1
|
de Bresser CJM, de Krijger RR. The Molecular Classification of Pheochromocytomas and Paragangliomas: Discovering the Genomic and Immune Landscape of Metastatic Disease. Endocr Pathol 2024; 35:279-292. [PMID: 39466488 DOI: 10.1007/s12022-024-09830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs, together PPGLs) are the most hereditary tumors known. PPGLs were considered benign, but the fourth edition of the World Health Organisation (WHO) classification redefined all PPGLs as malignant neoplasms with variable metastatic potential. The metastatic rate differs based on histopathology, genetic background, size, and location of the tumor. The challenge in predicting metastatic disease lies in the absence of a clear genotype-phenotype correlation among the more than 20 identified genetic driver variants. Recent advances in molecular clustering based on underlying genetic alterations have paved the way for improved cluster-specific personalized treatments. However, despite some clusters demonstrating a higher propensity for metastatic disease, cluster-specific therapies have not yet been widely adopted in clinical practice. Comprehensive genomic profiling and transcriptomic analyses of large PPGL cohorts have identified potential new biomarkers that may influence metastatic potential. It appears that no single biomarker alone can reliably predict metastatic risk; instead, a combination of these biomarkers may be necessary to develop an effective prediction model for metastatic disease. This review evaluates current guidelines and recent genomic and transcriptomic findings, with the aim of accurately identifying novel biomarkers that could contribute to a predictive model for mPPGLs, thereby enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Carolijn J M de Bresser
- Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Lakhal-Littleton S, Cleland JGF. Iron deficiency and supplementation in heart failure. Nat Rev Cardiol 2024; 21:463-486. [PMID: 38326440 DOI: 10.1038/s41569-024-00988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Non-anaemic iron deficiency (NAID) is a strategic target in cardiovascular medicine because of its association with a range of adverse effects in various conditions. Endeavours to tackle NAID in heart failure have yielded mixed results, exposing knowledge gaps in how best to define 'iron deficiency' and the handling of iron therapies by the body. To address these gaps, we harness the latest understanding of the mechanisms of iron homeostasis outside the erythron and integrate clinical and preclinical lines of evidence. The emerging picture is that current definitions of iron deficiency do not assimilate the multiple influences at play in patients with heart failure and, consequently, fail to identify those with a truly unmet need for iron. Additionally, current iron supplementation therapies benefit only certain patients with heart failure, reflecting differences in the nature of the unmet need for iron and the modifying effects of anaemia and inflammation on the handling of iron therapies by the body. Building on these insights, we identify untapped opportunities in the management of NAID, including the refinement of current approaches and the development of novel strategies. Lessons learned from NAID in cardiovascular disease could ultimately translate into benefits for patients with other chronic conditions such as chronic kidney disease, chronic obstructive pulmonary disease and cancer.
Collapse
Affiliation(s)
| | - John G F Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Lee Y, Cheng SM, Hwang DY, Chiu YL, Chou YH. Polycythemia Secondary to Renal Hemangioblastoma: A Case Report and Literature Review. Int J Surg Pathol 2024; 32:140-144. [PMID: 37150964 DOI: 10.1177/10668969231171133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Secondary polycythemia is a paraneoplastic syndrome observed in tumors with excessive erythropoietin (EPO) production. Renal cell carcinoma (RCC) and cerebellar hemangioblastoma are the 2 most well-known tumors to induce secondary polycythemia. Hemangioblastomas occurring in the kidney are rare. In this work we present a case of renal hemangioblastoma that caused erythrocytosis in a 19-year-old man. We demonstrated intratumoural EPO production by immunohistochemistry, and conducted whole-exome sequencing to evaluate possible genetic alterations that reported to induce tumor-related polycythemia. In spite of an indolent clinical behavior, renal hemangioblastoma is difficult to differentiate from RCC not only clinically, but also histopathologically. Given that RCC is the most well-known renal tumor to induce erythrocytosis, the uncommon manifestation of polycythemia in renal hemangioblastoma, as shown in our case, can cause further diagnostic challenges. Renal hemangioblastoma should be listed in the differential diagnoses of renal tumors presenting with erythrocytosis, apart from the most common RCC.
