1
|
Chen T, Ashwood LM, Kondrashova O, Strasser A, Kelly G, Sutherland KD. Breathing new insights into the role of mutant p53 in lung cancer. Oncogene 2025; 44:115-129. [PMID: 39567755 PMCID: PMC11725503 DOI: 10.1038/s41388-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
The tumour suppressor gene p53 is one of the most frequently mutated genes in lung cancer and these defects are associated with poor prognosis, albeit some debate exists in the lung cancer field. Despite extensive research, the exact mechanisms by which mutant p53 proteins promote the development and sustained expansion of cancer remain unclear. This review will discuss the cellular responses controlled by p53 that contribute to tumour suppression, p53 mutant lung cancer mouse models and characterisation of p53 mutant lung cancer. Furthermore, we discuss potential approaches of targeting mutant p53 for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tianwei Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren M Ashwood
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Gemma Kelly
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Kate D Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Mason M, Lapuente-Santana Ó, Halkola AS, Wang W, Mall R, Xiao X, Kaufman J, Fu J, Pfeil J, Banerjee J, Chung V, Chang H, Chasalow SD, Lin HY, Chai R, Yu T, Finotello F, Mirtti T, Mäyränpää MI, Bao J, Verschuren EW, Ahmed EI, Ceccarelli M, Miller LD, Monaco G, Hendrickx WRL, Sherif S, Yang L, Tang M, Gu SS, Zhang W, Zhang Y, Zeng Z, Das Sahu A, Liu Y, Yang W, Bedognetti D, Tang J, Eduati F, Laajala TD, Geese WJ, Guinney J, Szustakowski JD, Vincent BG, Carbone DP. A community challenge to predict clinical outcomes after immune checkpoint blockade in non-small cell lung cancer. J Transl Med 2024; 22:190. [PMID: 38383458 PMCID: PMC10880244 DOI: 10.1186/s12967-023-04705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC. METHODS Participants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials. RESULTS A total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression-based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1. CONCLUSIONS This DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy. TRIAL REGISTRATION CheckMate 026; NCT02041533, registered January 22, 2014. CheckMate 227; NCT02477826, registered June 23, 2015.
Collapse
Affiliation(s)
- Mike Mason
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Óscar Lapuente-Santana
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anni S Halkola
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Wenyu Wang
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
- Department of Immunology, St. Jude Children's Research Hospital, P.O. Box 38105, Memphis, TN, USA
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Xu Xiao
- School of Informatics, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jacob Kaufman
- Department of Medicine, Duke University, Durham, NC, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jingxin Fu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Han Chang
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | - Francesca Finotello
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
- Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, GA, USA
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jie Bao
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eiman I Ahmed
- Human Immunology Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", 80125, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, Via Camporeale, Ariano Irpino, Italy
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Gianni Monaco
- BIOGEM Institute of Molecular Biology and Genetics, Via Camporeale, Ariano Irpino, Italy
| | - Wouter R L Hendrickx
- Human Immunology Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 26999, Doha, Qatar
| | - Shimaa Sherif
- Human Immunology Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 26999, Doha, Qatar
| | - Lin Yang
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ming Tang
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Yi Zhang
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zexian Zeng
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Yang Liu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Davide Bedognetti
- Human Immunology Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 26999, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Jing Tang
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | | | | | | | - Benjamin G Vincent
- Department of Medicine, Division of Hematology, Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David P Carbone
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Li H, Shyam Sunder S, Jatwani K, Bae Y, Deng L, Liu Q, Dy GK, Pokharel S. Tumor Characteristics and Treatment Responsiveness in Pembrolizumab-Treated Non-Small Cell Lung Carcinoma. Cancers (Basel) 2024; 16:744. [PMID: 38398135 PMCID: PMC10887414 DOI: 10.3390/cancers16040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Pembrolizumab, a widely used immune checkpoint inhibitor (ICI), has revolutionized the treatment of non-small cell lung cancer (NSCLC). Identifying unique tumor characteristics in patients likely to respond to pembrolizumab could help the clinical adjudication and development of a personalized therapeutic strategy. In this retrospective study, we reviewed the clinical data and pathological features of 84 NSCLC patients treated with pembrolizumab. We examined the correlation between the clinical and demographic characteristics and the tumor histopathologic features obtained before immunotherapy. The response to pembrolizumab therapy was evaluated via the Response Evaluation Criteria in Solid Tumors (RECIST). The clinical data and cancer tissue characteristics were assessed and compared among three groups according to the following RECIST: the responsive group (RG), the stable disease group (SD), and the progressive disease group (PD), where the RG comprised patients with either a complete response (CR) or a partial response (PR). The overall survival rate of the RG group was significantly higher than the SD and PD groups. In addition, the percentage of pre-treatment viable tumor cell content in the RG and SD groups was significantly higher. At the same time, the extracellular stroma proportion was significantly lower than that of the PD group. The number of tumor-infiltrating lymphocytes (TILs) in the RG group was significantly higher than in the PD group. There were no significant differences in tumor necrosis, the stroma composition, PD-L1 expression level (TPS 1-49% vs. ≥50%), and treatment response. In conclusion, our population of NSCLC patients who experienced positive treatment responses to pembrolizumab therapy had a better prognosis compared to patients with either SD or PD. Moreover, the relative proportions of viable tumor cells to tumor-associated lymphocytes were associated with responsiveness to treatment. It is expected that larger prospective clinical studies will further validate these findings.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (H.L.); (S.S.S.)
| | - Sunitha Shyam Sunder
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (H.L.); (S.S.S.)
| | - Karan Jatwani
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (K.J.); (L.D.); (G.K.D.)
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Lei Deng
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (K.J.); (L.D.); (G.K.D.)
| | - Qian Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Grace K. Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (K.J.); (L.D.); (G.K.D.)
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (H.L.); (S.S.S.)
| |
Collapse
|
4
|
Yan X, Bai L, Qi P, Lv J, Song X, Zhang L. Potential Effects of Regulating Intestinal Flora on Immunotherapy for Liver Cancer. Int J Mol Sci 2023; 24:11387. [PMID: 37511148 PMCID: PMC10380345 DOI: 10.3390/ijms241411387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal flora plays an important role in the occurrence and development of liver cancer, affecting the efficacy and side effects of conventional antitumor therapy. Recently, immunotherapy for liver cancer has been a palliative treatment for patients with advanced liver cancer lacking surgical indications. Representative drugs include immune checkpoint inhibitors, regulators, tumor vaccines, and cellular immunotherapies. The effects of immunotherapy on liver cancer vary because of the heterogeneity of the tumors. Intestinal flora can affect the efficacy and side effects of immunotherapy for liver cancer by regulating host immunity. Therefore, applying probiotics, prebiotics, antibiotics, and fecal transplantation to interfere with the intestinal flora is expected to become an important means of assisting immunotherapy for liver cancer. This article reviews publications that discuss the relationship between intestinal flora and immunotherapy for liver cancer and further clarifies the potential relationship between intestinal flora and immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Yu SJ. Immunotherapy for hepatocellular carcinoma: Recent advances and future targets. Pharmacol Ther 2023; 244:108387. [PMID: 36948423 DOI: 10.1016/j.pharmthera.2023.108387] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Immunotherapy is a promising approach to treating various types of cancers, including hepatocellular carcinoma (HCC). While single immunotherapy drugs show limited effectiveness on a small subset of patients, the combination of the anti PD-L1 atezolizumab and anti-vascular endothelial growth factor bevacizumab has shown significant improvement in survival compared to sorafenib as a first-line treatment. However, the current treatment options still have a low success rate of about 30%. Thus, more effective treatments for HCC are urgently required. Several novel immunotherapeutic methods, including the use of novel immune checkpoint inhibitors, innovative immune cell therapies like chimeric antigen receptor T cells (CAR-T), TCR gene-modified T cells and stem cells, as well as combination strategies are being tested in clinical trials for the treatment of HCC. However, some crucial issues still exist such as the presence of heterogeneous antigens in solid tumors, the immune-suppressive environment within tumors, the risk of on-target/off-tumor, infiltrating CAR-T cells, immunosuppressive checkpoint molecules, and cytokines. Overall, immunotherapy is on the brink of major advancements in the fight against HCC.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Immune checkpoint inhibitor resistance in hepatocellular carcinoma. Cancer Lett 2023; 555:216038. [PMID: 36529238 DOI: 10.1016/j.canlet.2022.216038] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The application of immune checkpoint inhibitors (ICIs) has markedly enhanced the treatment of hepatocellular carcinoma (HCC), and HCC patients who respond to ICIs have shown prolonged survival. However, only a subset of HCC patients benefit from ICIs, and those who initially respond to ICIs may develop resistance. ICI resistance is likely related to various factors, including the immunosuppressive tumor microenvironment (TME), the absence of antigen expression and impaired antigen presentation, tumor heterogeneity, and gut microbiota. Therefore, exploring the possible mechanisms of ICI resistance is crucial to improve the clinical benefit of ICIs further. Various combination therapies for HCC immunotherapy have prevented and reversed ICI resistance to a certain extent. In addition, many new combination therapies that can overcome resistance are being explored. This review seeks to characterize the complex TME in HCC, explore the possible mechanisms of immune resistance to ICIs in different resistance categories, and review the combination therapies currently being applied and those under investigation for immunotherapy.
