1
|
Zhao G, Li C, Liu W, Wu J, Yang X. Understanding the Molecular Mechanisms of SORBS2 in TNBC Lung Metastasis. Biochem Biophys Res Commun 2025; 762:151762. [PMID: 40199126 DOI: 10.1016/j.bbrc.2025.151762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Metastasis is the leading cause of recurrence and mortality in triple-negative breast cancer (TNBC), an aggressive subtype that predominantly spreads to the lungs, brain, bones, and liver, with lung metastasis being particularly prevalent. Despite the clinical significance of TNBC metastasis, the molecular mechanisms that drive lung-specific metastasis remain poorly understood. RNA-binding proteins (RBPs) are crucial regulators of post-transcriptional gene expression and are frequently dysregulated in cancers. This study identifies SORBS2 as a critical RBP implicated in TNBC lung metastasis. Using RNA sequencing (RNA-seq) and LACE-seq, we demonstrate that SORBS2 regulates a specific set of genes through direct binding to coding sequences (CDS), introns, and 3' untranslated regions (UTRs), and its binding targets are linked to various pathways, including a possible association with Wnt/β-catenin signaling, among others. Functional assays confirm that SORBS2 knockdown inhibits proliferation, migration, and invasion in TNBC cells. These findings highlight SORBS2 as a key regulator of TNBC lung metastasis, with a context-dependent role that promotes metastatic behavior in highly metastatic TNBC cells, providing potential avenues for novel therapeutic strategies.
Collapse
Affiliation(s)
- Gongke Zhao
- State Key Laboratory Base of Cell Differentiation and Regulation, Henan Normal University, Xin xiang, China
| | - Chunzheng Li
- State Key Laboratory Base of Cell Differentiation and Regulation, Henan Normal University, Xin xiang, China
| | - Wan Liu
- State Key Laboratory Base of Cell Differentiation and Regulation, Henan Normal University, Xin xiang, China
| | - Jianing Wu
- State Key Laboratory Base of Cell Differentiation and Regulation, Henan Normal University, Xin xiang, China
| | - Xianguang Yang
- State Key Laboratory Base of Cell Differentiation and Regulation, Henan Normal University, Xin xiang, China.
| |
Collapse
|
2
|
Sullivan SM, Murphy SE, Stram DO, Wilkens LR, Haiman CA, Le Marchand L, Stepanov I, Park SL. Genome-wide association study of urinary cadmium levels in current smokers from the multiethnic cohort study. Hum Mol Genet 2025; 34:611-616. [PMID: 39820534 DOI: 10.1093/hmg/ddae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/12/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Cadmium (Cd), classified as an International Agency for Research on Cancer (IARC) Group 1 human carcinogen, is present in cigarette smoke. Recent studies have illustrated the potential role of genetics in influencing Cd biomarker levels. METHODS We conducted a genome-wide association study (GWAS) of urinary Cd levels in 1977 current smokers from the Multiethnic Cohort Study, comprising participants from five different racial and ethnic groups. Linear regression models were adjusted for age at urine collection, sex, self-reported race/ethnicity, and the top ten leading principal components. RESULTS Among the 11 710 497 single nucleotide polymorphisms (SNP) analyzed, no associations with urinary Cd reached genome-wide significance (P < 5.0 × 10-8). Notably, five variants demonstrated suggestive associations with urinary Cd levels (P < 1.0 × 10-6). Lead variants included: rs10097646 in the SCARA gene at 8q13.2 (P = 2.62 × 10-7); rs7444817 in the NIPBL gene at 5p13.2 (P = 3.10 × 10-7), rs830422 in the SPINK4 gene at 9q13.2 (P = 4.89 × 10-7); chrX:145489901 in the SLC9A7 gene at Xq121.1 (P = 5.38 × 10-7); and rs73074456 at 5p13.3 (P = 5.86 × 10-7). CONCLUSIONS Our GWAS of urinary Cd levels in a diverse population of people who smoke, revealed suggestive associations with variants in SCARA5, NIPBL, SPINK4, SLC9A7, and 5p13.3. These findings underscore the potential role of genetic factors in understanding and mitigating the health risks associated with internal dose of carcinogens, particularly in the context of tobacco-related carcinogens.