Collapse
Affiliation(s)
- Yueh Lee
- Department of Anatomy and Pathology, Taipei City Hospital Heping Branch, Taipei, Taiwan
| | - Siao-Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yen-Ling Chiu
- Graduate Institute of Medicine, Yuan-Ze University, Taoyuan, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yueh-Hung Chou
- Department of Anatomical Pathology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| |
Collapse
|
4
|
Correnti M, Gammella E, Cairo G, Recalcati S. Iron Mining for Erythropoiesis. Int J Mol Sci 2022; 23:ijms23105341. [PMID: 35628152 PMCID: PMC9140467 DOI: 10.3390/ijms23105341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Iron is necessary for essential processes in every cell of the body, but the erythropoietic compartment is a privileged iron consumer. In fact, as a necessary component of hemoglobin and myoglobin, iron assures oxygen distribution; therefore, a considerable amount of iron is required daily for hemoglobin synthesis and erythroid cell proliferation. Therefore, a tight link exists between iron metabolism and erythropoiesis. The liver-derived hormone hepcidin, which controls iron homeostasis via its interaction with the iron exporter ferroportin, coordinates erythropoietic activity and iron homeostasis. When erythropoiesis is enhanced, iron availability to the erythron is mainly ensured by inhibiting hepcidin expression, thereby increasing ferroportin-mediated iron export from both duodenal absorptive cells and reticuloendothelial cells that process old and/or damaged red blood cells. Erythroferrone, a factor produced and secreted by erythroid precursors in response to erythropoietin, has been identified and characterized as a suppressor of hepcidin synthesis to allow iron mobilization and facilitate erythropoiesis.
Collapse
|
5
|
Nölting S, Bechmann N, Taieb D, Beuschlein F, Fassnacht M, Kroiss M, Eisenhofer G, Grossman A, Pacak K. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev 2022; 43:199-239. [PMID: 34147030 PMCID: PMC8905338 DOI: 10.1210/endrev/bnab019] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Pheochromocytomas/paragangliomas are characterized by a unique molecular landscape that allows their assignment to clusters based on underlying genetic alterations. With around 30% to 35% of Caucasian patients (a lower percentage in the Chinese population) showing germline mutations in susceptibility genes, pheochromocytomas/paragangliomas have the highest rate of heritability among all tumors. A further 35% to 40% of Caucasian patients (a higher percentage in the Chinese population) are affected by somatic driver mutations. Thus, around 70% of all patients with pheochromocytoma/paraganglioma can be assigned to 1 of 3 main molecular clusters with different phenotypes and clinical behavior. Krebs cycle/VHL/EPAS1-related cluster 1 tumors tend to a noradrenergic biochemical phenotype and require very close follow-up due to the risk of metastasis and recurrence. In contrast, kinase signaling-related cluster 2 tumors are characterized by an adrenergic phenotype and episodic symptoms, with generally a less aggressive course. The clinical correlates of patients with Wnt signaling-related cluster 3 tumors are currently poorly described, but aggressive behavior seems likely. In this review, we explore and explain why cluster-specific (personalized) management of pheochromocytoma/paraganglioma is essential to ascertain clinical behavior and prognosis, guide individual diagnostic procedures (biochemical interpretation, choice of the most sensitive imaging modalities), and provide personalized management and follow-up. Although cluster-specific therapy of inoperable/metastatic disease has not yet entered routine clinical practice, we suggest that informed personalized genetic-driven treatment should be implemented as a logical next step. This review amalgamates published guidelines and expert views within each cluster for a coherent individualized patient management plan.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 13273 Marseille, France
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX2 6HG, UK.,Centre for Endocrinology, Barts and the London School of Medicine, London EC1M 6BQ, UK.,ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20847, USA
| |
Collapse
|
6
|
Jhawar S, Arakawa Y, Kumar S, Varghese D, Kim YS, Roper N, Elloumi F, Pommier Y, Pacak K, Del Rivero J. New Insights on the Genetics of Pheochromocytoma and Paraganglioma and Its Clinical Implications. Cancers (Basel) 2022; 14:cancers14030594. [PMID: 35158861 PMCID: PMC8833412 DOI: 10.3390/cancers14030594] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pheochromocytoma and paraganglioma (together PPGL) are rare neuroendocrine tumors that arise from chromaffin tissue and produce catecholamines. Approximately 40% of cases of PPGL carry a germline mutation, suggesting that they have a high degree of heritability. The underlying mutation influences the PPGL clinical presentation such as cell differentiation, specific catecholamine production, tumor location, malignant potential and genetic anticipation, which helps to better understand the clinical course and tailor treatment accordingly. Genetic testing for pheochromocytoma and paraganglioma allows an early detection of hereditary syndromes and facilitates a close follow-up of high-risk patients. In this review article, we present the most recent advances in the field of genetics and we discuss the latest guidelines on the surveillance of asymptomatic SDHx mutation carriers. Abstract Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are rare neuroendocrine tumors that arise from chromaffin cells. PHEOs arise from the adrenal medulla, whereas PGLs arise from the neural crest localized outside the adrenal gland. Approximately 40% of all cases of PPGLs (pheochromocytomas/paragangliomas) are associated with germline mutations and 30–40% display somatic driver mutations. The mutations associated with PPGLs can be classified into three groups. The pseudohypoxic group or cluster I includes the following genes: SDHA, SDHB, SDHC, SDHD, SDHAF2, FH, VHL, IDH1/2, MHD2, EGLN1/2 and HIF2/EPAS; the kinase group or cluster II includes RET, NF1, TMEM127, MAX and HRAS; and the Wnt signaling group or cluster III includes CSDE1 and MAML3. Underlying mutations can help understand the clinical presentation, overall prognosis and surveillance follow-up. Here we are discussing the new genetic insights of PPGLs.
