+ and CD4+ T cells, neutrophils, and dendritic cells in BRCA tissues. The high expression level of ACE2 in enriched basophils, CD8+ T cells, and type-2 helper T cells, which showed decreasing levels, indicated a better prognosis for BRCA. Enrichment analyses revealed that NF-κB, IL-17, and TNF signaling pathways were highly correlated to ACE2 in BRCA. Verification study revealed that downregulation of ACE2 was associated with a better prognosis in BRCA. Univariate and multivariate analysis confirmed ACE2 expression and clinical stage as independent prognostic factors for breast cancer. CONCLUSIONS Angiotensin-converting enzyme 2 may be a potential prognostic biomarker and target for BRCA. Nevertheless, future investigations are needed for validating our findings and promoting the clinical application of ACE2 in BRCA.
Collapse
Affiliation(s)
- Jie ling
- Department of Clinical LaboratoryTaizhou First People’s HospitalHuangyan Hospital of Wenzhou Medical UniversityTaizhouChina
| | - Ning Peng
- Department of Clinical LaboratoryTaizhou First People’s HospitalHuangyan Hospital of Wenzhou Medical UniversityTaizhouChina
| | - Lifei luo
- Department of Clinical LaboratoryTaizhou Hospital of Zhengjiang Province affiliated of Wenzhou Medical UniversityLinhaiChina
- Department of Clinical LaboratoryTaizhou Enze Medical Center (Group)Enze HospitalTaizhouChina
| |
Collapse
|
22
|
Sudhakar M, Rengaswamy R, Raman K. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes. Front Genet 2022; 13:854190. [PMID: 35620468 PMCID: PMC9127508 DOI: 10.3389/fgene.2022.854190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The progression of tumorigenesis starts with a few mutational and structural driver events in the cell. Various cohort-based computational tools exist to identify driver genes but require multiple samples to identify less frequently mutated driver genes. Many studies use different methods to identify driver mutations/genes from mutations that have no impact on tumor progression; however, a small fraction of patients show no mutational events in any known driver genes. Current unsupervised methods map somatic and expression data onto a network to identify personalized driver genes based on changes in expression. Our method is the first machine learning model to classify genes as tumor suppressor gene (TSG), oncogene (OG), or neutral, thus assigning the functional impact of the gene in the patient. In this study, we develop a multi-omic approach, PIVOT (Personalized Identification of driVer OGs and TSGs), to train on experimentally or computationally validated mutational and structural driver events. Given the lack of any gold standards for the identification of personalized driver genes, we label the data using four strategies and, based on classification metrics, show gene-based labeling strategies perform best. We build different models using SNV, RNA, and multi-omic features to be used based on the data available. Our models trained on multi-omic data improved predictions compared with mutation and expression data, achieving an accuracy ≥0.99 for BRCA, LUAD, and COAD datasets. We show network and expression-based features contribute the most to PIVOT. Our predictions on BRCA, COAD, and LUAD cancer types reveal commonly altered genes such as TP53 and PIK3CA, which are predicted drivers for multiple cancer types. Along with known driver genes, our models also identify new driver genes such as PRKCA, SOX9, and PSMD4. Our multi-omic model labels both CNV and mutations with a more considerable contribution by CNV alterations. While predicting labels for genes mutated in multiple samples, we also label rare driver events occurring in as few as one sample. We also identify genes with dual roles within the same cancer type. Overall, PIVOT labels personalized driver genes as TSGs and OGs and also identified rare driver genes.
Collapse
Affiliation(s)
- Malvika Sudhakar
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India.,Robert Bosch Center for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Raghunathan Rengaswamy
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India.,Robert Bosch Center for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.,Department of Chemical Engineering, IIT Madras, Chennai, India
| | - Karthik Raman
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India.,Robert Bosch Center for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| |
Collapse
|
23
|
Li M, Tao Z, Zhao Y, Li L, Zheng J, Li Z, Chen X. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med 2022; 20:214. [PMID: 35562754 PMCID: PMC9102922 DOI: 10.1186/s12967-022-03427-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, 5-methylcytosine (m5C) RNA modification has emerged as a key player in regulating RNA metabolism and function through coding as well as non-coding RNAs. Accumulating evidence has shown that m5C modulates the stability, translation, transcription, nuclear export, and cleavage of RNAs to mediate cell proliferation, differentiation, apoptosis, stress responses, and other biological functions. In humans, m5C RNA modification is catalyzed by the NOL1/NOP2/sun (NSUN) family and DNA methyltransferase 2 (DNMT2). These RNA modifiers regulate the expression of multiple oncogenes such as fizzy-related-1, forkhead box protein C2, Grb associated-binding protein 2, and TEA domain transcription factor 1, facilitating the pathogenesis and progression of cancers. Furthermore, the aberrant expression of methyltransferases have been identified in various cancers and used to predict the prognosis of patients. In this review, we present a comprehensive overview of m5C RNA methyltransferases. We specifically highlight the potential mechanism of action of m5C in cancer. Finally, we discuss the prospect of m5C-relative studies.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Lei Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
24
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Hindle A, Bose C, Lee J, Palade PT, Peterson CJ, Reddy PH, Awasthi S, Singh SP. Rlip Depletion Alters Oncogene Transcription at Multiple Distinct Regulatory Levels. Cancers (Basel) 2022; 14:cancers14030527. [PMID: 35158795 PMCID: PMC8833773 DOI: 10.3390/cancers14030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Rlip76 is a multifunctional membrane protein that facilitates cancer growth, and its depletion kills cancer cells. We recently found that Rlip depletion also results in broad changes to oncogene and tumor suppressor transcription. The present studies were designed to decipher the unknown downstream signaling pathways and transcriptional regulatory mechanisms driving the effect. Building on prior findings that Rlip depletion induces broad methylomic changes, we found using bioluminescence reporter assays that depletion of Rlip also exerts transcriptional control over several cancer genes through methylation-independent changes in transcription factor-mediated activation of their promoter regions and through additional as yet unidentified mechanisms. These findings have important implications for Rlip-targeted cancer therapy. Abstract Rlip76 (Rlip) is a multifunctional membrane protein that facilitates the high metabolic rates of cancer cells through the efflux of toxic metabolites and other functions. Rlip inhibition or depletion results in broad-spectrum anti-cancer effects in vitro and in vivo. Rlip depletion effectively suppresses malignancy and causes global reversion of characteristic CpG island methylomic and transcriptomic aberrations in the p53-null mouse model of spontaneous carcinogenesis through incompletely defined signaling and transcriptomic mechanisms. The methylome and transcriptome are normally regulated by the concerted actions of several mechanisms that include chromatin remodeling, promoter methylation, transcription factor interactions, and miRNAs. The present studies investigated the interaction of Rlip depletion or inhibition with the promoter methylation and transcription of selected cancer-related genes identified as being affected by Rlip depletion in our previous studies. We constructed novel promoter CpG island/luciferase reporter plasmids that respond only to CpG methylation and transcription factors. We found that Rlip depletion regulated expression by a transcription factor-based mechanism that functioned independently of promoter CpG methylation, lipid peroxidation, and p53 status.