Collapse
Affiliation(s)
- Shannon M Sullivan
- Department of Laboratory Medicine and Pathology, University of Minnesota, 1200 Washington Ave S Suite 175, Minneapolis, MN 55415, United States
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 1260 Mayo Building, MMC 807420 Delaware St. SE Minneapolis, MN 55455, United States
| | - Sharon E Murphy
- Department of Biochemistry Molecular Biology and Physics, University of Minnesota, 123 Snyder Hall1475 Gortner Ave St. Paul, MN 55108, United States
- Masonic Cancer Center, University of Minnesota, 2231 6th St SE Minneapolis, MN 55455, United States
| | - Daniel O Stram
- Keck School of Medicine, Department of Preventative Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, United States
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Christopher A Haiman
- Keck School of Medicine, Department of Preventative Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, United States
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Irina Stepanov
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 1260 Mayo Building, MMC 807420 Delaware St. SE Minneapolis, MN 55455, United States
- Masonic Cancer Center, University of Minnesota, 2231 6th St SE Minneapolis, MN 55455, United States
| | - S Lani Park
- Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States
| |
Collapse
|
3
|
He H, Zheng S, Jin S, Huang W, Wei E, Guan S, Yang C. Nucleotide metabolism-associated drug resistance gene NDUFA4L2 promotes colon cancer progression and 5-FU resistance. Sci Rep 2025; 15:570. [PMID: 39747340 PMCID: PMC11695588 DOI: 10.1038/s41598-024-84353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Chemotherapy is an effective way to improve the prognosis of colorectal cancer patients, but patient resistance to chemotherapeutic agents is becoming a major obstacle to treatment. Nucleotide metabolism correlates with the progression of colorectal cancer and chemotherapy resistance, but the mechanisms involved need to be further investigated. We calculated the half-maximal inhibitory concentrations (IC50) of 5-Fluorouracil (5-FU) in colorectal cancer patients using the "oncopredict" package, screened nucleotide metabolism-related drug resistance genes, and constructed a risk score model. According to the Kaplan-Meier(KM) analysis, the overall survival (OS) and disease-free survival (PFS) of the high-risk group were significantly lower than those of the low-risk group. In addition, the nomogram we constructed had good performance in predicting OS in colon adenocarcinoma (COAD) patients. We validated NDUFA4L2 by cellular functionality experiments, animal tumorigenesis experiments and drug resistance experiments. It was demonstrated that NDUFA4L2 promoted the proliferation and migration of colon cancer cells, while the abnormal regulation of NDUFA4L2 affected the 5-FU resistance of colon cancer cells. In conclusion, we found that NDUFA4L2 promotes the progression and metastasis of colon cancer, as well as resistance to 5-FU chemotherapy.
Collapse
Affiliation(s)
- Hongxin He
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shiyao Zheng
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shangkun Jin
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Weijie Huang
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Enhao Wei
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shen Guan
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, 420# Fuma Road, 350011, Fuzhou, Fujian, China
| | - Chunkang Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China.
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, P.R. China.
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, 420# Fuma Road, 350011, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Biyik-Sit R, Waigel S, Andreeva K, Rouchka E, Clem BF. Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse. Oncol Lett 2025; 29:9. [PMID: 39512505 PMCID: PMC11542166 DOI: 10.3892/ol.2024.14755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
The majority of malignant tumors exhibit an altered metabolic phenotype that ultimately provides the required energy and molecular precursors necessary for unregulated cell division. Within this, phosphoserine aminotransferase 1 (PSAT1) is involved in de novo serine biosynthesis and its activity promotes various biochemical processes, including one-carbon metabolism. It also directly generates α-ketoglutarate (α-KG), a Kreb cycle intermediate and epigenetic-regulating metabolite. Prior studies examining PSAT1 depletion have identified individual affected downstream pathways, such as GSK3β and E2F, in several cancer types, including non-small-cell lung cancer (NSCLC). However, global gene expression examination in response to PSAT1 loss, particularly in EGFR mutant NSCLC, has not been unexplored. Transcriptional profiling of EGFR mutant NSCLC cells with or without stable knock-down of PSAT1 identified differentially expressed genes (DEGs) enriched in several metabolic pathways required for cell division, including amino acid and nucleotide biosynthesis. Supplementation studies involving non-essential amino acids, nucleosides and α-KG partially restored defects in anchorage-independent growth due to the knockdown of PSAT1. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis identified potential impacts on actin cytoskeleton arrangement and β-catenin activity, which were rescued by PSAT1 re-expression. Finally, a comparative analysis of PSAT1 DEGs against transcripts enriched in patient EGFR mutant lung tumors identified a gene signature that is associated with overall and relapse-free survival (RFS) and was able to distinguish low or high-risk populations for RFS in early-stage EGFR mutant NSCLC. Overall, investigating genes altered by PSAT1 loss confirmed known PSAT1-regulated cellular pathways, identified a previously unknown role in the mediation of cytoskeleton arrangement in EGFR mutant NSCLC cells and allowed for the characterization of a gene signature with putative predictive potential for RFS in early-stage disease.
