1
|
Agnello L, d’Argenio A, Caliendo A, Nilo R, Zannetti A, Fedele M, Camorani S, Cerchia L. Tissue Inhibitor of Metalloproteinases-1 Overexpression Mediates Chemoresistance in Triple-Negative Breast Cancer Cells. Cells 2023; 12:1809. [PMID: 37443843 PMCID: PMC10340747 DOI: 10.3390/cells12131809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is among the most aggressive breast cancer subtypes. Despite being initially responsive to chemotherapy, patients develop drug-resistant and metastatic tumors. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a secreted protein with a tumor suppressor function due to its anti-proteolytic activity. Nevertheless, evidence indicates that TIMP-1 binds to the CD63 receptor and activates noncanonical oncogenic signaling in several cancers, but its role in mediating TNBC chemoresistance is still largely unexplored. Here, we show that mesenchymal-like TNBC cells express TIMP-1, whose levels are further increased in cells generated to be resistant to cisplatin (Cis-Pt-R) and doxorubicin (Dox-R). Moreover, public dataset analyses indicate that high TIMP-1 levels are associated with a worse prognosis in TNBC subjected to chemotherapy. Knock-down of TIMP-1 in both Cis-Pt-R and Dox-R cells reverses their resistance by inhibiting AKT activation. Consistently, TNBC cells exposed to recombinant TIMP-1 or TIMP-1-enriched media from chemoresistant cells, acquire resistance to both cisplatin and doxorubicin. Importantly, released TIMP-1 reassociates with plasma membrane by binding to CD63 and, in the absence of CD63 expression, TIMP-1-mediated chemoresistance is blocked. Thus, our results identify TIMP-1 as a new biomarker of TNBC chemoresistance and lay the groundwork for evaluating whether blockade of TIMP-1 signal is a viable treatment strategy.
Collapse
Affiliation(s)
- Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Annachiara d’Argenio
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Alessandra Caliendo
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Roberto Nilo
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy;
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| |
Collapse
|
2
|
Veschi V, Turdo A, Modica C, Verona F, Di Franco S, Gaggianesi M, Tirrò E, Di Bella S, Iacono ML, Pantina VD, Porcelli G, Mangiapane LR, Bianca P, Rizzo A, Sciacca E, Pillitteri I, Vella V, Belfiore A, Bongiorno MR, Pistone G, Memeo L, Colarossi L, Giuffrida D, Colarossi C, Vigneri P, Todaro M, Stassi G. Recapitulating thyroid cancer histotypes through engineering embryonic stem cells. Nat Commun 2023; 14:1351. [PMID: 36906579 PMCID: PMC10008571 DOI: 10.1038/s41467-023-36922-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Elena Tirrò
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.,Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Sebastiano Di Bella
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | | | - Elisabetta Sciacca
- Queen Mary University, Experimental Medicine & Rheumatology, London, United Kingdom
| | - Irene Pillitteri
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.,A.O.U.P. "Paolo Giaccone", University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
3
|
Yu H, Wang M, Wang X, Jiang X. Immune-related matrisomes are potential biomarkers to predict the prognosis and immune microenvironment of glioma patients. FEBS Open Bio 2022; 13:307-322. [PMID: 36560848 PMCID: PMC9900094 DOI: 10.1002/2211-5463.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays a vital role in the progression and metastasis of glioma and is an important part of the tumor microenvironment. The matrisome is composed of ECM components and related proteins. There have been several studies on the effects of matrisomes on the glioma immune microenvironment, but most of these studies were performed on individual glioma immune-related matrisomes rather than integral analysis. Hence, an overall analysis of all potential immune-related matrisomes in gliomas is needed. Here, we divided 667 glioma patients in The Cancer Genome Atlas (TCGA) database into low, moderate, and high immune infiltration groups. Immune-related matrisomes differentially expressed among the three groups were analyzed, and a risk signature was established. Eight immune-related matrisomes were screened, namely, LIF, LOX, MMP9, S100A4, SRPX2, SLIT1, SMOC1, and TIMP1. Kaplan-Meier analysis, operating characteristic curve analysis, and nomogram were constructed to analyze the relationships between risk signatures and the prognosis of glioma patients. The risk signature was significantly correlated with the overall survival of glioma patients. Both high- and low-risk signatures were also associated with some immune checkpoints. In addition, analysis of somatic mutations and anti-PD1/L1 immunotherapy responses in the high- and low-risk groups showed that the high-risk group had worse prognosis and a higher response to anti-PD1/L1 immunotherapy. Our analysis of immune-related matrisomes may improve understanding of the characteristics of the glioma immune microenvironment and provide direction for glioma immunotherapy development in the future.