Collapse
Affiliation(s)
- Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
| | - Jihyun Lee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Christopher J. Peterson
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- UMC Cancer Center, UMC Health System, Lubbock, TX 79415, USA
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-806-743-3543 (S.A.); +1-806-743-1540 (S.P.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-806-743-3543 (S.A.); +1-806-743-1540 (S.P.S.)
| |
Collapse
|
26
|
Scerri J, Scerri C, Schäfer-Ruoff F, Fink S, Templin M, Grech G. PKC-mediated phosphorylation and activation of the MEK/ERK pathway as a mechanism of acquired trastuzumab resistance in HER2-positive breast cancer. Front Endocrinol (Lausanne) 2022; 13:1010092. [PMID: 36329884 PMCID: PMC9623415 DOI: 10.3389/fendo.2022.1010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Protein expression, activation and stability are regulated through inter-connected signal transduction pathways resulting in specific cellular states. This study sought to differentiate between the complex mechanisms of intrinsic and acquired trastuzumab resistance, by quantifying changes in expression and activity of proteins (phospho-protein profile) in key signal transduction pathways, in breast cancer cellular models of trastuzumab resistance. To this effect, we utilized a multiplex, bead-based protein assay, DigiWest®, to measure around 100 proteins and protein modifications using specific antibodies. The main advantage of this methodology is the quantification of multiple analytes in one sample, utilising input volumes of a normal western blot. The intrinsically trastuzumab-resistant cell line JIMT-1 showed the largest number of concurrent resistance mechanisms, including PI3K/Akt and RAS/RAF/MEK/ERK activation, β catenin stabilization by inhibitory phosphorylation of GSK3β, cell cycle progression by Rb suppression, and CREB-mediated cell survival. MAPK (ERK) pathway activation was common to both intrinsic and acquired resistance cellular models. The overexpression of upstream RAS/RAF, however, was confined to JIMT 1; meanwhile, in a cellular model of acquired trastuzumab resistance generated in this study (T15), entry into the ERK pathway seemed to be mostly mediated by PKCα activation. This is a novel observation and merits further investigation that can lead to new therapeutic combinations in HER2-positive breast cancer with acquired therapeutic resistance.
Collapse
Affiliation(s)
- Jeanesse Scerri
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta
| | - Christian Scerri
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta
| | - Felix Schäfer-Ruoff
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Simon Fink
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Godfrey Grech
- Department of Pathology, University of Malta, Msida, Malta
- *Correspondence: Godfrey Grech,
| |
Collapse
|
27
|
Beetch M, Boycott C, Harandi-Zadeh S, Yang T, Martin BJE, Dixon-McDougall T, Ren K, Gacad A, Dupuis JH, Ullmer M, Lubecka K, Yada RY, Brown CJ, Howe LJ, Stefanska B. Pterostilbene leads to DNMT3B-mediated DNA methylation and silencing of OCT1-targeted oncogenes in breast cancer cells. J Nutr Biochem 2021; 98:108815. [PMID: 34242723 PMCID: PMC8819711 DOI: 10.1016/j.jnutbio.2021.108815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Transcription factor (TF)-mediated regulation of genes is often disrupted during carcinogenesis. The DNA methylation state of TF-binding sites may dictate transcriptional activity of corresponding genes. Stilbenoid polyphenols, such as pterostilbene (PTS), have been shown to exert anticancer action by remodeling DNA methylation and gene expression. However, the mechanisms behind these effects still remain unclear. Here, the dynamics between oncogenic TF OCT1 binding and de novo DNA methyltransferase DNMT3B binding in PTS-treated MCF10CA1a invasive breast cancer cells has been explored. Using chromatin immunoprecipitation (ChIP) followed by next generation sequencing, we determined 47 gene regulatory regions with decreased OCT1 binding and enriched DNMT3B binding in response to PTS. Most of those genes were found to have oncogenic functions. We selected three candidates, PRKCA, TNNT2, and DANT2, for further mechanistic investigation taking into account PRKCA functional and regulatory connection with numerous cancer-driving processes and pathways, and some of the highest increase in DNMT3B occupancy within TNNT2 and DANT2 enhancers. PTS led to DNMT3B recruitment within PRKCA, TNNT2, and DANT2 at loci that also displayed reduced OCT1 binding. Substantial decrease in OCT1 with increased DNMT3B binding was accompanied by PRKCA promoter and TNNT2 and DANT2 enhancer hypermethylation, and gene silencing. Interestingly, DNA hypermethylation of the genes was not detected in response to PTS in DNMT3B-CRISPR knockout MCF10CA1a breast cancer cells. It indicates DNMT3B-dependent methylation of PRKCA, TNNT2, and DANT2 upon PTS. Our findings provide a better understanding of mechanistic players and their gene targets that possibly contribute to the anticancer action of stilbenoid polyphenols.