Collapse
Affiliation(s)
- Rumeysa Biyik-Sit
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- Brown Cancer Center, Louisville, KY 40202, USA
| | - Sabine Waigel
- Brown Cancer Center, Louisville, KY 40202, USA
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Kalina Andreeva
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40202, USA
| | - Eric Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- Brown Cancer Center, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Yang X, Jiang S, Yuan Z, Jiang J, Yang M, Luo J, Ye T. SPINK4 modulates inhibition of glycolysis against colorectal cancer progression. BIOMOLECULES & BIOMEDICINE 2024; 24:1571-1585. [PMID: 38747892 PMCID: PMC11496861 DOI: 10.17305/bb.2024.10338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 10/18/2024]
Abstract
Dysregulation of glycolysis is frequently linked to aggressive tumor activity in colorectal cancer (CRC). Although serine peptidase inhibitor, Kazal type 4 (SPINK4) has been linked to CRC, its exact linkage to glycolytic processes and gene expression remains unclear. Differentially expressed genes (DEGs) were screened from two CRC-related datasets (GSE32323 and GSE141174), followed by expression and prognostic analysis of SPINK4. In vitro techniques such as flow cytometry, western blotting, transwell assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to assess SPINK4 expression in CRC cells. Its effects on apoptosis, glycolysis, and the cell cycle were also investigated. Finally, the impact of SPINK4 overexpression on tumor development was assessed using a xenograft model, while histological and immunohistochemical analyses characterized SPINK4 expression patterns in CRC tissues. SPINK4 expression was downregulated in CRC, correlating with poor patient prognosis. In vitro assays confirmed that overexpression of SPINK4 reduced CRC cell proliferation, invasion, and migration, while its knockdown promoted these processes and caused G1 arrest. SPINK4 also regulated apoptosis by altering caspase activation and Bcl-2 expression. Besides, SPINK4 overexpression altered glycolytic activity, reduced 2-Deoxy-D-glucose (2-DG) absorption, and controlled critical glycolytic enzymes, resulting in alterations in metabolic pathways, whereas SPINK4 knockdown reversed this effect. SPINK4 overexpression significantly reduced tumor volume in vivo, indicating its inhibitory role in carcinogenesis. Moreover, high expression of SPINK4, hexokinase 2 (HK2), glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and pyruvate kinase M2 (PKM2) was observed in CRC tissues. As a key inhibitor of glycolytic metabolism in CRC, SPINK4 promises metabolic intervention in CRC therapy due to its impact on tumor growth and cell proliferation.