Collapse
Affiliation(s)
- Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Minjie Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeWuhanChina
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeWuhanChina
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
A CAF-Fueled TIMP-1/CD63/ITGB1/STAT3 Feedback Loop Promotes Migration and Growth of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14204983. [PMID: 36291767 PMCID: PMC9599197 DOI: 10.3390/cancers14204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Carcinoma-associated fibroblasts (CAFs) are a major cellular component of the tumor microenvironment and influence cancer cell behavior in numerous ways. A large part of their actions is based on their high secretory activity, leading to the exposure of cancer cells to all kinds of bioactive factors, such as interleukin-6 (IL-6). Here, we present data showing that CAF-derived TIMP-1 activates STAT3 in breast cancer cells in cooperation with CD63 and integrin β1. In turn, STAT3 increases TIMP-1 secretion by breast cancer cells, leading to a TIMP-1/CD63/integrin β1/STAT3 positive feedback loop, which can be further fueled by IL-6. Functionally, this feedback loop is important for the CAF-induced increase in migratory activity and for CAF-induced resistance to the anti-estrogen fulvestrant. Abstract TIMP-1 is one of the many factors that CAFs have been shown to secret. TIMP-1 can act in a tumor-supportive or tumor-suppressive manner. The purpose of this study was to elucidate the role of CAF-secreted TIMP-1 for the effects of CAFs on breast cancer cell behavior. Breast cancer cells were exposed to conditioned medium collected from TIMP-1-secreting CAFs (CAF-CM), and the specific effects of TIMP-1 on protein expression, migration and growth were examined using TIMP-1-specifc siRNA (siTIMP1), recombinant TIMP-1 protein (rhTIMP-1) and TIMP-1 level-rising phorbol ester. We observed that TIMP-1 increased the expression of its binding partner CD63 and induced STAT3 and ERK1/2 activation by cooperating with CD63 and integrin β1. Since TIMP-1 expression was found to be dependent on STAT3, TIMP-1 activated its own expression, resulting in a TIMP-1/CD63/integrin β1/STAT3 feedback loop. IL-6, a classical STAT3 activator, further fueled this loop. Knock-down of each component of the feedback loop prevented the CAF-induced increase in migratory activity and inhibited cellular growth in adherent cultures in the presence and absence of the anti-estrogen fulvestrant. These data show that TIMP-1/CD63/integrin β1/STAT3 plays a role in the effects of CAFs on breast cancer cell behavior.
Collapse
|
5
|
Ahmadi-Beni R, Shahbazi S, Khoshnevisan A. An integrative bioinformatics investigation and experimental validation of critically involved genes in high-grade gliomas. Diagn Pathol 2022; 17:73. [PMID: 36153549 PMCID: PMC9508723 DOI: 10.1186/s13000-022-01253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lack of knowledge around underlying mechanisms of gliomas mandates intense research efforts to improve the disease outcomes. Identification of high-grade gliomas pathogenesis which is known for poor prognosis and low survival is of particular importance. Distinguishing the differentially expressed genes is one of the core approaches to clarify the causative factors. Methods Microarray datasets of the treatment-naïve gliomas were provided from the Gene Expression Omnibus considering the similar platform and batch effect removal. Interacting recovery of the top differentially expressed genes was performed on the STRING and Cytoscape platforms. Kaplan–Meier analysis was piloted using RNA sequencing data and the survival rate of glioma patients was checked considering selected genes. To validate the bioinformatics results, the gene expression was elucidated by real-time RT-qPCR in a series of low and high-grade fresh tumor samples. Results We identified 323 up-regulated and 253 down-regulated genes. The top 20 network analysis indicated that PTX3, TIMP1, CHI3L1, LTF and IGFBP3 comprise a crucial role in gliomas progression. The survival was inversely linked to the levels of all selected genes. Further analysis of RNA sequencing data indicated a significant increase in all five genes in high-grade tumors. Among them, PTX3, TIMP1 and LTF did not show any change in low-grade versus controls. Real-time RT-qPCR confirmed the in-silico results and revealed significantly higher expression of selected genes in high-grade samples compared to low-grade. Conclusions Our results highlighted the role of PTX3 and TIMP1 which were previously considered in glioma tumorigenesis as well as LTF as a new potential biomarker.
Collapse
|
6
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
7
|
Cayetano-Salazar L, Nava-Tapia DA, Astudillo-Justo KD, Arizmendi-Izazaga A, Sotelo-Leyva C, Herrera-Martinez M, Villegas-Comonfort S, Navarro-Tito N. Flavonoids as regulators of TIMPs expression in cancer: Consequences, opportunities, and challenges. Life Sci 2022; 308:120932. [PMID: 36067841 DOI: 10.1016/j.lfs.2022.120932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of death in patients worldwide, where invasion and metastasis are directly responsible for this statement. Although cancer therapy has progressed in recent years, current therapeutic approaches are ineffective due to toxicity and chemoresistance. Therefore, it is essential to evaluate other treatment options, and natural products are a promising alternative as they show antitumor properties in different study models. This review describes the regulation of tissue inhibitors of metalloproteinases (TIMPs) expression and the role of flavonoids as molecules with the antitumor activity that targets TIMPs therapeutically. These inhibitors regulate tissue extracellular matrix (ECM) turnover; they inhibit matrix metalloproteinases (MMPs), cell migration, invasion, and angiogenesis and induce apoptosis in tumor cells. Data obtained in cell lines and in vivo models suggest that flavonoids are chemopreventive and cytotoxic against various types of cancer through several mechanisms. Flavonoids also regulate crucial signaling pathways such as focal adhesion kinase (FAK), phosphatidylinositol-3-kinase (PI3K)-Akt, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NFκB), and mitogen-activated protein kinase (MAPK) involved in cancer cell migration, invasion, and metastasis. All these data reposition flavonoids as excellent candidates for use in cancer therapy.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Dania A Nava-Tapia