Collapse
Affiliation(s)
- Megan Beetch
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sadaf Harandi-Zadeh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin J E Martin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Dixon-McDougall
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Ren
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allison Gacad
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - John H Dupuis
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melissa Ullmer
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland
| | - Rickey Y Yada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
28
|
Yoon JS, Lee HJ, Sim DY, Im E, Park JE, Park WY, Koo JI, Shim BS, Kim SH. Moracin D induces apoptosis in prostate cancer cells via activation of PPAR gamma/PKC delta and inhibition of PKC alpha. Phytother Res 2021; 35:6944-6953. [PMID: 34709688 DOI: 10.1002/ptr.7313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 11/11/2022]
Abstract
Herein, apoptotic mechanism of Moracin D was explored in prostate cancer cells in association with peroxisome proliferator-activated receptor gamma (PPAR-γ)-related signaling involved in lipid metabolism. Moracin D augmented cytotoxicity and sub G1 population in PC3 and DU145 prostate cancer cells, while DU145 cells were more susceptible to Moracin D than PC3 cells. Moracin D attenuated the expression of caspase-3, poly (ADP-ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra-large (Bcl-xL) in DU145 cells. Consistently, Moracin D significantly augmented the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in DU145 cells. Interestingly, Moracin D activated PPAR-γ and phospho-protein kinase C delta (p-PKC-δ) and inhibited phospho-protein kinase C alpha (p-PKC-α) in DU145 cells. Furthermore, STRING bioinformatic analysis reveals that PPAR-γ interacts with nuclear factor-κB (NF-κB) that binds to PKC-α/PKC-δ or protein kinase B (AKT) or extracellular signal-regulated kinase (ERK). Indeed, Moracin D decreased phosphorylation of NF-κB, ERK, and AKT in DU145 cells. Conversely, PPAR-γ inhibitor GW9662 reduced the apoptotic ability of Moracin D to activate caspase 3 and PARP in DU145 cells. Taken together, these findings provide a novel insight that activation of PPAR-γ/p-PKC-δ and inhibition of p-PKC-α are critically involved in Moracin D-induced apoptosis in DU145 prostate cancer cells.
Collapse
Affiliation(s)
- Jae Seok Yoon
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ja Il Koo
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Cao Y, Cao Z, Wang W, Jie X, Li L. MicroRNA‑199a‑5p regulates FOXC2 to control human vascular smooth muscle cell phenotypic switch. Mol Med Rep 2021; 24:627. [PMID: 34212977 PMCID: PMC8281299 DOI: 10.3892/mmr.2021.12266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
Varicose veins are among the most common disorders of the vascular system; however, the pathogenesis of varicose veins remains unclear. The present study aimed to investigate the roles of microRNA (miR)‑199a‑5p in varicose veins and in the phenotypic transition of vascular smooth muscle cells (VSMCs). Bioinformatics analysis confirmed that miR‑199a‑5p had target sites on the forkhead box C2 (FOXC2) 3'‑untranslated region. Reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting were used to detect the expression levels of miR‑199a‑5p and FOXC2 in varicose vein and normal great saphenous vein tissues. Cell Counting Kit‑8 and Transwell migration assays were performed to validate the effects of miR‑199a‑5p on VSMCs. Contractile markers, such as smooth muscle 22α, calponin, smooth muscle actin and myosin heavy chain 11 were used to detect phenotypic transition. RT‑qPCR revealed that miR‑199a‑5p was downregulated in varicose veins compared with expression in normal great saphenous veins, whereas FOXC2 was upregulated in varicose veins. In addition, biomarkers of the VSMC contractile phenotype were downregulated in varicose veins. Overexpression of miR‑199a‑5p by mimics suppressed VSMC proliferation and migration, whereas depletion of miR‑199a‑5p enhanced VSMC proliferation and migration. Notably, the effects caused by miR‑199a‑5p could be reversed by FOXC2 overexpression. Dual luciferase reporter analysis confirmed that FOXC2 was a target of miR‑199a‑5p. In conclusion, miR‑199a‑5p may be a novel regulator of phenotypic switching in VSMCs by targeting FOXC2 during varicose vein formation.