Collapse
Affiliation(s)
- Sakshi Jhawar
- Life Bridge Health Center, Internal Medicine Program, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Diana Varghese
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yoo Sun Kim
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Takafuji S, Mori T, Nishimura N, Yamamoto N, Uemura S, Nozu K, Terui K, Toki T, Ito E, Muramatsu H, Takahashi Y, Matsuo M, Yamamura T, Iijima K. Usefulness of functional splicing analysis to confirm precise disease pathogenesis in Diamond-Blackfan anemia caused by intronic variants in RPS19. Pediatr Hematol Oncol 2021; 38:515-527. [PMID: 33622161 DOI: 10.1080/08880018.2021.1887984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diamond-Blackfan anemia (DBA) is mainly caused by pathogenic variants in ribosomal proteins and 22 responsible genes have been identified to date. The most common causative gene of DBA is RPS19 [NM_001022.4]. Nearly 180 RPS19 variants have been reported, including three deep intronic variants outside the splicing consensus sequence (c.72-92A > G, c.356 + 18G > C, and c.411 + 6G > C). We also identified one case with a c.412-3C > G intronic variant. Without conducting transcript analysis, the pathogenicity of these variants is unknown. However, it is difficult to assess transcripts because of their fragility. In such cases, in vitro functional splicing assays can be used to assess pathogenicity. Here, we report functional splicing analysis results of four RPS19 deep intronic variants identified in our case and in previously reported cases. One splicing consensus variant (c.411 + 1G > A) was also examined as a positive control. Aberrant splicing with a 2-bp insertion between exons 5 and 6 was identified in the patient samples and minigene assay results also identified exon 6 skipping in our case. The exon 6 skipping transcript was confirmed by further evaluation using quantitative RT-PCR. Additionally, minigene assay analysis of three reported deep intronic variants revealed that none of them showed aberrant splicing and that these variants were not considered to be pathogenic. In conclusion, the minigene assay is a useful method for functional splicing analysis of inherited disease.
Collapse
Affiliation(s)
- Satoru Takafuji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Mori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Suguru Uemura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Matsuo
- Locomotion Biology Research Center, Kobe Gakuin University, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
8
|
Maio N, Zhang DL, Ghosh MC, Jain A, SantaMaria AM, Rouault TA. Mechanisms of cellular iron sensing, regulation of erythropoiesis and mitochondrial iron utilization. Semin Hematol 2021; 58:161-174. [PMID: 34389108 DOI: 10.1053/j.seminhematol.2021.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
To maintain an adequate iron supply for hemoglobin synthesis and essential metabolic functions while counteracting iron toxicity, humans and other vertebrates have evolved effective mechanisms to conserve and finely regulate iron concentration, storage, and distribution to tissues. At the systemic level, the iron-regulatory hormone hepcidin is secreted by the liver in response to serum iron levels and inflammation. Hepcidin regulates the expression of the sole known mammalian iron exporter, ferroportin, to control dietary absorption, storage and tissue distribution of iron. At the cellular level, iron regulatory proteins 1 and 2 (IRP1 and IRP2) register cytosolic iron concentrations and post-transcriptionally regulate the expression of iron metabolism genes to optimize iron availability for essential cellular processes, including heme biosynthesis and iron-sulfur cluster biogenesis. Genetic malfunctions affecting the iron sensing mechanisms or the main pathways that utilize iron in the cell cause a broad range of human diseases, some of which are characterized by mitochondrial iron accumulation. This review will discuss the mechanisms of systemic and cellular iron sensing with a focus on the main iron utilization pathways in the cell, and on human conditions that arise from compromised function of the regulatory axes that control iron homeostasis.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - De-Liang Zhang
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Manik C Ghosh
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Anshika Jain
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Anna M SantaMaria
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
9
|