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Kevin D Astudillo-Justo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Adán Arizmendi-Izazaga
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - César Sotelo-Leyva
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Mayra Herrera-Martinez
- Instituto de Farmacobiología, Universidad de la Cañada, Teotitlán de Flores Magón, OAX 68540, Mexico
| | - Sócrates Villegas-Comonfort
- División de Ciencias Naturales e Ingeniería, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, CDMX 05348, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
8
|
Raghubar AM, Pham DT, Tan X, Grice LF, Crawford J, Lam PY, Andersen SB, Yoon S, Teoh SM, Matigian NA, Stewart A, Francis L, Ng MSY, Healy HG, Combes AN, Kassianos AJ, Nguyen Q, Mallett AJ. Spatially Resolved Transcriptomes of Mammalian Kidneys Illustrate the Molecular Complexity and Interactions of Functional Nephron Segments. Front Med (Lausanne) 2022; 9:873923. [PMID: 35872784 PMCID: PMC9300864 DOI: 10.3389/fmed.2022.873923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Available transcriptomes of the mammalian kidney provide limited information on the spatial interplay between different functional nephron structures due to the required dissociation of tissue with traditional transcriptome-based methodologies. A deeper understanding of the complexity of functional nephron structures requires a non-dissociative transcriptomics approach, such as spatial transcriptomics sequencing (ST-seq). We hypothesize that the application of ST-seq in normal mammalian kidneys will give transcriptomic insights within and across species of physiology at the functional structure level and cellular communication at the cell level. Here, we applied ST-seq in six mice and four human kidneys that were histologically absent of any overt pathology. We defined the location of specific nephron structures in the captured ST-seq datasets using three lines of evidence: pathologist's annotation, marker gene expression, and integration with public single-cell and/or single-nucleus RNA-sequencing datasets. We compared the mouse and human cortical kidney regions. In the human ST-seq datasets, we further investigated the cellular communication within glomeruli and regions of proximal tubules-peritubular capillaries by screening for co-expression of ligand-receptor gene pairs. Gene expression signatures of distinct nephron structures and microvascular regions were spatially resolved within the mouse and human ST-seq datasets. We identified 7,370 differentially expressed genes (p adj < 0.05) distinguishing species, suggesting changes in energy production and metabolism in mouse cortical regions relative to human kidneys. Hundreds of potential ligand-receptor interactions were identified within glomeruli and regions of proximal tubules-peritubular capillaries, including known and novel interactions relevant to kidney physiology. Our application of ST-seq to normal human and murine kidneys confirms current knowledge and localization of transcripts within the kidney. Furthermore, the generated ST-seq datasets provide a valuable resource for the kidney community that can be used to inform future research into this complex organ.
Collapse
Affiliation(s)
- Arti M. Raghubar
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Duy T. Pham
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Xiao Tan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Laura F. Grice
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Pui Yeng Lam
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Stacey B. Andersen
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
- UQ Sequencing Facility, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Sohye Yoon
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
| | - Siok Min Teoh
- UQ Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas A. Matigian
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Stewart
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Leo Francis
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Monica S. Y. Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Nephrology Department, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Helen G. Healy
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Kassianos
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Mallett
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, Queensland, QLD, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, Queensland, QLD, Australia
| |
Collapse
|
9
|
Rao VS, Gu Q, Tzschentke S, Lin K, Ganig N, Thepkaysone ML, Wong FC, Polster H, Seifert L, Seifert AM, Buck N, Riediger C, Weiße J, Gutschner T, Michen S, Temme A, Schneider M, Baenke F, Weitz J, Kahlert C. Extravesicular TIMP-1 is a non-invasive independent prognostic marker and potential therapeutic target in colorectal liver metastases. Oncogene 2022; 41:1809-1820. [PMID: 35140332 PMCID: PMC8933275 DOI: 10.1038/s41388-022-02218-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Abstract
Molecular reprogramming of stromal microarchitecture by tumour-derived extracellular vesicles (EVs) is proposed to favour pre-metastatic niche formation. We elucidated the role of extravesicular tissue inhibitor of matrix metalloproteinase-1 (TIMP1EV) in pro-invasive extracellular matrix (ECM) remodelling of the liver microenvironment to aid tumour progression in colorectal cancer (CRC). Immunohistochemistry analysis revealed a high expression of stromal TIMP1 in the invasion front that was associated with poor progression-free survival in patients with colorectal liver metastases. Molecular analysis identified TIMP1EV enrichment in CRC-EVs as a major factor in the induction of TIMP1 upregulation in recipient fibroblasts. Mechanistically, we proved that EV-mediated TIMP1 upregulation in recipient fibroblasts induced ECM remodelling. This effect was recapitulated by human serum-derived EVs providing strong evidence that CRC release active EVs into the blood circulation of patients for the horizontal transfer of malignant traits to recipient cells. Moreover, EV-associated TIMP1 binds to HSP90AA, a heat-shock protein, and the inhibition of HSP90AA on human-derived serum EVs attenuates TIMP1EV-mediated ECM remodelling, rendering EV-associated TIMP1 a potential therapeutic target. Eventually, in accordance with REMARK guidelines, we demonstrated in three independent cohorts that EV-bound TIMP1 is a robust circulating biomarker for a non-invasive, preoperative risk stratification in patients with colorectal liver metastases.