Collapse
|
7
|
Russano M, La Cava G, Cortellini A, Citarella F, Galletti A, Di Fazio GR, Santo V, Brunetti L, Vendittelli A, Fioroni I, Pantano F, Tonini G, Vincenzi B. Immunotherapy for Metastatic Non-Small Cell Lung Cancer: Therapeutic Advances and Biomarkers. Curr Oncol 2023; 30:2366-2387. [PMID: 36826142 PMCID: PMC9955173 DOI: 10.3390/curroncol30020181] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Immunotherapy has revolutionized the treatment paradigm of non-small cell lung cancer and improved patients' prognosis. Immune checkpoint inhibitors have quickly become standard frontline treatment for metastatic non-oncogene addicted disease, either as a single agent or in combination strategies. However, only a few patients have long-term benefits, and most of them do not respond or develop progressive disease during treatment. Thus, the identification of reliable predictive and prognostic biomarkers remains crucial for patient selection and guiding therapeutic choices. In this review, we provide an overview of the current strategies, highlighting the main clinical challenges and novel potential biomarkers.
Collapse
Affiliation(s)
- Marco Russano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Giulia La Cava
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessio Cortellini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Fabrizio Citarella
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessandro Galletti
- Division of Medical Oncology, San Camillo Forlanini Hospital, 00152 Roma, Italy
| | - Giuseppina Rita Di Fazio
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Valentina Santo
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Leonardo Brunetti
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessia Vendittelli
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Iacopo Fioroni
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
8
|
Identification and Application of a Novel Immune-Related lncRNA Signature on the Prognosis and Immunotherapy for Lung Adenocarcinoma. Diagnostics (Basel) 2022; 12:diagnostics12112891. [PMID: 36428951 PMCID: PMC9689875 DOI: 10.3390/diagnostics12112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) participates in the immune regulation of lung cancer. However, limited studies showed the potential roles of immune-related lncRNAs (IRLs) in predicting survival and immunotherapy response of lung adenocarcinoma (LUAD). Methods: Based on The Cancer Genome Atlas (TCGA) and ImmLnc databases, IRLs were identified through weighted gene coexpression network analysis (WGCNA), Cox regression, and Lasso regression analyses. The predictive ability was validated by Kaplan−Meier (KM) and receiver operating characteristic (ROC) curves in the internal dataset, external dataset, and clinical study. The immunophenoscore (IPS)-PD1/PD-L1 blocker and IPS-CTLA4 blocker data of LUAD were obtained in TCIA to predict the response to immune checkpoint inhibitors (ICIs). The expression levels of immune checkpoint molecules and markers for hyperprogressive disease were analyzed. Results: A six-IRL signature was identified, and patients were stratified into high- and low-risk groups. The low-risk had improved survival outcome (p = 0.006 in the training dataset, p = 0.010 in the testing dataset, p < 0.001 in the entire dataset), a stronger response to ICI (p < 0.001 in response to anti-PD-1/PD-L1, p < 0.001 in response to anti-CTLA4), and higher expression levels of immune checkpoint molecules (p < 0.001 in PD-1, p < 0.001 in PD-L1, p < 0.001 in CTLA4) but expressed more biomarkers of hyperprogression in immunotherapy (p = 0.002 in MDM2, p < 0.001 in MDM4). Conclusion: The six-IRL signature exhibits a promising prediction value of clinical prognosis and ICI efficacy in LUAD. Patients with low risk might gain benefits from ICI, although some have a risk of hyperprogressive disease.
Collapse
|
9
|
Dong Y, Zhao L, Duan J, Bai H, Chen D, Li S, Yu Y, Xiao M, Zhang Q, Duan Q, Sun T, Qi C, Wang J, Wang Z. PAPPA2 mutation as a novel indicator stratifying beneficiaries of immune checkpoint inhibitors in skin cutaneous melanoma and non-small cell lung cancer. Cell Prolif 2022; 55:e13283. [PMID: 35811392 PMCID: PMC9436912 DOI: 10.1111/cpr.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pappalysin 2 (PAPPA2) mutation, occurring most frequently in skin cutaneous melanoma (SKCM) and non-small cell lung cancer (NSCLC), is found to be related to anti-tumour immune response. However, the association between PAPPA2 and the efficacy of immune checkpoint inhibitors (ICIs) therapy remains unknown. METHODS To analyse the performance of PAPPA2 mutation as an indicator stratifying beneficiaries of ICIs, seven public cohorts with whole-exome sequencing (WES) data were divided into the NSCLC set (n = 165) and the SKCM set (n = 210). For further validation, 41 NSCLC patients receiving anti-PD-(L)1 treatment were enrolled in China cohort (n = 41). The mechanism was explored based on The Cancer Genome Atlas database (n = 1467). RESULTS In the NSCLC set, patients with PAPPA2 mutation (PAPPA2-Mut) demonstrated a significantly superior progress free survival (PFS, hazard ratio [HR], 0.28 [95% CI, 0.14-0.53]; p < 0.001) and objective response rate (ORR, 77.8% vs. 23.2%; p < 0.001) compared to those with wide-type PAPPA2 (PAPPA2-WT), consistent in the SKCM set (overall survival, HR, 0.49 [95% CI: 0.31-0.78], p < 0.001; ORR, 34.1% vs. 16.9%, p = 0.039) and China cohort. Similar results were observed in multivariable models. Accordingly, PAPPA2 mutation exhibited superior performance in predicting ICIs efficacy compared with other published ICIs-related gene mutations, such as EPHA family, MUC16, LRP1B and TTN, etc. In addition, combined utilization of PAPPA2 mutation and tumour mutational burden (TMB) could expand the identification of potential responders to ICIs therapy in both NSCLC set (HR, 0.36 [95% CI: 0.23-0.57], p < 0.001) and SKCM set (HR, 0.51 [95% CI: 0.34-0.76], p < 0.001). Moreover, PAPPA2 mutation was correlated with enhanced anti-tumour immunity including higher activated CD4 memory T cells level, lower Treg cells level, and upregulated DNA damage repair pathways. CONCLUSIONS Our findings indicated that PAPPA2 mutation could serve as a novel indicator to stratify beneficiaries from ICIs therapy in NSCLC and SKCM, warranting further prospective studies.
Collapse
Affiliation(s)
- Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lele Zhao
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dongsheng Chen
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Si Li
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Yangyang Yu
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Mingzhe Xiao
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Qin Zhang
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Qianqian Duan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Tingting Sun
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Chuang Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Shields MD, Chen K, Dutcher G, Patel I, Pellini B. Making the Rounds: Exploring the Role of Circulating Tumor DNA (ctDNA) in Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms23169006. [PMID: 36012272 PMCID: PMC9408840 DOI: 10.3390/ijms23169006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Advancements in the clinical practice of non-small cell lung cancer (NSCLC) are shifting treatment paradigms towards increasingly personalized approaches. Liquid biopsies using various circulating analytes provide minimally invasive methods of sampling the molecular content within tumor cells. Plasma-derived circulating tumor DNA (ctDNA), the tumor-derived component of cell-free DNA (cfDNA), is the most extensively studied analyte and has a growing list of applications in the clinical management of NSCLC. As an alternative to tumor genotyping, the assessment of oncogenic driver alterations by ctDNA has become an accepted companion diagnostic via both single-gene polymerase chain reactions (PCR) and next-generation sequencing (NGS) for advanced NSCLC. ctDNA technologies have also shown the ability to detect the emerging mechanisms of acquired resistance that evolve after targeted therapy. Furthermore, the detection of minimal residual disease (MRD) by ctDNA for patients with NSCLC after curative-intent treatment may serve as a prognostic and potentially predictive biomarker for recurrence and response to therapy, respectively. Finally, ctDNA analysis via mutational, methylation, and/or fragmentation multi-omic profiling offers the potential for improving early lung cancer detection. In this review, we discuss the role of ctDNA in each of these capacities, namely, for molecular profiling, treatment response monitoring, MRD detection, and early cancer detection of NSCLC.