Garcia-Carbonero R, Matute Teresa F, Mercader-Cidoncha E, Mitjavila-Casanovas M, Robledo M, Tena I, Alvarez-Escola C, Arístegui M, Bella-Cueto MR, Ferrer-Albiach C, Hanzu FA. Multidisciplinary practice guidelines for the diagnosis, genetic counseling and treatment of pheochromocytomas and paragangliomas. Clin Transl Oncol 2021; 23:1995-2019. [PMID: 33959901 PMCID: PMC8390422 DOI: 10.1007/s12094-021-02622-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that arise from chromaffin cells of the adrenal medulla and the sympathetic/parasympathetic neural ganglia, respectively. The heterogeneity in its etiology makes PPGL diagnosis and treatment very complex. The aim of this article was to provide practical clinical guidelines for the diagnosis and treatment of PPGLs from a multidisciplinary perspective, with the involvement of the Spanish Societies of Endocrinology and Nutrition (SEEN), Medical Oncology (SEOM), Medical Radiology (SERAM), Nuclear Medicine and Molecular Imaging (SEMNIM), Otorhinolaryngology (SEORL), Pathology (SEAP), Radiation Oncology (SEOR), Surgery (AEC) and the Spanish National Cancer Research Center (CNIO). We will review the following topics: epidemiology; anatomy, pathology and molecular pathways; clinical presentation; hereditary predisposition syndromes and genetic counseling and testing; diagnostic procedures, including biochemical testing and imaging studies; treatment including catecholamine blockade, surgery, radiotherapy and radiometabolic therapy, systemic therapy, local ablative therapy and supportive care. Finally, we will provide follow-up recommendations.
Collapse
Affiliation(s)
- R Garcia-Carbonero
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONC, Avda Cordoba km 5.4, 28041, Madrid, Spain.
| | - F Matute Teresa
- Radiology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - E Mercader-Cidoncha
- Endocrine and Metabolic Surgery Unit, General and Digestive Surgery Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Mitjavila-Casanovas
- Nuclear Medicine Department, Hospital Universitario Puerta de Hierro, Majadahonda, Spain.,Grupo de Trabajo de Endocrino de la SEMNIM, Madrid, Spain
| | - M Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - I Tena
- Scientific Department, Medica Scientia Innovation Research (MedSIR CORP), Ridgewood, NJ, USA.,Medical Oncology Department, Hospital Provincial, Castellon, Spain
| | - C Alvarez-Escola
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Hospital Universitario la Paz, Madrid, Spain
| | - M Arístegui
- ENT Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M R Bella-Cueto
- Pathology Department, Hospital Universitario Parc Taulí, Sabadell, Institut D'Investigació I Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - C Ferrer-Albiach
- Radiation Oncology Department, Hospital Provincial Castellón, Castellón, Spain
| | - F A Hanzu
- Endocrinology and Nutrition Department, Hospital Clinic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
10
|
Shi F, Sun LX, Long S, Zhang Y. Pheochromocytoma as a cause of repeated acute myocardial infarctions, heart failure, and transient erythrocytosis: A case report and review of the literature. World J Clin Cases 2021; 9:951-959. [PMID: 33585644 PMCID: PMC7852630 DOI: 10.12998/wjcc.v9.i4.951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pheochromocytoma is a rare catecholamines-secreting tumor arising from chromaffin cells in the adrenal medulla. It classically presents with paroxysmal hypertension, headaches, palpitations, sweating, and metabolic disorders. Atypical presentations such as acute myocardial infarction, heart failure, cardiomyopathy, stroke, and transient erythrocytosis have been infrequently documented.
CASE SUMMARY We describe the case of a 72-year-old man diagnosed with pheochromocytoma presenting with non-ST segment elevation myocardial infarction, heart failure, and transient erythrocytosis with nonobstructed coronary arteries. This was his second heart attack. The patient was previously diagnosed with myocardial infarction, and an immense mass was found on the left adrenal gland 3 years prior. Based on clinical and laboratory findings, a diagnosis of pheochromocytoma was confirmed. His coronary angiogram showed nonobstructed coronary arteries except for a myocardial bridge in the left anterior descending branch. This was a form of type-2 myocardial infarction. The myocardial cell lesions were caused by sudden secretion of catecholamines by the pheochromocytoma. Even more atypically, his hemoglobin level was obviously elevated at admission, but after a few days of treatment with an alpha-adrenergic receptor blocker, it dropped to normal levels without additional treatment.