Collapse
Affiliation(s)
- Venkatesh Sadananda Rao
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Qianyu Gu
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sandra Tzschentke
- Department of Medicine, Haematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Kuailu Lin
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nicole Ganig
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - May-Linn Thepkaysone
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Heike Polster
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases, Partner site Dresden, Heidelberg, Germany
| | - Adrian M Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases, Partner site Dresden, Heidelberg, Germany
| | - Nathalie Buck
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Carina Riediger
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jonas Weiße
- Junior Research Group 'RNA Biology and Pathogenesis', Medical Faculty, Martin-Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Tony Gutschner
- Junior Research Group 'RNA Biology and Pathogenesis', Medical Faculty, Martin-Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Susanne Michen
- Department of Neurosurgery, Section of Experimental Neurosurgery and Tumour Immunology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Section of Experimental Neurosurgery and Tumour Immunology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Franziska Baenke
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases, Partner site Dresden, Heidelberg, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany. .,National Center for Tumor Diseases, Partner site Dresden, Heidelberg, Germany.
| |
Collapse
|
10
|
Oncogenic tetraspanins: Implications for metastasis, drug resistance, cancer stem cell maintenance and diagnosis of leading cancers in females. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
12
|
Regulation of Tumor Metabolism and Extracellular Acidosis by the TIMP-10-CD63 Axis in Breast Carcinoma. Cells 2021; 10:cells10102721. [PMID: 34685701 PMCID: PMC8535136 DOI: 10.3390/cells10102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
A hallmark of malignant solid tumor is extracellular acidification coupled with metabolic switch to aerobic glycolysis. Using the human MCF10A progression model of breast cancer, we show that glycolytic switch and extracellular acidosis in aggressive cancer cells correlate with increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), known to induce intracellular signal transduction through the interaction with its cell surface receptor CD63, independent of its metalloproteinase inhibitory function. We found that, in aggressive breast carcinoma, the TIMP-1–CD63 signaling axis induced a metabolic switch by upregulating the rate of aerobic glycolysis, lowering mitochondrial respiration, preventing intracellular acidification, and inducing extracellular acidosis. Carbonic anhydrase IX (CAIX), a regulator of cellular pH through the hydration of metabolically released pericellular CO2, was identified as a downstream mediator of the TIMP-1–CD63 signaling axis responsible for extracellular acidosis. Consistently with our previous study, the TIMP-1–CD63 signaling promoted survival of breast cancer cells. Interestingly, breast carcinoma cell survival was drastically reduced upon shRNA-mediated knockdown of CAIX expression, demonstrating the significance of CAIX-regulated pH in the TIMP-1–CD63-mediated cancer cell survival. Taken together, the present study demonstrates the functional significance of TIMP-1–CD63–CAXI signaling axis in the regulation of tumor metabolism, extracellular acidosis, and survival of breast carcinoma. We propose that this axis may serve as a novel therapeutic target.
Collapse
|
13
|
Nazempour N, Taleqani MH, Taheri N, Haji Ali Asgary Najafabadi AH, Shokrollahi A, Zamani A, Fattahi Dolatabadi N, Peymani M, Mahdevar M. The role of cell surface proteins gene expression in diagnosis, prognosis, and drug resistance of colorectal cancer: In silico analysis and validation. Exp Mol Pathol 2021; 123:104688. [PMID: 34592197 DOI: 10.1016/j.yexmp.2021.104688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Cell surface proteins (CSPs) are an important type of protein in different essential cell functions. This study aimed to distinguish overexpressed CSPs in colorectal cancer to investigate their biomarker, prognosis, and drug resistance potential. Raw data of three datasets including 1187 samples was downloaded then normalization and differential expression were performed. By the combination of the cancer genome atlas (TCGA) clinical data, survival analysis was carried out. Information of all CSPs was collected from cell surface protein atlas. The role of each candidate gene expression was investigated in drug resistance by CCEL and GDSC data from PharmacoGX. CRC samples including 30 tumor samples and adjacent normal were used to confirm data by RT-qPCR. Outcomes showed that 66 CSPs overexpressed in three datasets, and 146 CSPs expression associated with poor prognosis features in TCGA data that TIMP1 and QSOX2 can associate with poor patient survival independently. High-risk patients illustrated more fatality than low-risk patients based on the risk score calculated by the expression level of these genes. Receiver operating characteristic curve analysis showed that 39 CSPs as perfect biomarkers for diagnosis in CRC. Furthermore, QSOX2 and TIMP1 expression levels increased in tumor samples compared to adjacent normal samples. The Drug resistance analysis demonstrated ADAM12 and COL1A2 up-regulation among 66 overexpressed CSPs caused resistance to Venetoclax and Cyclophosphamide with a high estimate, respectively. Many CSPs are deregulated in CRC, and can be valuable candidates as biomarkers for diagnosis, prognosis, and drug resistance.