Collapse
Affiliation(s)
- Misty Dawn Shields
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Kevin Chen
- Department of Radiation Oncology, Division of Cancer Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giselle Dutcher
- Department of Medicine, Division of Solid Tumor Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ishika Patel
- Department of Public Health, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
11
|
Trentini F, Mazzaschi G, Milanese G, Pavone C, Madeddu D, Gnetti L, Frati C, Lorusso B, Lagrasta CAM, Minari R, Ampollini L, Ledda RE, Silva M, Sverzellati N, Quaini F, Roti G, Tiseo M. Validation of a radiomic approach to decipher NSCLC immune microenvironment in surgically resected patients. TUMORI JOURNAL 2022; 108:86-92. [PMID: 33730957 DOI: 10.1177/03008916211000808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiomics has emerged as a noninvasive tool endowed with the potential to intercept tumor characteristics thereby predicting clinical outcome. In a recent study on resected non-small cell lung cancer (NSCLC), we identified highly prognostic computed tomography (CT) -derived radiomic features (RFs), which in turn were able to discriminate hot from cold tumor immune microenvironment (TIME). We aimed at validating a radiomic model capable of dissecting specific TIME profiles bearing prognostic power in resected NSCLC. The validation cohort included 31 radically resected NSCLCs clinicopathologically matched with the training set (n = 69). TIME was classified in hot and cold according to a multiparametric immunohistochemical analysis involving PD-L1 score and incidence of immune effector phenotypes among tumor infiltrating lymphocytes (TILs). High- throughput radiomic features (n = 841) extracted from CT images were correlated to TIME parameters to ultimately define prognostic classes. We confirmed PD-1 to CD8 ratio as best predictor of clinical outcome among TIME characteristics. Significantly prolonged overall survival (OS) was observed in patients carrying hot (median OS not reached) vs cold (median OS 22 months; hazard ratio 0.28, 95% confidence interval 0.09 -0.82; p = 0.015) immune background, thus validating the prognostic impact of these two TIME categories in resected NSCLC. Importantly, in the validation setting, three out of eight previously identified RFs sharply distinguishing hot from cold TIME were endorsed. Among signature-related RFs, Wavelet-HHH_gldm_HighGrayLevelEmphasis highly performed as descriptor of hot immune contexture (area under the receiver operating characteristic curve 0.94, 95% confidence interval 0.81 -1.00; p = 0.01). Based on our findings, Radiomics may decipher specific TIME profiles providing a noninvasive prognostic approach in resected NSCLC and an exploitable predictive strategy in advanced cases.
Collapse
Affiliation(s)
- Francesca Trentini
- Department of Medicine and Surgery, University of Parma, Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Gianluca Milanese
- Department of Medicine and Surgery, University of Parma, Institute of Radiologic Science, University Hospital of Parma, Parma, Italy
| | - Claudio Pavone
- Department of Medicine and Surgery, University of Parma, Institute of Radiologic Science, University Hospital of Parma, Parma, Italy
| | - Denise Madeddu
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Letizia Gnetti
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Costanza Anna Maria Lagrasta
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Roberta Minari
- Department of Medicine and Surgery, University of Parma, Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Luca Ampollini
- Department of Medicine and Surgery, University of Parma, Thoracic Surgery, University Hospital of Parma, Parma, Italy
| | - Roberta Eufrasia Ledda
- Department of Medicine and Surgery, University of Parma, Institute of Radiologic Science, University Hospital of Parma, Parma, Italy
| | - Mario Silva
- Department of Medicine and Surgery, University of Parma, Institute of Radiologic Science, University Hospital of Parma, Parma, Italy
| | - Nicola Sverzellati
- Department of Medicine and Surgery, University of Parma, Institute of Radiologic Science, University Hospital of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation, University Hospital of Parma, Parma, Italy
| | - Giovanni Roti
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation, University Hospital of Parma, Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
12
|
Khadirnaikar S, Chatterjee A, Shukla SK. Genetic and Epigenetic landscape of leukocyte infiltration identifies an immune prognosticator in lung adenocarcinoma. Cancer Biomark 2021; 32:505-517. [PMID: 34275893 DOI: 10.3233/cbm-203071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Leukocyte infiltration plays an critical role in outcome of various diseases including Lung adenocarcinoma (LUAD). OBJECTIVES To understand the genetic and epigenetic factors affecting leukocyte infiltration and identification and validation of immune based biomarkers. METHOD Correlation analysis was done to get the associations of the factors. CIBERSORT analysis was done for immune cell infiltration. Genetic and epigenetic analysis were performed. Cox regression was carried out for survival. RESULTS We categorized the TCGA-LUAD patients based on Leukocyte fraction (LF) and performed extensive immunogenomic analysis. Interestingly, we showed that LF has a negative correlation with copy number variation (CNV) but not with mutational load. However, several individual genetic mutations, including KRAS and KEAP1, were significantly linked with LF. Also, as expected, patients with high LF showed significantly increased expression of genes involved in leukocyte migration and activation. DNA methylation changes also showed a strong association with LF and regulated a significant proportion of genes associated with LF. We also developed and validated an independent prognostic immune signature using the top six prognostic genes associated with LF. CONCLUSION Together, we have identified clinical, genetic, and epigenetic variations associated with LUAD LF and developed an immune gene-based signature for disease prognostication.
Collapse
Affiliation(s)
- Seema Khadirnaikar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India.,Department of Electrical Engineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Annesha Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Sudhanshu Kumar Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| |
Collapse
|
13
|
Reimann H, Nguyen A, Sanborn JZ, Vaske CJ, Benz SC, Niazi K, Rabizadeh S, Spilman P, Mackensen A, Ruebner M, Hein A, Beckmann MW, van der Meijden ED, Bausenwein J, Kretschmann S, Griffioen M, Schlom J, Gulley JL, Lee KL, Hamilton DH, Soon-Shiong P, Fasching PA, Kremer AN. Identification and validation of expressed HLA-binding breast cancer neoepitopes for potential use in individualized cancer therapy. J Immunother Cancer 2021; 9:jitc-2021-002605. [PMID: 34172517 PMCID: PMC8237736 DOI: 10.1136/jitc-2021-002605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background Therapeutic regimens designed to augment the immunological response of a patient with breast cancer (BC) to tumor tissue are critically informed by tumor mutational burden and the antigenicity of expressed neoepitopes. Herein we describe a neoepitope and cognate neoepitope-reactive T-cell identification and validation program that supports the development of next-generation immunotherapies. Methods Using GPS Cancer, NantOmics research, and The Cancer Genome Atlas databases, we developed a novel bioinformatic-based approach which assesses mutational load, neoepitope expression, human leukocyte antigen (HLA)-binding prediction, and in vitro confirmation of T-cell recognition to preferentially identify targetable neoepitopes. This program was validated by application to a BC cell line and confirmed using tumor biopsies from two patients with BC enrolled in the Tumor-Infiltrating Lymphocytes and Genomics (TILGen) study. Results The antigenicity and HLA-A2 restriction of the BC cell line predicted neoepitopes were determined by reactivity of T cells from HLA-A2-expressing healthy donors. For the TILGen subjects, tumor-infiltrating lymphocytes (TILs) recognized the predicted neoepitopes both as peptides and on retroviral expression in HLA-matched Epstein-Barr virus–lymphoblastoid cell line and BC cell line MCF-7 cells; PCR clonotyping revealed the presence of T cells in the periphery with T-cell receptors for the predicted neoepitopes. These high-avidity immune responses were polyclonal, mutation-specific and restricted to either HLA class I or II. Interestingly, we observed the persistence and expansion of polyclonal T-cell responses following neoadjuvant chemotherapy. Conclusions We demonstrate our neoepitope prediction program allows for the successful identification of neoepitopes targeted by TILs in patients with BC, providing a means to identify tumor-specific immunogenic targets for individualized treatment, including vaccines or adoptively transferred cellular therapies.