Collapse
Affiliation(s)
- Yushi Cao
- Department of Hepatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhongwen Cao
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiangyu Jie
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Lei Li
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
30
|
Black AR, Black JD. The complexities of PKCα signaling in cancer. Adv Biol Regul 2021; 80:100769. [PMID: 33307285 PMCID: PMC8141086 DOI: 10.1016/j.jbior.2020.100769] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/06/2023]
Abstract
Protein kinase C α (PKCα) is a ubiquitously expressed member of the PKC family of serine/threonine kinases with diverse functions in normal and neoplastic cells. Early studies identified anti-proliferative and differentiation-inducing functions for PKCα in some normal tissues (e.g., regenerating epithelia) and pro-proliferative effects in others (e.g., cells of the hematopoietic system, smooth muscle cells). Additional well documented roles of PKCα signaling in normal cells include regulation of the cytoskeleton, cell adhesion, and cell migration, and PKCα can function as a survival factor in many contexts. While a majority of tumors lose expression of PKCα, others display aberrant overexpression of the enzyme. Cancer-related mutations in PKCα are uncommon, but rare examples of driver mutations have been detected in certain cancer types (e. g., choroid gliomas). Here we review the role of PKCα in various cancers, describe mechanisms by which PKCα affects cancer-related cell functions, and discuss how the diverse functions of PKCα contribute to tumor suppressive and tumor promoting activities of the enzyme. We end the discussion by addressing mutations and expression of PKCα in tumors and the clinical relevance of these findings.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
31
|
Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int J Mol Sci 2021; 22:3295. [PMID: 33804856 PMCID: PMC8036554 DOI: 10.3390/ijms22073295] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Conventional therapies, including surgery, radiation, and chemotherapy have achieved increased survival rates for many types of cancer over the past decades. However, cancer recurrence and/or metastasis to distant organs remain major challenges, resulting in a large, unmet clinical need. Oligonucleotide therapeutics, which include antisense oligonucleotides, small interfering RNAs, and aptamers, show promising clinical outcomes for disease indications such as Duchenne muscular dystrophy, familial amyloid neuropathies, and macular degeneration. While no approved oligonucleotide drug currently exists for any type of cancer, results obtained in preclinical studies and clinical trials are encouraging. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in oncology, review current clinical trials, and discuss associated challenges.
Collapse
Affiliation(s)
- Haoyu Xiong
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia;
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
32
|
Zhang X, Zhang J, Zhang H, Liu Y, Yin L, Liu X, Li X, Yu X, Yao J, Zhang Z, Kong C. Exploring the five different genes associated with PKCα in bladder cancer based on gene expression microarray. J Cell Mol Med 2021; 25:1759-1770. [PMID: 33452764 PMCID: PMC7875937 DOI: 10.1111/jcmm.16284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Much progress has been made in understanding the mechanism of bladder cancer (BC) progression. Protein kinase C‐α (PKCα) is overexpressed in many kinds of cancers. Additionally, PKCα is considered an oncogene that regulates proliferation, invasion, migration, apoptosis and cell cycle in multiple cancers. However, the mechanism underlying how these cellular processes are regulated by PKCα remains unknown. In the present study, we used PKCα siRNA to knock down PKCα gene expression and found that down‐regulation of PKCα could significantly inhibit cell proliferation, migration and invasion and induce apoptosis and G1/S cell cycle arrest in vitro. Overexpression of PKCα promotes tumour growth in vivo. We applied cDNA microarray technology to detect the differential gene expression in J82 cells with PKCα knockdown and found that five key genes (BIRC2, BIRC3, CDK4, TRAF1 and BMP4) were involved in proliferation and apoptosis according to GO analysis and pathway analyses. Correlation analysis revealed a moderate positive correlation between PKCα expression and the expression of five downstream genes. BIRC2 and BIRC3 inhibit apoptosis, whereas CDK4, TRAF1 and BMP4 promote proliferation. Essentially, all five of these target genes participated in proliferation, and apoptosis was regulated by PKCα via the NF‐kB signalling pathway.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Jiarun Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Yin
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xi Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xuejie Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xiuyue Yu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Jinlong Yao
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Tyagi K, Roy A. Evaluating the current status of protein kinase C (PKC)-protein kinase D (PKD) signalling axis as a novel therapeutic target in ovarian cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188496. [PMID: 33383102 DOI: 10.1016/j.bbcan.2020.188496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Ovarian cancer, especially high grade serous ovarian cancer is one of the most lethal gynaecological malignancies with high relapse rate and patient death. Notwithstanding development of several targeted treatment and immunotherapeutic approaches, researchers fail to turn ovarian cancer into a manageable disease. Protein kinase C (PKC) and protein kinase D (PKD) are families of evolutionarily conserved serine/threonine kinases that can be activated by a plethora of extracellular stimuli such as hormones, growth factors and G-protein coupled receptor agonists. Recent literature suggests that a signalling cascade initiated by these two protein kinases regulates a battery of cellular and physiological processes involved in tumorigenesis including cell proliferation, migration, invasion and angiogenesis. In an urgent need to discover novel therapeutic interventions against a deadly pathology like ovarian cancer, we have discussed the status quo of PKC/PKD signalling axis in context of this disease. Additionally, apart from discussing the structural properties and activation mechanisms of PKC/PKD, we have provided a comprehensive review of the recent reports on tumor promoting functions of PKC isoforms and discussed the potential of PKC/PKD signalling axis as a novel target in this lethal pathology. Furthermore, in this review, we have discussed the significance of several recent clinical trials and development of small molecule inhibitors that target PKC/PKD signalling axis in ovarian cancer.