Collapse
Affiliation(s)
- Nasrin Nazempour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | - Mohammad Hossein Taleqani
- Department of Biology, Faculty of Science, University of Yazd, Yazd, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | - Navid Taheri
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | | | - Alireza Shokrollahi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Atefeh Zamani
- Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Sharekord, Iran.
| | - Mohammad Mahdevar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
14
|
Huang C, Xiong Z, Yang Q, Li X. Systematic Analysis of 4-gene Prognostic Signature in Patients with Diffuse Gliomas Based on Gene Expression Profiles. J Cancer 2021; 12:4295-4306. [PMID: 34093830 PMCID: PMC8176424 DOI: 10.7150/jca.54565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/24/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Diffuse gliomas are a group of diseases that contain different degrees of malignancy and complex heterogeneity. Previous studies proposed biomarkers for certain grades of gliomas, but few of them have conducted a systematic analysis of different grades to search for molecular markers. Methods: WGCNA was used to find significant genes associated with malignant progression of diffuse glioma in TCGA glioma sequencing expression data and the GEO expression profile-merge meta dataset. Lasso regression was used for potential model building and the best model was selected by CPE, IDI, and C_index. Risk score model was used to evaluate the gene signature prognostic power. Multi-omics data, including CNV, methylation, clinical traits, and mutation, were used for model evaluation. Results: We found out 67 genes significantly associated with malignant progression of diffuse glioma by WGCNA. Next, we established a new 4 gene molecular marker (KDELR2, EMP3, TIMP1, and TAGLN2). Multivariate cox analysis identified the risk score of the 4 genes as an independent predictor of prognosis in patients with diffuse gliomas, and its predictive power was independent of the histopathological grades of glioma. Further, we had confirmed in five independent test datasets and the risk score remained good predictive power. The combination of the prognosis model with specific molecular characteristics possessed a better predictive power. Furthermore, we divided the low-risk group into three subtypes: LowRisk_IDH1wt, LowRisk_IDH1mut/ATRXmut, and LowRisk_IDH1mut/ATRXwt by combining IDH1 mutation with ATRX mutation, which possessed obvious survival difference. In further analysis, we found that the 4 gene prognosis model possessed multi-omics features. Conclusion: We established a malignant-related 4-gene molecular marker by glioma expression profile data from multiple microarrays and sequencing data. The four markers had good predictive power on the overall survival of glioma patients and were associated with gliomas' clinical and genetic backgrounds, including clinical features, gene mutation, methylation, CNV, signal pathways.
Collapse
Affiliation(s)
- Chunhai Huang
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou, Hunan, 416000, China.,Centre for Clinical and Translational Medicine Research, Jishou University, Jishou, Hunan, 416000, China
| | - Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
15
|
In silico identification of the prognostic biomarkers and therapeutic targets associated with cancer stem cell characteristics of glioma. Biosci Rep 2021; 40:225916. [PMID: 32725165 PMCID: PMC7418212 DOI: 10.1042/bsr20201037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Glioma is the common histological subtype of malignancy in central nervous system, with a high morbidity and mortality. Cancer stem cells (CSCs) play an important role in regulating the tumorigenesis and progression of glioma; however, the prognostic biomarkers and therapeutic targets associated with CSC characteristics have not been fully acknowledged in glioma. In order to identify the prognostic stemness-related genes (SRGs) of glioma in silico, the RNA sequencing data of patients with glioma were retrieved from The Cancer Genome Atlas (TCGA) databases. The mRNA expression-based stemness index (mRNAsi) was significantly associated with the glioma histologic grade, isocitrate dehydrogenase 1 (IDH1) mutation and overall survival of glioma patients by the nonparametric test and Kaplan–Meier survival analysis. A total of 340 SRGs were identified as the overlapped stemness-related differential expressed genes (DEGs) of different histologic grade screened by the univariate Cox analysis. Based on 11 prognostic SRGs, the predict nomogram was constructed with the AUC of 0.832. Moreover, the risk score of the nomogram was an independent prognostic factor, indicating its significant applicability. Besides other eight reported biomarkers of glioma, we found that F2RL2, CLCNKA and LOXL4 were first identified as prognostic biomarkers for glioma. In conclusion, this bioinformatics study demonstrates the mRNAsi as a reliable index for the IDH1 mutation, histologic grade and OS of glioma patients and provides a well-applied model for predicting the OS for patients with glioma based on prognostic SRGs. Additionally, this in silico study also identifies three novel prognostic biomarkers (F2RL2, CLCNKA and LOXL4) for glioma patients.