Collapse
Affiliation(s)
- Hannah Reimann
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Edith D van der Meijden
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Judith Bausenwein
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sascha Kretschmann
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karin L Lee
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Peter A Fasching
- Department of Gynecology and Obstetrics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
14
|
Chang A, Liu L, Ashby JM, Wu D, Chen Y, O'Neill SS, Huang S, Wang J, Wang G, Cheng D, Tan X, Petty WJ, Pasche BC, Xiang R, Zhang W, Sun P. Recruitment of KMT2C/MLL3 to DNA Damage Sites Mediates DNA Damage Responses and Regulates PARP Inhibitor Sensitivity in Cancer. Cancer Res 2021; 81:3358-3373. [PMID: 33853832 PMCID: PMC8260460 DOI: 10.1158/0008-5472.can-21-0688] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
When recruited to promoters, histone 3 lysine 4 (H3K4) methyltransferases KMT2 (KMT2A-D) activate transcription by opening chromatin through H3K4 methylation. Here, we report that KMT2 mutations occur frequently in non-small cell lung cancer (NSCLC) and are associated with high mutation loads and poor survival. KMT2C regulated DNA damage responses (DDR) through direct recruitment to DNA damage sites by Ago2 and small noncoding DNA damage response RNA, where it mediates H3K4 methylation, chromatin relaxation, secondary recruitment of DDR factors, and amplification of DDR signals along chromatin. Furthermore, by disrupting homologous recombination (HR)-mediated DNA repair, KMT2C/D mutations sensitized NSCLC to Poly(ADP-ribose) polymerase inhibitors (PARPi), whose efficacy is unclear in NSCLC due to low BRCA1/2 mutation rates. These results demonstrate a novel, transcription-independent role of KMT2C in DDR and identify high-frequency KMT2C/D mutations as much-needed biomarkers for PARPi therapies in NSCLC and other cancers with infrequent BRCA1/2 mutations. SIGNIFICANCE: This study uncovers a critical role for KMT2C in DDR via direct recruitment to DNA damage sites, identifying high-frequency KMT2C/D mutations as biomarkers for response to PARP inhibition in cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- DNA Damage
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Homologous Recombination
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- Mutation
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Antao Chang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Liang Liu
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Justin M Ashby
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Dan Wu
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Yanan Chen
- Nankai University School of Medicine, Tianjin, China
| | - Stacey S O'Neill
- Department of Pathology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Shan Huang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Juan Wang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Guanwen Wang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Dongmei Cheng
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Xiaoming Tan
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Department of Respiratory Disease, South Campus, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - W J Petty
- Department of Internal Medicine, Division of Hematology and Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Rong Xiang
- Nankai University School of Medicine, Tianjin, China
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina.
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina.
| |
Collapse
|
15
|
To KKW, Fong W, Cho WCS. Immunotherapy in Treating EGFR-Mutant Lung Cancer: Current Challenges and New Strategies. Front Oncol 2021; 11:635007. [PMID: 34113560 PMCID: PMC8185359 DOI: 10.3389/fonc.2021.635007] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Immune checkpoint inhibitors, including monoclonal antibodies against programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), have dramatically improved the survival and quality of life of a subset of non-small cell lung cancer (NSCLC) patients. Multiple predictive biomarkers have been proposed to select the patients who may benefit from the immune checkpoint inhibitors. EGFR-mutant NSCLC is the most prevalent molecular subtype in Asian lung cancer patients. However, patients with EGFR-mutant NSCLC show poor response to anti-PD-1/PD-L1 treatment. While small-molecule EGFR tyrosine kinase inhibitors (TKIs) are the preferred initial treatment for EGFR-mutant NSCLC, acquired drug resistance is severely limiting the long-term efficacy. However, there is currently no further effective treatment option for TKIs-refractory EGFR-mutant NSCLC patients. The reasons mediating the poor response of EGFR-mutated NSCLC patients to immunotherapy are not clear. Initial investigations revealed that EGFR-mutated NSCLC has lower PD-L1 expression and a low tumor mutational burden, thus leading to weak immunogenicity. Moreover, the use of PD-1/PD-L1 blockade prior to or concurrent with osimertinib has been reported to increase the risk of pulmonary toxicity. Furthermore, emerging evidence shows that PD-1/PD-L1 blockade in NSCLC patients can lead to hyperprogressive disease associated with dismal prognosis. However, it is difficult to predict the treatment toxicity. New biomarkers are urgently needed to predict response and toxicity associated with the use of PD-1/PD-L1 immunotherapy in EGFR-mutated NSCLC. Recently, promising data have emerged to suggest the potentiation of PD-1/PD-L1 blockade therapy by anti-angiogenic agents and a few other novel therapeutic agents. This article reviews the current investigations about the poor response of EGFR-mutated NSCLC to anti-PD-1/PD-L1 therapy, and discusses the new strategies that may be adopted in the future.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Winnie Fong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
16
|
Abstract
Immunotherapy has become the mainstay for lung cancer treatment, providing sustained therapeutic responses and improved prognosis compared with those obtained with surgery, chemotherapy, radiotherapy, and targeted therapy. It has the potential for anti-tumor treatment and killing tumor cells by activating human immunity and has moved the targets of anti-cancer therapy from malignant tumor cells to immune cell subsets. Two kinds of immune checkpoints, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1), are the main targets of current immunotherapy in lung cancer. Despite the successful outcomes achieved by immune checkpoint inhibitors, a small portion of lung cancer patients remain unresponsive to checkpoint immunotherapy or may ultimately become resistant to these agents as a result of the complex immune modulatory network in the tumor microenvironment. Therefore, it is imperative to exploit novel immunotherapy targets to further expand the proportion of patients benefiting from immunotherapy. This review summarizes the molecular features, biological function, and clinical significance of several novel checkpoints that have important roles in lung cancer immune responses beyond the CTLA-4 and PD-1/PD-L1 axes, including the markers of co-inhibitory and co-stimulatory T lymphocyte pathways and inhibitory markers of macrophages and natural killer cells.
Collapse
|
17
|
Chen C, Hou J, Yu S, Li W, Wang X, Sun H, Qin T, Claret FX, Guo H, Liu Z. Role of cancer-associated fibroblasts in the resistance to antitumor therapy, and their potential therapeutic mechanisms in non-small cell lung cancer. Oncol Lett 2021; 21:413. [PMID: 33841574 PMCID: PMC8020389 DOI: 10.3892/ol.2021.12674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with high morbidity and mortality rates, which seriously endangers human health. Although treatment methods continue to evolve, the emergence of drug resistance is inevitable and seriously hinders the treatment of NSCLC. The tumor microenvironment (TME) protects tumor cells from the effects of chemotherapeutic drugs, which can lead to drug resistance. Cancer-associated fibroblasts (CAFs) are an important component of the TME, and various studies have demonstrated that CAFs play a crucial role in drug resistance in NSCLC. However, the drug resistance mechanism of CAFs and whether CAFs can be used as a target to reverse the resistance of tumor cells remain unclear. The present review discusses this issue and describes the heterogeneity of CAF markers, as well as their origins and resident organs, and the role and mechanism of this heterogeneity in NSCLC progression. Furthermore, the mechanism of CAF-mediated NSCLC resistance to chemotherapy, targeted therapy and immunotherapy is introduced, and strategies to reverse this resistance are described.
Collapse
Affiliation(s)
- Congcong Chen
- School of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jia Hou
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sizhe Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenyuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Sun
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tianjie Qin
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Francois X. Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston TX77030, USA
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, P.R. China
| | - Zhiyan Liu
- School of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
- Department of Respiratory and Critical Care Medicine, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| |
Collapse
|
18
|
Fractionated Radiation Severely Reduces the Number of CD8+ T Cells and Mature Antigen Presenting Cells Within Lung Tumors. Int J Radiat Oncol Biol Phys 2021; 111:272-283. [PMID: 33865948 DOI: 10.1016/j.ijrobp.2021.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE The combination of standard-of-care radiation therapy (RT) with immunotherapy is moving to the mainstream of non-small cell lung cancer treatment. Multiple preclinical studies reported on the CD8+ T cell stimulating properties of RT, resulting in abscopal therapeutic effects. A literature search demonstrates that most preclinical lung cancer studies applied subcutaneous lung tumor models. Hence, in-depth immunologic evaluation of clinically relevant RT in orthotopic lung cancer models is lacking. METHODS AND MATERIALS We studied the therapeutic and immunologic effects of low-dose fractionated RT on lungs from C57BL/6 mice, challenged 2 weeks before with firefly luciferase expressing Lewis lung carcinoma cells via the tail vein. Low-dose fractionation was represented by 4 consecutive daily fractions of image guided RT at 3.2 Gy. RESULTS We showed reduced lung tumor growth upon irradiation using in vivo bioluminescence imaging and immunohistochemistry. Moreover, significant immunologic RT-induced changes were observed in irradiated lungs and in the periphery (spleen and blood). First, a significant decrease in the number of CD8+ T cells and trends toward more CD4+ and regulatory T cells were seen after RT in all evaluated tissues. Notably, only in the periphery did the remaining CD8+ T cells show a more activated phenotype. In addition, a significant expansion of neutrophils and monocytes was observed upon RT locally and systemically. Locally, RT increased the influx of tumor-associated macrophages and conventional type 2 dendritic cells, whereas the alveolar macrophages and conventional type 1 DCs dramatically decreased. Functionally, these antigen-presenting cells severely reduced their CD86 expression, suggesting a reduced capacity to induce potent immunity. CONCLUSIONS Our results imply that low-dose fractionated RT of tumor-bearing lung tissue shifts the immune cell balance toward an immature myeloid cell dominating profile. These data argue for myeloid cell repolarizing strategies to enhance the abscopal effects in patients with non-small cell lung cancer treated with fractionated RT.