CONCLUSION Pheochromocytoma may be a cause of acute myocardial infarction, heart failure, and transient erythrocytosis.
Collapse
Affiliation(s)
- Fei Shi
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Li-Xian Sun
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Sen Long
- Department of Traditional Chinese Medicine, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Ying Zhang
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| |
Collapse
|
11
|
Antonio K, Valdez MMN, Mercado-Asis L, Taïeb D, Pacak K. Pheochromocytoma/paraganglioma: recent updates in genetics, biochemistry, immunohistochemistry, metabolomics, imaging and therapeutic options. Gland Surg 2020; 9:105-123. [PMID: 32206603 DOI: 10.21037/gs.2019.10.25] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs), rare chromaffin/neural crest cell tumors, are commonly benign in their clinical presentation. However, there are a number of cases presenting as metastatic and their diagnosis and management becomes a dilemma because of their rarity. PPGLs are constantly evolving entities in the field of endocrinology brought about by endless research and discoveries, especially in genetics. Throughout the years, our knowledge and perception of these tumors and their genetic background has greatly expanded and changed, and each new discovery leads to advancement in the diagnosis, treatment and follow-up of PPGLs. In this review, we discuss the recent updates in the genetics, biochemistry, immunohistochemistry, metabolomics, imaging and treatment options of PPGLs.
Collapse
Affiliation(s)
- Karren Antonio
- Section on Medical Neuroendocrinology, The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Division of Endocrinology, University of Santo Tomas Hospital, Manila, Philippines
| | - Ma Margarita Noreen Valdez
- Section on Medical Neuroendocrinology, The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Division of Endocrinology, University of Santo Tomas Hospital, Manila, Philippines
| | | | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Yamazaki Y, Gao X, Pecori A, Nakamura Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Satoh F, Sasano H. Recent Advances in Histopathological and Molecular Diagnosis in Pheochromocytoma and Paraganglioma: Challenges for Predicting Metastasis in Individual Patients. Front Endocrinol (Lausanne) 2020; 11:587769. [PMID: 33193100 PMCID: PMC7652733 DOI: 10.3389/fendo.2020.587769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PHEO/PGL) are rare but occasionally life-threatening neoplasms, and are potentially malignant according to WHO classification in 2017. However, it is also well known that histopathological risk stratification to predict clinical outcome has not yet been established. The first histopathological diagnostic algorithm for PHEO, "PASS", was proposed in 2002 by Thompson et al. Another algorithm, GAPP, was then proposed by Kimura et al. in 2014. However, neither algorithm has necessarily been regarded a 'gold standard' for predicting post-operative clinical behavior of tumors. This is because the histopathological features of PHEO/PGL are rather diverse and independent of their hormonal activities, as well as the clinical course of patients. On the other hand, recent developments in wide-scale genetic analysis using next-generation sequencing have revealed the molecular characteristics of pheochromocytomas and paragangliomas. More than 30%-40% of PHEO/PGL are reported to be associated with hereditary genetic abnormalities involving > 20 genes, including SDHXs, RET, VHL, NF1, TMEM127, MAX, and others. Such genetic alterations are mainly involved in the pathogenesis of pseudohypoxia, Wnt, and kinase signaling, and other intracellular signaling cascades. In addition, recurrent somatic mutations are frequently detected and overlapped with the presence of genetic alterations associated with hereditary diseases. In addition, therapeutic strategies specifically targeting such genetic abnormalities have been proposed, but they are not clinically applicable at this time. Therefore, we herein review recent advances in relevant studies, including histopathological and molecular analyses, to summarize the current status of potential prognostic factors in patients with PHEO/PGL.