Collapse
Affiliation(s)
- Komal Tyagi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
34
|
The PKC universe keeps expanding: From cancer initiation to metastasis. Adv Biol Regul 2020; 78:100755. [PMID: 33017725 DOI: 10.1016/j.jbior.2020.100755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
Classical and novel protein kinase C (PKC) isozymes (c/nPKCs), members of the PKC family that become activated by the lipid second messenger diacylglycerol (DAG) and phorbol esters, exert a myriad of cellular effects that impact proliferative and motile cellular responses. While c/nPKCs have been indisputably associated with tumor promotion, their roles exceed by far their sole involvement as promoter kinases. Indeed, this original dogma has been subsequently redefined by the introduction of several new concepts: the identification of tumor suppressing roles for c/nPKCs, and their participation in early and late stages of carcinogenesis. This review dives deep into the intricate roles of c/nPKCs in cancer initiation as well as in the different stages of the metastatic cascade, with great emphasis in their involvement in cancer cell motility via regulation of small Rho GTPases, the production of extracellular matrix (ECM)-degrading proteases, and the epithelial-to-mesenchymal transition (EMT) program required for the acquisition of highly invasive traits. Here, we highlight functional interplays between either PKCα or PKCε and mesenchymal features that may ultimately contribute to anticancer drug resistance in cellular and animal models. We also introduce the novel hypothesis that c/nPKCs may be implicated in the control of immune evasion through the regulation of immune checkpoint protein expression. In summary, dissecting the colossal complexity of c/nPKC signaling in the wide spectrum of cancer progression may bring new opportunities for the development of meaningful tools aiding for cancer prognosis and therapy.
Collapse
|
35
|
Ma L, Yang R, Gu J, Jiang H, Li H. The expression of AGGF1, FOXC2, and E-cadherin in esophageal carcinoma and their clinical significance. Medicine (Baltimore) 2020; 99:e22173. [PMID: 32925786 PMCID: PMC7489684 DOI: 10.1097/md.0000000000022173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Angiogenic factor with G-patch and FHA domain 1 (AGGF1) is a newly initiator of angiogenesis. Forkhead box C2 (FOXC2) that is a member of the winged spiral transcription factor family plays an important role in epithelial-mesenchymal transition (EMT). Epithelial-cadherin (E-cad) that is an adhesion molecule is also involved in EMT. The purpose of this study is to investigate the expression of AGGF1, FOXC2, and E-cad in esophageal squamous cell carcinoma (ESCC) and their clinical significance.Immunohistochemistry was performed to investigate the expression of AGGF1, FOXC2, and E-cad in 170 ESCC specimens and corresponding normal esophageal mucosa tissues. Follow-up data was also collected.The positive rates of AGGF1 and FOXC2 expression were significantly higher in ESCC group when compared with the control group; the positive rate of E-cad expression was significantly lower in ESCC group when compared with the control group. Positive rates of AGGF1, FOXC2, and E-cad expression were significantly associated with grades of differentiation, tumor grades, lymph node metastasis stages, as well as tumor-node-metastasis stages. Kaplan-Meier analysis demonstrated that positive expression of AGGF1 or FOXC2 for ESCC patients had significantly unfavorably overall survival time when compared with patients with negative expression of AGGF1 or FOXC2; and positive expression of E-cad for ESCC patients had significantly longer overall survival time when compared with patients with negative expression of E-cad. Multivariate analysis indicated that AGGF1, FOXC2, and E-cad expression and tumor-node-metastasis stages were postoperative independent prognostic factors for ESCC patients.AGGF1, FOXC2, and E-cad may be considered promising biomarkers of ESCC patients' prognosis.
Collapse
Affiliation(s)
- Li Ma
- Department of Pathology
- Department of Pathology, Bengbu Medical University
| | - Ruixue Yang
- Department of Pathology
- Department of Pathology, Bengbu Medical University
| | - Jingxiang Gu
- Department of Pathology
- Department of Pathology, Bengbu Medical University
| | - Hao Jiang
- Department of Radiotherapy, the First Affiliated Hospital of Bengbu Medical University Anhui, China
| | - Hongwei Li
- Department of Radiotherapy, the First Affiliated Hospital of Bengbu Medical University Anhui, China
| |
Collapse
|
36
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
37
|
Hargadon KM, Williams CJ. RNA-seq Analysis of Wild-Type vs. FOXC2-Deficient Melanoma Cells Reveals a Role for the FOXC2 Transcription Factor in the Regulation of Multiple Oncogenic Pathways. Front Oncol 2020; 10:267. [PMID: 32175283 PMCID: PMC7056877 DOI: 10.3389/fonc.2020.00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, United States
| | - Corey J Williams
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, United States
| |
Collapse
|
38
|
Ding X, Wang X, Lu S, Gao X, Ju S. P120-Catenin And Its Phosphorylation On Tyr228 Inhibits Proliferation And Invasion In Colon Adenocarcinoma Cells. Onco Targets Ther 2020; 12:10213-10225. [PMID: 32063714 PMCID: PMC6884968 DOI: 10.2147/ott.s211973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer is the third most common malignancy worldwide and is one of the leading causes of cancer-related mortality. P120-catenin protein has been well known to exert anticancer effects in several malignant diseases. The aim of our study was to investigate the phosphorylation of p120-catenin in colon adenocarcinoma (CAC) and its association with prognosis, and its role in tumor progression. Methods Immunohistochemical (IHC) staining was used to explore the existence of p120-catenin and its phosphorylation on tyrosine 228 (pY228-p120-catenin) in CAC samples. Overexpression and knockdown were achieved by transient transfection into SW480 cells using Lipofectamine 3000. CCK-8 and Matrigel-transwell assays were conducted to evaluate proliferation and invasion capacities, respectively. RT-qPCR and Western blotting were performed to analyze downstream signaling pathways. Chi-square test was used to analyze correlations between p120-catenin and clinicopathological characteristics. Univariate and multivariate analyses were used to identify independent prognostic factors. Results Lower p120-catenin and pY228-p120-catenin levels were identified in CAC tissues and were both correlated with advanced tumor stage. Additionally, lower pY228-p120-catenin indicated poorer prognosis of CAC patients although p120-catenin showed little significance. Overexpression of p120-catenin suppressed SW480 cell proliferation and invasion via stabilizing E-cadherin and inhibiting RhoA activation. Phosphorylation of Y228 on p120-catenin by Src protein enhanced the anticancer effects of p120-catenin. Conclusion P120-catenin and its phosphorylation on site Y228 play anticancer effects in colon adenocarcinoma via multiple signaling pathways. Hypophosphorylation of Y228 on p120-catenin in tumor tissues indicates poor clinical outcomes of colon adenocarcinoma patients.