Collapse
|
19
|
TGF-β promote epithelial-mesenchymal transition via NF-κB/NOX4/ROS signal pathway in lung cancer cells. Mol Biol Rep 2021; 48:2365-2375. [PMID: 33792826 DOI: 10.1007/s11033-021-06268-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/05/2021] [Indexed: 01/17/2023]
Abstract
Epithelial-mesenchymal transition (EMT), transforming growth factor β(TGF-β) and reactive oxygen species(ROS) plays a central role in cancer metastasis. Moreover, nicotinamide adenine dinucleotide phosphate 4(NOX4) is one of the main sources of ROS in lung cancer cells suggesting that NOX4 is associated with tumor cell migration. NF-κB(Nuclear factor-Kappa-B) is known to regulate ROS-mediated EMT process by activating Snail transcription factor in A549 cells. The purpose of this study was to explore the relationship between NF-κB and NOX4 in ROS production during TGF-β induced EMT process. Several fractions have been pooled to evaluates the EMT process on lung cancer cells through real-time PCR, Western Blot and flow cytometry with DCFH-DA probe etc. Cells proliferation and migration activities were monitored by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and wound healing assay respectively. The result showed that TGF-β induction decreased the expression of E-cadherin, increased the Vimentin and the EMT transcription factor Snail in A549 cells. DPI (Diphenyleneiodonium chloride, an inhibitor of NOX4) inhibited the NOX4 expression and reduced ROS production induced by TGF-β, but didn't affect the activation of NF-κB induced by TGF-β (P > 0.05). BAY11-7082 (an inhibitor of NF-κB) inhibited the NF-κB (p65) expression and prevented the increase of NOX4 expression and ROS production induced by TGF-β (P < 0.001), which has also verified reduced TGF-β induced cell migration by inhibiting the EMT process, and also reduced cell proliferation of A549 cells (P < 0.001). The current research confirmed the TGF-β mediated EMT process via NF-κB/NOX4/ROS signaling pathway, NF-κB and NOX4 are likely to be the potential therapeutic targets for lung cancer metastasis.
Collapse
|
20
|
Guo Y, Song J, Wang Y, Huang L, Sun L, Zhao J, Zhang S, Jing W, Ma J, Han C. Concurrent Genetic Alterations and Other Biomarkers Predict Treatment Efficacy of EGFR-TKIs in EGFR-Mutant Non-Small Cell Lung Cancer: A Review. Front Oncol 2020; 10:610923. [PMID: 33363040 PMCID: PMC7758444 DOI: 10.3389/fonc.2020.610923] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) greatly improve the survival and quality of life of non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, many patients exhibit de novo or primary/early resistance. In addition, patients who initially respond to EGFR-TKIs exhibit marked diversity in clinical outcomes. With the development of comprehensive genomic profiling, various mutations and concurrent (i.e., coexisting) genetic alterations have been discovered. Many studies have revealed that concurrent genetic alterations play an important role in the response and resistance of EGFR-mutant NSCLC to EGFR-TKIs. To optimize clinical outcomes, a better understanding of specific concurrent gene alterations and their impact on EGFR-TKI treatment efficacy is necessary. Further exploration of other biomarkers that can predict EGFR-TKI efficacy will help clinicians identify patients who may not respond to TKIs and allow them to choose appropriate treatment strategies. Here, we review the literature on specific gene alterations that coexist with EGFR mutations, including common alterations (intra-EGFR [on target] co-mutation, TP53, PIK3CA, and PTEN) and driver gene alterations (ALK, KRAS, ROS1, and MET). We also summarize data for other biomarkers (e.g., PD-L1 expression and BIM polymorphisms) associated with EGFR-TKI efficacy.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Song
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanru Wang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Jing
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jietao Ma
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Brueckl WM, Ficker JH, Zeitler G. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer 2020; 20:1185. [PMID: 33272262 PMCID: PMC7713034 DOI: 10.1186/s12885-020-07690-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) either alone or in combination with chemotherapy have expanded our choice of agents for the palliative treatment of non-small cell lung cancer (NSCLC) patients. Unfortunately, not all patients will experience favorable response to treatment with ICI and may even suffer from severe side effects. Therefore, prognostic and predictive markers, beyond programmed death ligand 1 (PD-L1) expression status, are of utmost importance for decision making in the palliative treatment. This review focuses on clinical, laboratory and genetic markers, most of them easily to obtain in the daily clinical practice. RESULTS Recently, a number of prognostic and predictive factors in association to palliative ICI therapy have been described in NSCLC. Besides biometric parameters and clinical characteristics of the tumor, there are useful markers from routine blood sampling as well as innovative soluble genetic markers which can be determined before and during ICI treatment. Additionally, the level of evidence is noted. CONCLUSIONS These factors can be helpful to predict patients' outcome and tumor response to ICI. They should be implemented prospectively in ICI based clinical trials to develop reliable algorithms for palliative NSCLC treatment.
Collapse
Affiliation(s)
- Wolfgang M Brueckl
- Department of Respiratory Medicine, Allergology and Sleep Medicine / Nuremberg Lung Cancer Center, Paracelsus Medical University, General Hospital Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany.
- Paracelsus Medical Private University Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany.
| | - Joachim H Ficker
- Department of Respiratory Medicine, Allergology and Sleep Medicine / Nuremberg Lung Cancer Center, Paracelsus Medical University, General Hospital Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
- Paracelsus Medical Private University Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
| | - Gloria Zeitler
- Paracelsus Medical Private University Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
| |
Collapse
|
22
|
Chen RJ, Gillespie C, Rowcroft A, Knowles B. Splenectomy for ruptured non-small cell lung cancer metastasis: an unusual indication. ANZ J Surg 2020; 91:E332-E334. [PMID: 32997367 DOI: 10.1111/ans.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Reuben J Chen
- Department of Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Carla Gillespie
- Department of Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Alistair Rowcroft
- Department of Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Brett Knowles
- Department of Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Barbari C, Fontaine T, Parajuli P, Lamichhane N, Jakubski S, Lamichhane P, Deshmukh RR. Immunotherapies and Combination Strategies for Immuno-Oncology. Int J Mol Sci 2020; 21:E5009. [PMID: 32679922 PMCID: PMC7404041 DOI: 10.3390/ijms21145009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
The advent of novel immunotherapies in the treatment of cancers has dramatically changed the landscape of the oncology field. Recent developments in checkpoint inhibition therapies, tumor-infiltrating lymphocyte therapies, chimeric antigen receptor T cell therapies, and cancer vaccines have shown immense promise for significant advancements in cancer treatments. Immunotherapies act on distinct steps of immune response to augment the body's natural ability to recognize, target, and destroy cancerous cells. Combination treatments with immunotherapies and other modalities intend to activate immune response, decrease immunosuppression, and target signaling and resistance pathways to offer a more durable, long-lasting treatment compared to traditional therapies and immunotherapies as monotherapies for cancers. This review aims to briefly describe the rationale, mechanisms of action, and clinical efficacy of common immunotherapies and highlight promising combination strategies currently approved or under clinical development. Additionally, we will discuss the benefits and limitations of these immunotherapy approaches as monotherapies as well as in combination with other treatments.
Collapse
Affiliation(s)
- Cody Barbari
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Tyler Fontaine
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Priyanka Parajuli
- Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA;
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA;
| | - Silvia Jakubski
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA;
| | - Purushottam Lamichhane
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Rahul R. Deshmukh
- School of Pharmacy, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| |
Collapse
|
24
|
Tobita S, Kinehara Y, Tamura Y, Kurebe H, Ninomiya R, Utsu Y, Kohmo S, Sato B, Nagai K, Maruoka S, Jokoji R, Koyama S, Tachibana I. Successful continuous nivolumab therapy for metastatic non-small cell lung cancer after local treatment of oligometastatic lesions. Thorac Cancer 2020; 11:2357-2360. [PMID: 32567218 PMCID: PMC7396382 DOI: 10.1111/1759-7714.13539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/05/2023] Open
Abstract
The patient in this report was a 57‐year‐old man with metastatic non‐small cell lung cancer (NSCLC). After no response to two lines of systemic chemotherapy, he was treated with nivolumab as third‐line therapy, which resulted in a partial response. After 17 months of nivolumab treatment, he developed bone metastasis in his left femur which was treated with radiation therapy. Nivolumab was restarted after radiation therapy. Four months after radiation therapy, he developed another metastatic lesion in the small intestine which was surgically resected. Because there were no recurrent NSCLC lesions after surgical resection, nivolumab was restarted again. At 18 months after surgery, there were no recurrent NSCLC lesions. Immunohistochemical analysis of peritumoral T lymphocytes showed higher expression of T cell immunoglobulin and mucin domain‐containing protein 3 (TIM‐3) and lymphocyte activation gene 3 (LAG‐3) in recurrent lesions of bone and small intestine than in primary lesions. Upregulation of TIM‐3 and LAG‐3 could be associated with mechanisms of adaptive resistance to nivolumab in this case. Here, we report a successful case of continued nivolumab therapy with remission after local treatments consisting of radiation therapy and surgical resection for oligometastases. Continuation of immune checkpoint inhibitor (ICI) treatment may be worth considering if oligometastases can be controlled. Key points Significant findings of the study We report a successful case of continued nivolumab treatment with remission after local treatment (radiation therapy and surgical resection) for oligometastases. What this study adds Upregulation of T cell immunoglobulin and mucin domain‐containing protein 3 and lymphocyte‐activation gene 3 could be associated with mechanisms of adaptive resistance to nivolumab.