Collapse
|
16
|
Gao Y, Li X, Zeng C, Liu C, Hao Q, Li W, Zhang K, Zhang W, Wang S, Zhao H, Fan D, Li M, Zhang Y, Zhang W, Zhang C. CD63 + Cancer-Associated Fibroblasts Confer Tamoxifen Resistance to Breast Cancer Cells through Exosomal miR-22. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002518. [PMID: 33173749 PMCID: PMC7610308 DOI: 10.1002/advs.202002518] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 05/21/2023]
Abstract
Tamoxifen remains the most effective treatment for estrogen receptor α (ERα)-positive breast cancer. However, many patients still develop resistance to tamoxifen in association with metastatic recurrence, which presents a tremendous clinical challenge. To better understand tamoxifen resistance from the perspective of the tumor microenvironment, the whole microenvironment landscape is charted by single-cell RNA sequencing and a new cancer-associated fibroblast (CAF) subset, CD63+ CAFs, is identified that promotes tamoxifen resistance in breast cancer. Furthermore, it is discovered that CD63+ CAFs secrete exosomes rich in miR-22, which can bind its targets, ERα and PTEN, to confer tamoxifen resistance on breast cancer cells. Additionally, it is found that the packaging of miR-22 into CD63+ CAF-derived exosomes is mediated by SFRS1. Furthermore, CD63 induces STAT3 activation to maintain the phenotype and function of CD63+ CAFs. Most importantly, the pharmacological blockade of CD63+ CAFs with a CD63-neutralizing antibody or cRGD-miR-22-sponge nanoparticles enhances the therapeutic effect of tamoxifen in breast cancer. In summary, the study reveals a novel subset of CD63+ CAFs that induces tamoxifen resistance in breast cancer via exosomal miR-22, suggesting that CD63+ CAFs may be a novel therapeutic target to enhance tamoxifen sensitivity.
Collapse
Affiliation(s)
- Yuan Gao
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Xiaoju Li
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Cheng Zeng
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
- Institute of Material MedicalSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Chenlin Liu
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Qiang Hao
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Weina Li
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Kuo Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Wangqian Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Shuning Wang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Huadong Zhao
- Department of General SurgeryTangdu HospitalThe Fourth Military Medical UniversityXi'an710038P. R. China
| | - Dong Fan
- Department of General SurgeryTangdu HospitalThe Fourth Military Medical UniversityXi'an710038P. R. China
| | - Meng Li
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yingqi Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Wei Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Cun Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
17
|
Angioni R, Liboni C, Herkenne S, Sánchez-Rodríguez R, Borile G, Marcuzzi E, Calì B, Muraca M, Viola A. CD73 + extracellular vesicles inhibit angiogenesis through adenosine A 2B receptor signalling. J Extracell Vesicles 2020; 9:1757900. [PMID: 32489531 PMCID: PMC7241475 DOI: 10.1080/20013078.2020.1757900] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/04/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Pathological angiogenesis is a hallmark of several conditions including eye diseases, inflammatory diseases, and cancer. Stromal cells play a crucial role in regulating angiogenesis through the release of soluble factors or direct contact with endothelial cells. Here, we analysed the properties of the extracellular vesicles (EVs) released by bone marrow mesenchymal stromal cells (MSCs) and explored the possibility of using them to therapeutically target angiogenesis. We demonstrated that in response to pro-inflammatory cytokines, MSCs produce EVs that are enriched in TIMP-1, CD39 and CD73 and inhibit angiogenesis targeting both extracellular matrix remodelling and endothelial cell migration. We identified a novel anti-angiogenic mechanism based on adenosine production, triggering of A2B adenosine receptors, and induction of NOX2-dependent oxidative stress within endothelial cells. Finally, in pilot experiments, we exploited the anti-angiogenic EVs to inhibit tumour progression in vivo. Our results identify novel pathways involved in the crosstalk between endothelial and stromal cell and suggest new therapeutic strategies to target pathological angiogenesis.
Collapse
Affiliation(s)
- Roberta Angioni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
- Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Cristina Liboni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | | | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Giulia Borile
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Elisabetta Marcuzzi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Bianca Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Maurizio Muraca
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
- Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| |
Collapse
|
18
|
Xu F, Wang Y, Xiao K, Hu Y, Tian Z, Chen Y. Quantitative site- and structure-specific N-glycoproteomics characterization of differential N-glycosylation in MCF-7/ADR cancer stem cells. Clin Proteomics 2020; 17:3. [PMID: 32042278 PMCID: PMC7001331 DOI: 10.1186/s12014-020-9268-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/25/2020] [Indexed: 01/11/2023] Open
Abstract
Background Cancer stem cells (CSCs) are reported to be responsible for tumor initiation, progression, metastasis, and therapy resistance where P-glycoprotein (P-gp) as well as other glycoproteins are involved. Identification of these glycoprotein markers is critical for understanding the resistance mechanism and developing therapeutics. Methods In this study, we report our comparative and quantitative site- and structure-specific N-glycoproteomics study of MCF-7/ADR cancer stem cells (CSCs) vs. MCF-7/ADR cells. With zic-HILIC enrichment, isotopic diethyl labeling, RPLC–MS/MS (HCD) analysis and GPSeeker DB search, differentially expressed N-glycosylation was quantitatively characterized at the intact N-glycopeptide level. Results 4016 intact N-glycopeptides were identified with spectrum-level FDR ≤ 1%. With the criteria of ≥ 1.5 fold change and p value < 0.05, 247 intact N-glycopeptides were found differentially expressed in MCF-7/ADR CSCs as putative markers. Raw data are available via ProteomeXchange with identifier PXD013836. Conclusions Quantitative site- and structure-specific N-glycoproteomics characterization may help illustrate the cell stemness property.