Collapse
Affiliation(s)
- Xiuming Ding
- Department of Intervention, Linyi Central Hospital, Linyi, People's Republic of China
| | - Xiuqin Wang
- Department of Dermatology, The Third People's Hospital of Linyi, Linyi, People's Republic of China
| | - Shifen Lu
- Department of Gynaecology and Obstetrics, The Third People's Hospital of Linyi, Linyi, People's Republic of China
| | - Xuemei Gao
- Department of Paediatrics, Linyi Central Hospital, Linyi, People's Republic of China
| | - Shumei Ju
- Department of Paediatrics, Linyi Central Hospital, Linyi, People's Republic of China
| |
Collapse
|
39
|
Zhao YY, Huang SX, Hao Z, Zhu HX, Xing ZL, Li MH. Fluid Shear Stress Induces Endothelial Cell Injury via Protein Kinase C Alpha-Mediated Repression of p120-Catenin and Vascular Endothelial Cadherin In Vitro. World Neurosurg 2020; 136:e469-e475. [PMID: 31953100 DOI: 10.1016/j.wneu.2020.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The present study aimed to characterize the mechanism of fluid shear stress (FSS)-induced endothelial cell (EC) injury via protein kinase C alpha (PKCα)-mediated vascular endothelial cadherin (VE-cadherin) and p120-catenin (p120ctn) expression. METHODS We designed a T chamber system that produced stable FSS on ECs in vitro. Human umbilical vein endothelial cells (HUVECs) in which PKCα was knocked down and normal HUVECs were cultured on the coverslips. FSS was impinged on these 2 types of ECs for 0 hours and 6 hours. The morphology and density of HUVECs were evaluated, and expression levels of phosphorylated PKCα, p120-catenin (p120ctn), VE-cadherin, phosphorylated p120ctn at S879 (p-S879p120ctn), and nuclear factor kappa B (NF-κB) were analyzed by Western blot. RESULTS HUVECs exposed to FSS were characterized by a polygonal shape and decreased cell density. The phosphorylated PKCα level was increased under FSS at 6 hours (P < 0.05). In normal HUVECs during FSS, p120ctn and VE-cadherin were decreased, whereas p-S879p120ctn and NF-κB were increased, at 6 hours (P < 0.05). In HUVECs after PKCα knockdown, p120ctn and VE-cadherin were not significantly changed (P > 0.05), p-S879p120ctn was undetectable, but NF-κB was decreased (P < 0.05) at 6 hours. CONCLUSIONS The possible mechanism of FSS-induced EC injury may be as follows: 1) PKCα induces low expression of p120ctn, which leads to activation of NF-κB and degradation of VE-cadherin; 2) PKCα-mediated phosphorylation of p120ctn at S879 disrupts p120ctn binding to VE-cadherin.
Collapse
Affiliation(s)
- Ye-Yu Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shao-Xin Huang
- College of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Zheng Hao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua-Xin Zhu
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze-Long Xing
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei-Hua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
40
|
Llorens MC, Rossi FA, García IA, Cooke M, Abba MC, Lopez-Haber C, Barrio-Real L, Vaglienti MV, Rossi M, Bocco JL, Kazanietz MG, Soria G. PKCα Modulates Epithelial-to-Mesenchymal Transition and Invasiveness of Breast Cancer Cells Through ZEB1. Front Oncol 2019; 9:1323. [PMID: 31828042 PMCID: PMC6890807 DOI: 10.3389/fonc.2019.01323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases. Exploratory in silico analysis aided by phospho-substrate antibodies and ZEB1 deletion mutants led us to identify several potential phospho-sites for the family of PKC kinases in the N-terminus of ZEB1. The analysis of breast cancer cell lines panels with different degrees of aggressiveness, together with the evaluation of a battery of kinase inhibitors, allowed us to expose a robust correlation between ZEB1 and PKCα both at mRNA and protein levels. Subsequent validation experiments using siRNAs against PKCα revealed that its knockdown leads to a concomitant decrease in ZEB1 levels, while ZEB1 knockdown had no impact on PKCα levels. Remarkably, PKCα-mediated downregulation of ZEB1 recapitulates the inhibition of mesenchymal phenotypes, including inhibition in cell migration and invasiveness. These findings were extended to an in vivo model, by demonstrating that the stable knockdown of PKCα using lentiviral shRNAs markedly impaired the metastatic potential of MDA-MB-231 breast cancer cells. Taken together, our findings unveil an unforeseen regulatory pathway comprising PKCα and ZEB1 that promotes the activation of the EMT in breast cancer cells.