Collapse
Affiliation(s)
- Satoshi Tobita
- Department of Medicine, Nippon Life Hospital, Osaka, Japan
| | - Yuhei Kinehara
- Department of Medicine, Nippon Life Hospital, Osaka, Japan
| | - Yoshio Tamura
- Department of Medicine, Nippon Life Hospital, Osaka, Japan
| | | | | | - Yoshihiko Utsu
- Department of Medicine, Nippon Life Hospital, Osaka, Japan
| | - Satoshi Kohmo
- Department of Medicine, Nippon Life Hospital, Osaka, Japan
| | - Bunzo Sato
- Department of Medicine, Nippon Life Hospital, Osaka, Japan
| | - Kenichi Nagai
- Department of Gastrointestinal Surgery, Nippon Life Hospital, Osaka, Japan
| | | | - Ryu Jokoji
- Department of Pathology, Nippon Life Hospital, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Tachibana
- Department of Medicine, Nippon Life Hospital, Osaka, Japan
| |
Collapse
|
25
|
Onuma AE, Zhang H, Huang H, Williams TM, Noonan A, Tsung A. Immune Checkpoint Inhibitors in Hepatocellular Cancer: Current Understanding on Mechanisms of Resistance and Biomarkers of Response to Treatment. Gene Expr 2020; 20:53-65. [PMID: 32340652 PMCID: PMC7284108 DOI: 10.3727/105221620x15880179864121] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy worldwide and a leading cause of death worldwide. Its incidence continues to increase in the US due to hepatitis C infection and nonalcoholic steatohepatitis. Liver transplantation and resection remain the best therapeutic options for cure, but these are limited by the shortage of available organs for transplantation, diagnosis at advanced stage, and underlying chronic liver disease found in most patients with HCC. Immune checkpoint inhibitors (ICIs) have been shown to be an evolving novel treatment option in certain advanced solid tumors and have been recently approved for inoperable, advanced, and metastatic HCC. Unfortunately, a large cohort of patients with HCC fail to respond to immunotherapy. In this review, we discuss the ICIs currently approved for HCC treatment and their various mechanisms of action. We will highlight current understanding of mechanism of resistance and limitations to ICIs. Finally, we will describe emerging biomarkers of response to ICIs and address future direction on overcoming resistance to immune checkpoint therapy.
Collapse
Affiliation(s)
- Amblessed E. Onuma
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hongji Zhang
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- †Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hai Huang
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Terence M. Williams
- ‡Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anne Noonan
- §Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Allan Tsung
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
26
|
Mandarano M, Bellezza G, Belladonna ML, Vannucci J, Gili A, Ferri I, Lupi C, Ludovini V, Falabella G, Metro G, Mondanelli G, Chiari R, Cagini L, Stracci F, Roila F, Puma F, Volpi C, Sidoni A. Indoleamine 2,3-Dioxygenase 2 Immunohistochemical Expression in Resected Human Non-small Cell Lung Cancer: A Potential New Prognostic Tool. Front Immunol 2020; 11:839. [PMID: 32536910 PMCID: PMC7267213 DOI: 10.3389/fimmu.2020.00839] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 2 (IDO2) is an analog of the tryptophan degrading and immunomodulating enzyme indoleamine 2,3-dioxygenase 1 (IDO1). Although the role of IDO1 is largely understood, the function of IDO2 is not yet well-elucidated. IDO2 overexpression was documented in some human tumors, but the linkage between IDO2 expression and cancer progression is still unclear, in particular in non-small cell lung cancer (NSCLC). Immunohistochemical expression and cellular localization of IDO2 was evaluated on 191 formalin-fixed and paraffin-embedded resected NSCLC. Correlations between IDO2 expression, clinical-pathological data, tumor-infiltrating lymphocytes (TILs), immunosuppressive tumor molecules (IDO1 and programmed cell death ligand-1 - PD-L1 -) and patients' prognosis were evaluated. IDO2 high expression is strictly related to high PD-L1 level among squamous cell carcinomas group (p = 0.012), to either intratumoral or mixed localization of TILs (p < 0.001) and to adenocarcinoma histotype (p < 0.001). Furthermore, a significant correlation between IDO2 high expression and poor non-small cell lung cancer prognosis was detected (p = 0.011). The current study reaches interesting knowledge about IDO2 in non-small cell lung cancer. The close relationship between IDO2 expression, PD-L1 increased levels, TILs localization and NSCLC poor prognosis, assumed IDO2 as a potential prognostic biomarker to be exploited for optimizing innovative combined therapies with immune checkpoint inhibitors.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/surgery
- Adult
- Aged
- Aged, 80 and over
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Disease Progression
- Female
- Follow-Up Studies
- Humans
- Immunohistochemistry/methods
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Middle Aged
- Prognosis
Collapse
Affiliation(s)
- Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Maria Laura Belladonna
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Alessio Gili
- Section of Public Health, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | | | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giulia Falabella
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giada Mondanelli
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rita Chiari
- Medical Oncology, Ospedali Riuniti Padova sud, Padova, Italy
| | - Lucio Cagini
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Fabrizio Stracci
- Section of Public Health, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Umbria Cancer Registry, Perugia, Italy
| | - Fausto Roila
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Francesco Puma
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
27
|
Construction of immune-related and prognostic lncRNA clusters and identification of their immune and genomic alterations characteristics in lung adenocarcinoma samples. Aging (Albany NY) 2020; 12:9868-9881. [PMID: 32445554 PMCID: PMC7288974 DOI: 10.18632/aging.103251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in various biological processes of lung adenocarcinoma (LUAD), such as immune response regulation, tumor microenvironment remodeling and genomic alteration. Nevertheless, immune-related lncRNAs and their immune and genomic alterations characteristics in LUAD samples still remain unreported. Here, using various public databases, statistic and software tools, we constructed two immune-related lncRNA clusters with different immune and genomic alterations characteristics. Notably, cluster 1 had a stronger immunosuppressive tumor microenvironment (TME) and a higher mutation frequency than cluster 2, especially the mutant genes, such as Kelch-like ECH-associated protein 1 (KEAP1) and toll like receptor 4 (TLR4). In cluster 1, both the amplified and deleted portions of copy number variation (CNV) segments were enriched and cyclin dependent kinase inhibitor 2A (CDKN2A) was significantly deleted. GSVA analysis revealed that these immune-related lncRNAs may be involved in stem cell and EMT functions. Furthermore, cluster 1 was related to worse prognosis of LUAD patients. Therefore, we constructed two immune-related and prognostic lncRNA clusters and identified their immune and genomic alterations characteristics in LUAD samples, which could well divide LUAD patients into different immune phenotypes and help to understand immune molecular mechanisms of LUAD.
Collapse
|
28
|
Maung TZ, Ergin HE, Javed M, Inga EE, Khan S. Immune Checkpoint Inhibitors in Lung Cancer: Role of Biomarkers and Combination Therapies. Cureus 2020; 12:e8095. [PMID: 32542150 PMCID: PMC7292688 DOI: 10.7759/cureus.8095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with a poor prognosis. Despite aggressive treatment, progression-free survival (PFS) and overall survival are limited. Recently, various kinds of immune checkpoint inhibitors (ICIs) have emerged for several cancers, targeting PD1, PDL1, and CTLA-4. ICIs have made a significant breakthrough in cancer and revolutionized the management of cancer including lung cancer. However, there are a lot of controversies regarding which group of patients is most suitable to be treated with ICIs in terms of monotherapy, combination, and predictive biomarkers. We reviewed various kinds of studies, such as meta-analysis, randomized control trials, multi-center cohort studies, and case-control studies from PubMed written in English from the last five years. ICIs have significant benefits in the overall survival compared with traditional chemotherapy. Patients with a higher level of PDL1 expression and high tumor mutational burden (TMB) have a higher response rate, and those with EGFR-/ALK- were better than those with EGFR+/ALK+. The patient who responded to immunotherapy completely can still maintain the efficacy after two years of treatment. Neoadjuvant immunotherapy in patients with resectable non-small cell lung cancer resulted in a 45% major pathology response (MPR) and 40% downstaging. Combined therapy (ICIs + chemotherapy) was better than chemotherapy alone, irrespective of PD-L1 expression. A combination of ICIs such as CTLA-4 and PD-1/PD-L1 improved PFS as well. Radiochemotherapy ahead of ICIs is promising as well. However, ICIs combined with EGFR/ALK-TKI (tyrosine kinase inhibitor) are not suggested for the time being. PDL1 expression, TMB, and EGFR/ALK mutations are promising predictive biomarkers. Gut microbiota, galectin-3, and intensity of CD8 cell infiltration are other potential predictive biomarkers. These are very important in the future management of lung cancers as they can prevent unnecessary toxicities and cost of treatment.