Collapse
Affiliation(s)
- Feifei Xu
- 1School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Yue Wang
- 2School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092 China
| | - Kaijie Xiao
- 2School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092 China
| | - Yechen Hu
- 1School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Zhixin Tian
- 2School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092 China
| | - Yun Chen
- 1School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
19
|
Zhang Q, Xu B, Chen J, Chen F, Chen Z. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J Clin Lab Anal 2019; 34:e23082. [PMID: 31677196 PMCID: PMC7083417 DOI: 10.1002/jcla.23082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 10/06/2019] [Indexed: 01/03/2023] Open
Abstract
Background We aimed to investigate the interaction between CD133 and Nestin and further assessed the correlation of CD133 and Nestin with clinicopathological characteristics and survival in patients with astrocytic tumor. Methods Totally 127 patients with astrocytic tumor underwent surgical resection were enrolled. Patients’ age, gender, and World Health Organization (WHO) grade were recorded, and the survival data were extracted from the follow‐up records. The expressions of CD133 and Nestin in astrocytic tumor tissues were analyzed by immunohistochemistry assay. The WHO grade I and II astrocytic tumors were defined as low‐grade astrocytic tumors (LGA), the WHO grade III and IV astrocytic tumors were defined as high‐grade astrocytic tumors (HGA). Results There were 79 (62.2%), 34 (26.8%), 14 (11.0%), and 0 (0.0%) patients with CD133 negative, low, moderate, and high expression, respectively; 7 (5.5%), 47 (37.0%), 20 (15.7%), 53 (41.7%) patients with Nestin negative, low, moderate, high expression, respectively. CD133 and Nestin were both correlated with advanced WHO grade but not with age or gender, and positive correlation was observed between CD133 and Nestin. For survival, both CD133 and Nestin were correlated with unfavorable overall survival (OS), and further analysis illustrated that Nestin but not CD133 independently predicted poor OS. Subgroup analysis also revealed that Nestin but not CD133 negatively associated with shorter OS in LGA patients, while both CD133 and Nestin were correlated with poor OS in HGA patients. Conclusion CD133 and Nestin present as potential biomarkers for advanced pathological grade and poor survival in patients with astrocytic tumor.
Collapse
Affiliation(s)
- Qingping Zhang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Binchu Xu
- Department of Neurosurgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jianliang Chen
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Furong Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laborarory of Oncology in South China, Guangzhou, China
| | - Zhongping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laborarory of Oncology in South China, Guangzhou, China
| |
Collapse
|
20
|
Shrestha M, Ando T, Chea C, Sakamoto S, Nishisaka T, Ogawa I, Miyauchi M, Takata T. The transition of tissue inhibitor of metalloproteinases from -4 to -1 induces aggressive behavior and poor patient survival in dedifferentiated liposarcoma via YAP/TAZ activation. Carcinogenesis 2019; 40:1288-1297. [PMID: 31074490 DOI: 10.1093/carcin/bgz023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Liposarcoma (LS) is the most common soft-tissue sarcoma. Dedifferentiated liposarcoma (DDLS) shows more aggressive biological behavior than that of well-differentiated liposarcoma (WDLS), so advanced therapeutic agents based on molecular mechanism are urgently needed. Here we show that tissue inhibitors of metalloproteinases (TIMPs) from TIMP-1 to TIMP-4 are differently expressed and regulate yes-associated protein (YAP)/transcriptional co-activator with PDZ binding motif (TAZ) in LS. Database analysis showed high TIMP-1 expression in DDLS patients correlating with poor prognosis, but high TIMP-4 expression in WDLS patients with better prognosis. Stable TIMP-1 knockdown inactivated YAP/TAZ and inhibited proliferation, colony formation and migration in DDLS cells, which was rescued by a constitutive active YAP. However, stable overexpression of TIMP-1 showed the opposite in WDLS cells. Stable TIMP-4 knockdown activated YAP/TAZ and promoted proliferation and migration in WDLS cells, which was suppressed by YAP/TAZ inhibitor (verteporfin) or knockdown of YAP/TAZ. Recombinant TIMP-4 showed opposite results in DDLS cells. These results indicate that dedifferentiation in LS shifts the expression of TIMPs from type 4 to type 1, inducing more aggressive behavior and poor prognosis through YAP/TAZ activation, which can be prognostic markers and therapeutic targets for LS patients.
Collapse
Affiliation(s)
- Madhu Shrestha
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Ando
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chanbora Chea
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinnichi Sakamoto
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Nishisaka
- Department of Pathology Clinical Laboratory, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Ikuko Ogawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Gao Y, Zhang E, Liu B, Zhou K, He S, Feng L, Wu G, Cao M, Wu H, Cui Y, Zhang X, Liu X, Wang Y, Gao Y, Bian X. Integrated analysis identified core signal pathways and hypoxic characteristics of human glioblastoma. J Cell Mol Med 2019; 23:6228-6237. [PMID: 31282108 PMCID: PMC6714287 DOI: 10.1111/jcmm.14507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/30/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
As a hallmark for glioblastoma (GBM), high heterogeneity causes a variety of phenotypes and therapeutic responses among GBM patients, and it contributes to treatment failure. Moreover, hypoxia is a predominant feature of GBM and contributes greatly to its phenotype. To analyse the landscape of gene expression and hypoxic characteristics of GBM cells and their clinical significance in GBM patients, we performed transcriptome analysis of the GBM cell line U87‐MG and the normal glial cell line HEB under normoxia and hypoxia conditions, with the results of which were analysed using established gene ontology databases as well as The Cancer Genome Atlas and the Cancer Cell Line Encyclopedia. We revealed core signal pathways, including inflammation, angiogenesis and migration, and for the first time mapped the components of the toll‐like receptor 6 pathway in GBM cells. Moreover, by investigating the signal pathways involved in homoeostasis, proliferation and adenosine triphosphate metabolism, the critical response of GBM to hypoxia was clarified. Experiments with cell lines, patient serum and tissue identified IL1B, CSF3 and TIMP1 as potential plasma markers and VIM, STC1, TGFB1 and HMOX1 as potential biopsy markers for GBM. In conclusion, our study provided a comprehensive understanding for signal pathways and hypoxic characteristics of GBM and identified new biomarkers for GBM patients.