Collapse
Affiliation(s)
- María Candelaria Llorens
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabiana Alejandra Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin C. Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura Barrio-Real
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - María Victoria Vaglienti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
41
|
Wu X, Ding M, Lin J. Three-microRNA expression signature predicts survival in triple-negative breast cancer. Oncol Lett 2019; 19:301-308. [PMID: 31897142 PMCID: PMC6923981 DOI: 10.3892/ol.2019.11118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific type of breast cancer with poor overall survival (OS) time. Previous studies revealed that microRNAs (miRNAs/miRs) serve important roles in the pathogenesis, progression and prognosis of TNBC. The present study analyzed the miRNA expression and clinical data of patients with TNBC downloaded from The Cancer Genome Atlas. A total of 194 differentially expressed miRNAs were identified between TNBC and matched normal tissues using the cut-off criteria of P<0.05 and |log2 fold change|>2. Of these miRNAs, 65 were downregulated and 129 were upregulated. Using Kaplan-Meier survival analysis, a total of 77 miRNAs that were closely associated with OS time were identified (P<0.05). The intersection of the 77 miRNAs and 194 differentially expressed miRNAs revealed six miRNAs. Log-rank tests based on survival curves were performed and two miRNAs were eliminated. The prognostic value of the remaining four miRNAs was evaluated with a Cox proportional hazards model using multiple logistic regression with forward stepwise selection of variables. Three miRNAs (miR-21-3p, miR-659-5p and miR-200b-5p) were subsequently identified as independent risk factors associated with OS time in the model. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the target genes of these three miRNAs were mainly involved in ‘cell protein metabolism’, ‘RNA transcriptional regulation’, ‘cell migration’, ‘MAPK signaling pathway’, ‘ErbB signaling pathway’, ‘prolactin signaling pathway’ and ‘adherens junctions’. Taken together, the results obtained in the present study suggested that the three-miRNA signature may serve as a prognostic biomarker for patients with TNBC.
Collapse
Affiliation(s)
- Xinquan Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mingji Ding
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jianqin Lin
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
42
|
Nassef MZ, Kopp S, Melnik D, Corydon TJ, Sahana J, Krüger M, Wehland M, Bauer TJ, Liemersdorf C, Hemmersbach R, Infanger M, Grimm D. Short-Term Microgravity Influences Cell Adhesion in Human Breast Cancer Cells. Int J Mol Sci 2019; 20:E5730. [PMID: 31731625 PMCID: PMC6887954 DOI: 10.3390/ijms20225730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
With the commercialization of spaceflight and the exploration of space, it is important to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We examined the influence of r-µg, simulated microgravity (s-µg, incubator random positioning machine (iRPM)), hypergravity (hyper-g), and vibration (VIB) on triple-negative breast cancer (TNBC) cells (MDA-MB-231 cell line) with the aim to study early changes in the gene expression of factors associated with cell adhesion, apoptosis, nuclear factor "kappa-light-chain-enhancer" of activated B-cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. We had the opportunity to attend a parabolic flight (PF) mission and to study changes in RNA transcription in the MDA-MB cells exposed to PF maneuvers (29th Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). PF maneuvers induced an early up-regulation of ICAM1, CD44 and ERK1 mRNAs after the first parabola (P1) and a delayed upregulation of NFKB1, NFKBIA, NFKBIB, and FAK1 after the last parabola (P31). ICAM-1, VCAM-1 and CD44 protein levels were elevated, whereas the NF-κB subunit p-65 and annexin-A2 protein levels were reduced after the 31st parabola (P31). The PRKCA, RAF1, BAX mRNA were not changed and cleaved caspase-3 was not detectable in MDA-MB-231 cells exposed to PF maneuvers. Hyper-g-exposure of the cells elevated the expression of CD44 and NFKBIA mRNAs, iRPM-exposure downregulated ANXA2 and BAX, whereas VIB did not affect the TNBC cells. The early changes in ICAM-1 and VCAM-1 and the rapid decrease in the NF-κB subunit p-65 might be considered as fast-reacting, gravity-regulated and cell-protective mechanisms of TNBC cells exposed to altered gravity conditions. This data suggest a key role for the detected gravity-signaling elements in three-dimensional growth and metastasis.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.)
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Thomas J. Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Christian Liemersdorf
- Institute of Aerospace Medicine, Department of Gravitational Biology, German Aerospace Center, 51147 Cologne, Germany; (C.L.); (R.H.)
| | - Ruth Hemmersbach
- Institute of Aerospace Medicine, Department of Gravitational Biology, German Aerospace Center, 51147 Cologne, Germany; (C.L.); (R.H.)
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.)
- Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
43
|
Cooke M, Baker MJ, Kazanietz MG, Casado-Medrano V. PKCε regulates Rho GTPases and actin cytoskeleton reorganization in non-small cell lung cancer cells. Small GTPases 2019; 12:202-208. [PMID: 31648598 DOI: 10.1080/21541248.2019.1684785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oncogenic protein kinase C epsilon (PKCε) promotes the formation of membrane ruffles and motility in non-small cell lung cancer (NSCLC) cells. We found that PKCε is down-regulated when NSCLC cells undergo epithelial-to-mesenchymal transition (EMT) in response to TGF-β, thus becoming dispensable for migration and invasion in the mesenchymal state. PKCε silencing or inhibition leads to stress fibre formation, suggesting that this kinase negatively regulates RhoA activity. Ruffle formation induced by PKCε activation in the epithelial state is dependent on PI3K, but does not involve the PI3K-dependent Rac-GEFs Ect2, Trio, Vav2 or Tiam1, suggesting alternative Rac-GEFs as mediators of this response. In the proposed model, PKCε acts as a rheostat for Rho GTPases that differs in the epithelial and mesenchymal states.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Venhuizen JH, Span PN, van den Dries K, Sommer S, Friedl P, Zegers MM. P120 Catenin Isoforms Differentially Associate with Breast Cancer Invasion and Metastasis. Cancers (Basel) 2019; 11:cancers11101459. [PMID: 31569498 PMCID: PMC6826419 DOI: 10.3390/cancers11101459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is the endpoint of tumor progression and depends on the ability of tumor cells to locally invade tissue, transit through the bloodstream and ultimately to colonize secondary organs at distant sites. P120 catenin (p120) has been implicated as an important regulator of metastatic dissemination because of its roles in cell–cell junctional stability, cytoskeletal dynamics, growth and survival. However, conflicting roles for p120 in different tumor models and steps of metastasis have been reported, and the understanding of p120 functions is confounded by the differential expression of p120 isoforms, which differ in N-terminal length, tissue localization and, likely, function. Here, we used in silico exon expression analyses, in vitro invasion assays and both RT-PCR and immunofluorescence of human tumors. We show that alternative exon usage favors expression of short isoform p120-3 in 1098 breast tumors and correlates with poor prognosis. P120-3 is upregulated at the invasive front of breast cancer cells migrating as collective groups in vitro. Furthermore, we demonstrate in histological sections of 54 human breast cancer patients that p120-3 expression is maintained throughout the metastatic cascade, whereas p120-1 is differentially expressed and diminished during invasion and in metastases. These data suggest specific regulation and functions of p120-3 in breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Jan-Hendrik Venhuizen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Sebastian Sommer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Cancer Genomic Centre, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA.
| | - Mirjam M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Cui Y, Wang J, Liu S, Qu D, Jin H, Zhu L, Yang J, Zhang J, Li Q, Zhang Y, Yao Y. miR‐216a promotes breast cancer cell apoptosis by targeting
PKC
α. Fundam Clin Pharmacol 2019; 33:397-404. [PMID: 31119784 DOI: 10.1111/fcp.12481] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ying Cui
- Department of Radiation Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081 China
| | - Jinghao Wang
- Department of Pharmacy the First Affiliated Hospital Jinan University Guangzhou 510630 China
| | - Shanshan Liu
- Department of Radiation Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081 China
| | - Di Qu
- Department of Medical Oncology the Second Affiliated Hospital of Harbin Medical University Heilongjiang 150086 China
| | - Hong Jin
- Department of Gynecology Harbin Medical University Cancer Hospital Heilongjiang 150081 China
| | - Lin Zhu
- Department of Radiation Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081 China
| | - Jiani Yang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| | - Jingchun Zhang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| | - Qingwei Li
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| | - Yanqiao Zhang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| | - Yuanfei Yao
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| |
Collapse
|
46
|
Abdulghani M, Song G, Kaur H, Walley JW, Tuteja G. Comparative Analysis of the Transcriptome and Proteome during Mouse Placental Development. J Proteome Res 2019; 18:2088-2099. [PMID: 30986076 DOI: 10.1021/acs.jproteome.8b00970] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The condition of the placenta is a determinant of the short- and long-term health of the mother and the fetus. However, critical processes occurring in early placental development, such as trophoblast invasion and establishment of placental metabolism, remain poorly understood. To gain a better understanding of the genes involved in regulating these processes, we utilized a multiomics approach, incorporating transcriptome, proteome, and phosphoproteome data generated from mouse placental tissue collected at two critical developmental time points. We found that incorporating information from both the transcriptome and proteome identifies genes associated with time point-specific biological processes, unlike using the proteome alone. We further inferred genes upregulated on the basis of the proteome data but not the transcriptome data at each time point, leading us to identify 27 genes that we predict to have a role in trophoblast migration or placental metabolism. Finally, using the phosphoproteome data set, we discovered novel phosphosites that may play crucial roles in the regulation of placental transcription factors. By generating the largest proteome and phosphoproteome data sets in the developing placenta, and integrating transcriptome analysis, we uncovered novel aspects of placental gene regulation.
Collapse
Affiliation(s)
- Majd Abdulghani
- Interdepartmental Genetics and Genomics , Iowa State University , Ames , Iowa 50011-1079 , United States.,Department of Genetics, Development, and Cell Biology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Haninder Kaur
- Department of Genetics, Development, and Cell Biology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Justin W Walley
- Interdepartmental Genetics and Genomics , Iowa State University , Ames , Iowa 50011-1079 , United States.,Department of Plant Pathology and Microbiology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Geetu Tuteja
- Interdepartmental Genetics and Genomics , Iowa State University , Ames , Iowa 50011-1079 , United States.,Department of Genetics, Development, and Cell Biology , Iowa State University , Ames , Iowa 50011-1079 , United States
| |
Collapse
|
47
|
Cooke M, Casado-Medrano V, Ann J, Lee J, Blumberg PM, Abba MC, Kazanietz MG. Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes. Sci Rep 2019; 9:6041. [PMID: 30988374 PMCID: PMC6465381 DOI: 10.1038/s41598-019-42581-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specific modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic efforts had recently led to the identification of AJH-836, a DAG-lactone with preferential affinity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profiling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an effect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics efforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identified major differences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the differential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of differentially regulating PKC isozyme-specific function in cellular models.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Universidad Nacional de La Plata, CP1900, La Plata, Argentina.
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Singh RK, Kumar S, Tomar MS, Verma PK, Singh SP, Gautam PK, Acharya A. Classical Protein Kinase C: a novel kinase target in breast cancer. Clin Transl Oncol 2018; 21:259-267. [DOI: 10.1007/s12094-018-1929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/21/2018] [Indexed: 11/28/2022]
|