Collapse
Affiliation(s)
- Tun Zan Maung
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Huseyin Ekin Ergin
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Mehwish Javed
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Evelyn E Inga
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA.,Internal Medicine, LaSante Health Center, Brooklyn, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
29
|
Non-Coding RNAs in Lung Tumor Initiation and Progression. Int J Mol Sci 2020; 21:ijms21082774. [PMID: 32316322 PMCID: PMC7215285 DOI: 10.3390/ijms21082774] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is one of the deadliest forms of cancer affecting society today. Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), through the transcriptional, post-transcriptional, and epigenetic changes they impose, have been found to be dysregulated to affect lung cancer tumorigenesis and metastasis. This review will briefly summarize hallmarks involved in lung cancer initiation and progression. For initiation, these hallmarks include tumor initiating cells, immortalization, activation of oncogenes and inactivation of tumor suppressors. Hallmarks involved in lung cancer progression include metastasis and drug tolerance and resistance. The targeting of these hallmarks with non-coding RNAs can affect vital metabolic and cell signaling pathways, which as a result can potentially have a role in cancerous and pathological processes. By further understanding non-coding RNAs, researchers can work towards diagnoses and treatments to improve early detection and clinical response.
Collapse
|
30
|
Abstract
Introduction: The recent approvals of checkpoint inhibitors as single agents or in combination with chemotherapy with programmed death ligand 1 expression of < or ≥1% have challenged clinicians when it is time to begin a metastatic lung cancer patient in second-line therapy. The advantages given by immunotherapy over conventional chemotherapy such as improved overall survival and a better toxicity profile make the second-line clinical scenario more difficult for a patient who faces a likely inferior regimen as well as toxicity which may significantly impact the quality of life.Areas covered: Options given today by the National Comprehensive Cancer Network are very limited, and essentially, we go back to conventional cytotoxic agents alone or in combination with biological agents if possible. In this article, we discuss the actual treatment available for this difficult scenario and some of the ongoing trials which aim to address this dilemma.Expert commentary: This is an unmet need in lung cancer management; we need a better understanding of the mechanism of resistance to immunotherapy so we can target them once the patient moves to second-line treatment.
Collapse
Affiliation(s)
- Edgardo S Santos
- Florida Precision Oncology, a Division of 21st Century Oncology, Aventura, Florida.,Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
31
|
Sun J, Zhang Z, Bao S, Yan C, Hou P, Wu N, Su J, Xu L, Zhou M. Identification of tumor immune infiltration-associated lncRNAs for improving prognosis and immunotherapy response of patients with non-small cell lung cancer. J Immunother Cancer 2020; 8:e000110. [PMID: 32041817 PMCID: PMC7057423 DOI: 10.1136/jitc-2019-000110] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Increasing evidence has demonstrated the functional relevance of long non-coding RNAs (lncRNAs) to immunity regulation and the tumor microenvironment in non-small cell lung cancer (NSCLC). However, tumor immune infiltration-associated lncRNAs and their value in improving clinical outcomes and immunotherapy remain largely unexplored. METHODS We developed a computational approach to identify an lncRNA signature (TILSig) as an indicator of immune cell infiltration in patients with NSCLC through integrative analysis for lncRNA, immune and clinical profiles of 115 immune cell lines, 187 NSCLC cell lines and 1533 patients with NSCLC. Then the influence of the TILSig on the prognosis and immunotherapy in NSCLC was comprehensively investigated. RESULTS Computational immune and lncRNA profiling analysis identified an lncRNA signature (TILSig) consisting of seven lncRNAs associated with tumor immune infiltration. The TILSig significantly stratified patients into the immune-cold group and immune-hot group in both training and validation cohorts. These immune-hot patients exhibit significantly improved survival outcome and greater immune cell infiltration compared with immune-cold patients. Multivariate analysis revealed that the TILSig is an independent predictive factor after adjusting for other clinical factors. Further analysis accounting for TILSig and immune checkpoint gene revealed that the TILSig has a discriminatory power in patients with similar expression levels of immune checkpoint genes and significantly prolonged survival was observed for patients with low TILSig and low immune checkpoint gene expression implying a better response to immune checkpoint inhibitor (ICI) immunotherapy. CONCLUSIONS Our finding demonstrated the importance and value of lncRNAs in evaluating the immune infiltrate of the tumor and highlighted the potential of lncRNA coupled with specific immune checkpoint factors as predictive biomarkers of ICI response to enable a more precise selection of patients.
Collapse
Affiliation(s)
- Jie Sun
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zicheng Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siqi Bao
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Congcong Yan
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ping Hou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liangde Xu
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Bi L, Xie C, Jiao L, Jin S, Hnit SST, Mu Y, Wang Y, Wang Q, Ge G, Wang Y, Zhao X, Shi X, Kang Y, De Souza P, Liu T, Zhou J, Xu L, Dong Q. CPF impedes cell cycle re-entry of quiescent lung cancer cells through transcriptional suppression of FACT and c-MYC. J Cell Mol Med 2020; 24:2229-2239. [PMID: 31960591 PMCID: PMC7011132 DOI: 10.1111/jcmm.14897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Blockade of cell cycle re‐entry in quiescent cancer cells is a strategy to prevent cancer progression and recurrence. We investigated the action and mode of action of CPF mixture (Coptis chinensis, Pinellia ternata and Fructus trichosanthis) in impeding a proliferative switch in quiescent lung cancer cells. The results indicated that CPF impeded cell cycle re‐entry in quiescent lung cancer cells by reduction of FACT and c‐MYC mRNA and protein levels, with concomitant decrease in H3K4 tri‐methylation and RNA polymerase II occupancy at FACT and c‐MYC promoter regions. Animals implanted with quiescent cancer cells that had been exposed to CPF had reduced tumour volume/weight. Thus, CPF suppresses proliferative switching through transcriptional suppression of FACT and the c‐MYC, providing a new insight into therapeutic target and intervention method in impeding cancer recurrence.
Collapse
Affiliation(s)
- Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chanlu Xie
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Penrith South, NSW, Australia.,Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenyi Jin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Su Su Thae Hnit
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Penrith South, NSW, Australia.,Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Yao Mu
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Yilun Wang
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Qian Wang
- Origins of Cancer Program, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, the University of Sydney, Sydney, NSW, Australia
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaqiao Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinglong Shi
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Paul De Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia.,Center for Childhood Cancer Research, UNSW Medicine, Sydney, NSW, Australia
| | - Jia Zhou
- Department of Thoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qihan Dong
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Penrith South, NSW, Australia.,Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
33
|
Liu R, Hu R, Zeng Y, Zhang W, Zhou HH. Tumour immune cell infiltration and survival after platinum-based chemotherapy in high-grade serous ovarian cancer subtypes: A gene expression-based computational study. EBioMedicine 2020; 51:102602. [PMID: 31911269 PMCID: PMC6948169 DOI: 10.1016/j.ebiom.2019.102602] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022] Open
Abstract
Background Increasing evidence supports that the immune infiltration of tumours is associated with prognosis. Here, we sought to assess the relevance of the cellular composition of the immune infiltrate to survival after platinum-based chemotherapy amongst patients with high-grade serous ovarian cancer and evaluate these effects by molecular subtype. Methods We searched publicly available databases and identified 13 studies with more than 2000 patients. We estimated the proportions of 22 immune cell subsets by using a computational approach (CIBERSORT). Then, we investigated the associations between each immune cell subset and progression-free survival (PFS) and overall survival (OS), with cellular proportions modelled as quartiles. Findings A high fraction of M1 [hazard ratio (HR) = 0.92, 95% confidence interval (CI) = 0.86–0.99] and M0 (HR = 0.93, 95% CI = 0.87–0.99) macrophages emerged as the most closely associated with favourable OS. Neutrophils were associated with poor OS (HR = 1.06, 95% CI = 1.00–1.13) and PFS (HR = 1.10, 95% CI = 1.02–1.13). Amongst the immunoreactive tumours, the M0 macrophages and the CD8+ T cells were associated with improved OS, whereas the M2 macrophages conferred worse OS. Interestingly, PD-1 was associated with good OS (HR=0.89, 95% CI = 0.80–1.00) and PFS (HR=0.89, 95% CI = 0.79–1.01) in this subtype. Four subgroups of tumours with distinct survival patterns were identified using immune cell proportions with unsupervised clustering. Interpretation Further investigations of the quantitative cellular immune infiltrations in tumours may contribute to therapeutic advances.