Collapse
Affiliation(s)
- Yixing Gao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Kai Zhou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Gang Wu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Mianfu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Haibo Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Xu Y, Geng R, Yuan F, Sun Q, Liu B, Chen Q. Identification of differentially expressed key genes between glioblastoma and low-grade glioma by bioinformatics analysis. PeerJ 2019; 7:e6560. [PMID: 30867991 PMCID: PMC6409090 DOI: 10.7717/peerj.6560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Gliomas are a very diverse group of brain tumors that are most commonly primary tumor and difficult to cure in central nervous system. It’s necessary to distinguish low-grade tumors from high-grade tumors by understanding the molecular basis of different grades of glioma, which is an important step in defining new biomarkers and therapeutic strategies. We have chosen the gene expression profile GSE52009 from gene expression omnibus (GEO) database to detect important differential genes. GSE52009 contains 120 samples, including 60 WHO II samples and 24 WHO IV samples that were selected in our analysis. We used the GEO2R tool to pick out differently expressed genes (DEGs) between low-grade glioma and high-grade glioma, and then we used the database for annotation, visualization and integrated discovery to perform gene ontology analysis and Kyoto encyclopedia of gene and genome pathway analysis. Furthermore, we used the Cytoscape search tool for the retrieval of interacting genes with molecular complex detection plug-in applied to achieve the visualization of protein–protein interaction (PPI). We selected 15 hub genes with higher degrees of connectivity, including tissue inhibitors metalloproteinases-1 and serum amyloid A1; additionally, we used GSE53733 containing 70 glioblastoma samples to conduct Gene Set Enrichment Analysis. In conclusion, our bioinformatics analysis showed that DEGs and hub genes may be defined as new biomarkers for diagnosis and for guiding the therapeutic strategies of glioblastoma.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| |
Collapse
|
23
|
Wang Y, Xu F, Xiao K, Chen Y, Tian Z. Site- and structure-specific characterization ofN-glycoprotein markers of MCF-7 cancer stem cells using isotopic-labelling quantitativeN-glycoproteomics. Chem Commun (Camb) 2019; 55:7934-7937. [DOI: 10.1039/c9cc04114a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-throughput proteome-level characterization of stemness markers of MCF-7 cancer stem cells was carried out using our recently developed site- and structure-specific isotopic-labelled quantitativeN-glycoproteomics pipeline.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Science & Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai 200092
- China
| | - Feifei Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Kaijie Xiao
- School of Chemical Science & Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai 200092
- China
| | - Yun Chen
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Zhixin Tian
- School of Chemical Science & Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
24
|
Miki Y, Yashiro M, Okuno T, Kuroda K, Togano S, Hirakawa K, Ohira M. Clinico-pathological significance of exosome marker CD63 expression on cancer cells and stromal cells in gastric cancer. PLoS One 2018; 13:e0202956. [PMID: 30222750 PMCID: PMC6141093 DOI: 10.1371/journal.pone.0202956] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Background It has been reported that CD63, an exosome marker, is expressed in solid cancer tissues. However, its significance in patients with gastric cancer has not been clarified. Exosomes derived from cancer cells and stromal cells might play an important role in the intracellular communications involved in the development of carcinoma. This study aimed to clarify the relationship between CD63 expression in cancer cells and stromal cells and clinical-pathologic factors. Methods A total of 595 gastric cancer patients were enrolled in this study. CD63 expression in cancer cells and stromal cells was analyzed by immunohistochemistry. The correlations between CD63 expression and several clinicopathological factors were investigated. Results CD63 expression was mainly observed on the cell membranes of cancer cells, and in the cytoplasm of stromal cells. Of 595 patients, 247 cases had CD63-positive cancer cells, and 107 cases had CD63-positive stromal cells. Cases with CD63-positive cancer cells were significantly correlated with scirrhous-type gastric cancer, tumor depth, lymph node metastasis, lymphatic invasion, and tumor size. Cases with CD63-positive stromal cells were significantly correlated with age (≥65), tumor depth (T3-4), lymphatic invasion, and tumor size (≥ 5 cm). The 5-year survival rate was significantly lower (p<0.001) in patients with CD63-positive than CD63-negative tumors. Multivariate analysis showed that CD63 expression in cancer cells was a significant independent prognostic factor in patients with gastric cancer. Conclusion CD63 might be a prognostic marker for patients with gastric cancer. CD63-positive exosomes might be associated with the interaction between stromal cells and cancer cells.
Collapse
Affiliation(s)
- Yuichiro Miki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Tomohisa Okuno
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shingo Togano
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|