Collapse
Affiliation(s)
- Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alessio Pecori
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Hironobu Sasano,
| |
Collapse
|
13
|
Agarwal S, Jindal I, Balazs A, Paul D. Catecholamine-Secreting Tumors in Pediatric Patients With Cyanotic Congenital Heart Disease. J Endocr Soc 2019; 3:2135-2150. [PMID: 31687640 PMCID: PMC6821216 DOI: 10.1210/js.2019-00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Catecholamine-secreting tumors are rare among the pediatric population but are increasingly being reported in children with sustained hypoxia secondary to cyanotic congenital heart disease (CCHD). With this review, we report the clinical characteristics of these tumors in children with CCHD. The articles included in the present review were identified using PubMed through February 2019. A manual search of the references retrieved from relevant articles was also performed. Pheochromocytomas and paragangliomas (PPGL) in children are commonly associated with high-risk germline or somatic mutations. There is evidently a higher risk of tumorigenesis in children with CCHD as compared with the general pediatric population, even in the absence of susceptible gene mutations. This is due to molecular mechanisms involving the aberrant activation of hypoxia-response elements, likely secondary to sustained hypoxemia, resulting in tumorigenesis. Due to overlapping symptoms with CCHD, the diagnosis of PPGL may be delayed or missed in these patients. We studied all previously reported PPGL cases in children with CCHD and reviewed phenotypic and biochemical features to assess for contributing factors in tumorigenesis. Larger studies are needed to help determine other potential predisposing factors and to establish screening guidelines in this high-risk population. A delay in diagnosis of the PPGL tumors can lead to exacerbation of cardiac failure, and therefore early diagnosis and intervention may provide better outcomes in these patients, necessitating the need for regular surveillance. We recommend routine biochemical screening in patients with sustained hypoxia secondary to CCHD.
Collapse
Affiliation(s)
- Swashti Agarwal
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Ishita Jindal
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Andrea Balazs
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - David Paul
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background. Cancers (Basel) 2019; 11:cancers11060743. [PMID: 31142060 PMCID: PMC6627450 DOI: 10.3390/cancers11060743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) is a key enzyme of the tumorigenesis-inflammation interface and can be induced by hypoxia. A pseudohypoxic transcriptional signature characterizes pheochromocytomas and paragangliomas (PPGLs) of the cluster I, mainly represented by tumors with mutations in von Hippel–Lindau (VHL), endothelial PAS domain-containing protein 1 (EPAS1), or succinate dehydrogenase (SDH) subunit genes. The aim of this study was to investigate a possible association between underlying tumor driver mutations and COX-2 in PPGLs. COX-2 gene expression and immunoreactivity were examined in clinical specimens with documented mutations, as well as in spheroids and allografts derived from mouse pheochromocytoma (MPC) cells. COX-2 in vivo imaging was performed in allograft mice. We observed significantly higher COX-2 expression in cluster I, especially in VHL-mutant PPGLs, however, no specific association between COX-2 mRNA levels and a hypoxia-related transcriptional signature was found. COX-2 immunoreactivity was present in about 60% of clinical specimens as well as in MPC spheroids and allografts. A selective COX-2 tracer specifically accumulated in MPC allografts. This study demonstrates that, although pseudohypoxia is not the major determinant for high COX-2 levels in PPGLs, COX-2 is a relevant molecular target. This potentially allows for employing selective COX-2 inhibitors as targeted chemotherapeutic agents and radiosensitizers. Moreover, available models are suitable for preclinical testing of these treatments.
Collapse
|
15
|
Alrezk R, Suarez A, Tena I, Pacak K. Update of Pheochromocytoma Syndromes: Genetics, Biochemical Evaluation, and Imaging. Front Endocrinol (Lausanne) 2018; 9:515. [PMID: 30538672 PMCID: PMC6277481 DOI: 10.3389/fendo.2018.00515] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCCs/PGLs) are rare commonly benign neuroendocrine tumors that share pathology features and clinical behavior in many cases. While PCCs are chromaffin-derived tumors that arise within the adrenal medulla, PGLs are neural-crest-derived tumors that originate at the extraadrenal paraganglia. Pheochromocytoma-paraganglioma (PPGL) syndromes are rapidly evolving entities in endocrinology and oncology. Discoveries over the last decade have significantly improved our understanding of the disease. These include the finding of new hereditary forms of PPGL and their associated susceptibility genes. Additionally, the availability of new functional imaging tools and advances in targeted radionuclide therapy have improved diagnostic accuracy and provided us with new therapeutic options. In this review article, we present the most recent advances in this field and provide an update of the biochemical classification that further reflects our understanding of the disease.
Collapse
Affiliation(s)
- Rami Alrezk
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- Cleveland Clinic, Adrenal Center, Endocrinology and Metabolism Institute, Cleveland, OH, United States
| | - Andres Suarez
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Isabel Tena
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Provincial Hospital, Castellon, Spain
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Karel Pacak
| |
Collapse
|