Collapse
Affiliation(s)
- Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Rong Hu
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Ying Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| |
Collapse
|
34
|
Kim HC, Choi CM. Current Status of Immunotherapy for Lung Cancer and Future Perspectives. Tuberc Respir Dis (Seoul) 2020; 83:14-19. [PMID: 31905428 PMCID: PMC6953488 DOI: 10.4046/trd.2019.0039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains the most common cause of cancer-related deaths worldwide. Although there are many possible treatments, including targeted therapies such as epidermal growth factor receptor tyrosine kinase inhibitors and anaplastic lymphoma kinase inhibitors, new therapeutic strategies are needed to improve clinical outcomes. Immunotherapy through the use of immune checkpoint inhibitors has provided one of the most important breakthroughs in the management of solid tumors, including lung cancers, and has shown promising results in numerous clinical trials. This review will present the current status of immunotherapy for lung cancer and future perspectives on these treatments.
Collapse
Affiliation(s)
- Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Sun R, Wang R, Chang S, Li K, Sun R, Wang M, Li Z. Long Non-Coding RNA in Drug Resistance of Non-Small Cell Lung Cancer: A Mini Review. Front Pharmacol 2019; 10:1457. [PMID: 31920650 PMCID: PMC6930187 DOI: 10.3389/fphar.2019.01457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is one of main causes of cancer mortality and 83% of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Patients with NSCLC usually have a poor prognosis and one of the leading causes is drug resistance. With the progress of drug therapy, the emergence and development of drug resistance affected the prognosis of patients severely. Accumulating evidence reveals that long non-coding RNAs (lncRNAs), as “dark matters” of the human genome, is of great significance to drug resistance in NSCLC. Herein, we review the role of lncRNAs in drug resistance in NSCLC.
Collapse
Affiliation(s)
- Ruizheng Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ranran Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Siyuan Chang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Kexin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Rongsi Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mengnan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zheng Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
36
|
Tang J, Yang Q, Cui Q, Zhang D, Kong D, Liao X, Ren J, Gong Y, Wu G. Weighted gene correlation network analysis identifies RSAD2, HERC5, and CCL8 as prognostic candidates for breast cancer. J Cell Physiol 2019; 235:394-407. [PMID: 31225658 DOI: 10.1002/jcp.28980] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023]
Abstract
As the most commonly diagnosed malignant tumor in female population, the prognosis of breast cancer is affected by complex gene interaction networks. In this research weighted gene co-expression network analysis (WGCNA) would be utilized to build a gene co-expression network to identify potential biomarkers for prediction the prognosis of patients with breast cancer. We downloaded GSE25065 from Gene Expression Omnibus database as the test set. GSE25055 and GSE42568 were utilized to validate findings in the research. Seven modules were established in the GSE25065 by utilizing average link hierarchical clustering. Three hub genes, RSAD2, HERC5, and CCL8 were screened out from the significant module (R 2 = 0.44), which were considerably interrelated to worse prognosis. Within test dataset GSE25065, RSAD2, and CCL8 were correlated with tumor stage, grade, and lymph node metastases, whereas HERC5 was correlated with lymph node metastases and tumor grade. In the validation dataset GSE25055 and RSAD2 expression was correlated with tumor grade, stage, and size, whereas HERC5 was related to tumor stage and tumor grade, and CCL8 was associated with tumor size and tumor grade. Multivariable survival analysis demonstrated that RSAD2, HERC5, and CCL8 were independent risk factors. In conclusion, the WGCNA analysis conducted in this study screened out novel prognostic biomarkers of breast cancer. Meanwhile, further in vivo and in vitro studies are required to make the clear molecular mechanisms.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Deguang Kong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
37
|
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is a highly malignant disease with a dismal prognosis that is currently being tested for theclinical activity of checkpoint inhibitors. SCLC is associated with smoking and exhibits a high mutational burden. However, low expression of PD-L1 and MHC antigens, as well low levels of immune cell infiltration and rapid tumor progress seems to limit the efficacy of anticancer immunity. Nevertheless, long-term survival was reported from studies using anti-PD-1/PD-L1 and CTLA-4 agents. AREAS COVERED Data of clinical trials of checkpoint inhibitors in SCLC show lower success rates compared to NSCLC. The mechanisms of resistance to immunotherapy are discussed for their relevance to SCLC patients. EXPERT OPINION Although some factors, such as a high mutation rate, favor immunotherapy for SCLC patients, downregulation of MHC class I, low expression of PD-L1, poor tumor infiltration by effector T cells, presence of myeloid-derived suppressor cells as well as regulatory T lymphocytes counteract the immune system activation by checkpoint inhibitors. Furthermore, this tumor develops avascular regions which have immunosuppressive effects and restrict access of lymphocytes and antibodies. In conclusion, immunotherapy in SCLC is effective in highly selected patients with good performance status and special and unknown preconditions contributing to long-lasting responses.
Collapse
Affiliation(s)
- Gerhard Hamilton
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Barbara Rath
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
38
|
Li J, He Q, Yu X, Khan K, Weng X, Guan M. Complete response associated with immune checkpoint inhibitors in advanced non-small-cell lung cancer: a meta-analysis of nine randomized controlled trials. Cancer Manag Res 2019; 11:1623-1629. [PMID: 30863172 PMCID: PMC6388963 DOI: 10.2147/cmar.s188551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose The purposes of this study were to investigate whether the use of immune checkpoint inhibitors (ICIs) in advanced non-small-cell lung cancer (NSCLC) would increase the possibility of archiving complete response (CR) and assess the surrogate end points for overall survival (OS). Methods We calculated the incidence and relative risk (RR) of CR events in patients assigned to ICIs compared to that in controls. Simple linear regression models were fitted for median OS and each surrogate (median progression-free survival [PFS], CRs, and objective response rate [ORR]). Results A total of 4,803 NSCLC patients from nine randomized controlled trials (RCTs) were included for analysis. The incidence of CR in NSCLC patients treated with ICIs was 1.5% (95% CI: 0.8–3.0) compared to 0.7% (95% CI: 0.4–1.2) in chemotherapy (CT) groups. The use of ICIs in advanced NSCLC significantly improved the possibility of archiving CR (RR 2.89, 95% CI: 1.44–5.81, P=0.003) compared to CT. Subgroup analysis according to ICIs showed that the use of atezolizumab (RR 3.26, P=0.01) and nivolumab (RR 4.83, P=0.042) in advanced NSCLC significantly improved the CR rate in comparison with CT alone, but not pembrolizumab and ipilimumab. We also found that the use of ICIs as first-line (RR 2.39, 95% CI: 1.08–5.3, P=0.032) or second-line (RR 4.99, 95% CI: 1.10–22.66, P=0.038) therapy significantly increased the change in obtaining a CR. In addition, correlation analysis indicates that PFS was strongly correlated with OS in NSCLC patients who received ICIs (r=0.89 for PFS, P=0.017). No marked correlation was found between OS and CR (r=0.19, P=0.75) and OS and ORR (r=0.52, P=0.28). Conclusion The CR is a rate event in advanced NSCLC, but the use of ICIs significantly increases the possibility of archiving CR in comparison with CT. PFS is significantly correlated with OS and could be used as a surrogate end point, but not for CRs and ORRs.
Collapse
Affiliation(s)
- Jie Li
- Department of Respiratory Diseases, Second Clinical Medical College Shenzhen People's Hospital, Jinan University, Shenzhen 518020, China,
| | - Qi He
- Department of Respiratory Diseases, Second Clinical Medical College Shenzhen People's Hospital, Jinan University, Shenzhen 518020, China,
| | - Xiu Yu
- Department of Respiratory Diseases, Second Clinical Medical College Shenzhen People's Hospital, Jinan University, Shenzhen 518020, China,
| | - Khalid Khan
- Department of Respiratory Diseases, Second Clinical Medical College Shenzhen People's Hospital, Jinan University, Shenzhen 518020, China,
| | - Xuanwen Weng
- Department of Respiratory Diseases, Second Clinical Medical College Shenzhen People's Hospital, Jinan University, Shenzhen 518020, China,
| | - Minjie Guan
- Department of Respiratory Diseases, Second Clinical Medical College Shenzhen People's Hospital, Jinan University, Shenzhen 518020, China,
| |
Collapse
|
39
|
Passaro A, Stati V, de Marinis F. Immunotherapy in refractory SCLC: the caterpillar struggling to become a butterfly. Pulmonology 2018; 24:321-322. [PMID: 30554669 DOI: 10.1016/j.pulmoe.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Milan.
| | - Valeria Stati
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Milan
| | - Filippo de Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Milan
| |
Collapse
|