Collapse
Affiliation(s)
- Xiaodi Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Key laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and AHS, Fudan University, Shanghai, China
| | - Sen Jiang
- Department of Internal Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai East Clinical Medical College, Nanjing Medical University, Shanghai, China
| | - Zhen Yuan
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Key laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and AHS, Fudan University, Shanghai, China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Mengxuan Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Key laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and AHS, Fudan University, Shanghai, China
| | - Jing Luo
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Key laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and AHS, Fudan University, Shanghai, China
| | - Tao Ye
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Key laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and AHS, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Anbazhagan M, Sharma G, Murthy S, Maddipatla SC, Kolachala VL, Dodd A, Randunne A, Cutler DJ, Kugathasan S, Matthews JD. PTGER4 signaling regulates class IIa HDAC function and SPINK4 mRNA levels in rectal epithelial cells. Cell Commun Signal 2024; 22:493. [PMID: 39396982 PMCID: PMC11472582 DOI: 10.1186/s12964-024-01879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The prostaglandin receptor PTGER4 facilitates homeostasis in the gut. Previous reports indicate that goblet cells, marked by SPINK4 expression, might be affected by PTGER4 activity. Current evidence suggests that prostaglandin E2 (PGE2) produced by mesenchymal stromal cells (MSC) stimulates PTGER4 in epithelial cells during inflammatory conditions. Here, we investigate the subcellular mechanisms and mRNA levels downstream of PTGER4 activity in epithelial cells. METHODS Mucosal cells, organoids, and MSC were obtained from patient biopsies harvested by endoscopy. Using independent and co-cultures, we manipulated the activity of PTGER4, the downstream enzymes, and mRNA levels, by using PGE2, in combination with chemical inhibitors, L-161982, H89, LB100, DAPT, LMK-235, or with butyrate. Immunofluorescence, single cell sequencing, RNAscope, ELISA, real time PCR, and Western blotting were used to examine these samples. RESULTS SPINK4 mRNA levels were increased in organoids by co-culture with MSC or exogenous stimulation with PGE2 that could be blocked by L-161982 or LMK-235, PTGER4 or HDAC4 inhibitors, respectively. Expression of PTGER4 was co-localized with JAM-A in the basolateral surfaces in rectal epithelial cells grown as organoids. PGE2 treatment of rectal organoids decreased HDAC4, 5, and 7 phosphorylation levels that could be blocked by L-161982 treatment. Butyrate treatment, or addition of L-161982, increased the phosphorylated levels of HDAC4, 5, and 7. CONCLUSIONS These findings suggest a mechanism during mucosal injury whereby MSC production of PGE2 increases HDAC4, 5, and 7 activities in epithelial cells by upregulating PTGER4 signaling, ultimately increasing SPINK4 mRNA levels and extracellular release of SPINK4.
Collapse
Affiliation(s)
- Murugadas Anbazhagan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Garima Sharma
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Shanta Murthy
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Sushma Chowdary Maddipatla
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Vasantha L Kolachala
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Anne Dodd
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Amanda Randunne
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Subra Kugathasan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Department of Pediatrics and Pediatric Research Institute, Division of Pediatric Gastroenterology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Jason D Matthews
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Health Science Research Building, 1760 Haygood Dr, E-246, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Hassan-Zahraee M, Ye Z, Xi L, Dushin E, Lee J, Romatowski J, Leszczyszyn J, Danese S, Sandborn WJ, Banfield C, Gale JD, Peeva E, Longman RS, Hyde CL, Hung KE. Baseline Serum and Stool Microbiome Biomarkers Predict Clinical Efficacy and Tissue Molecular Response After Ritlecitinib Induction Therapy in Ulcerative Colitis. J Crohns Colitis 2024; 18:1361-1370. [PMID: 38141256 PMCID: PMC11369066 DOI: 10.1093/ecco-jcc/jjad213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Ritlecitinib, an oral JAK3/TEC family kinase inhibitor, was well-tolerated and efficacious in the phase 2b VIBRATO study in participants with moderate-to-severe ulcerative colitis [UC]. The aim of this study was to identify baseline serum and microbiome markers that predict subsequent clinical efficacy and to develop noninvasive serum signatures as potential real-time noninvasive surrogates of clinical efficacy after ritlecitinib. METHODS Tissue and peripheral blood proteomics, transcriptomics, and faecal metagenomics were performed on samples before and after 8 weeks of oral ritlecitinib induction therapy [20 mg, 70 mg, 200 mg, or placebo once daily, N = 39, 41, 33, and 18, respectively]. Linear mixed models were used to identify baseline and longitudinal protein markers associated with efficacy. The combined predictivity of these proteins was evaluated using a logistic model with permuted efficacy data. Differential expression of faecal metagenomics was used to differentiate responders and nonresponders. RESULTS Peripheral blood serum proteomics identified four baseline serum markers [LTA, CCL21, HLA-E, MEGF10] predictive of modified clinical remission [MR], endoscopic improvement [EI], histological remission [HR], and integrative score of tissue molecular improvement. In responders, 37 serum proteins significantly changed at Week 8 compared with baseline [false discovery rate of <0.05]; of these, changes in four [IL4R, TNFRSF4, SPINK4, and LAIR-1] predicted concurrent EI and HR responses. Faecal metagenomics analysis revealed baseline and treatment response signatures that correlated with EI, MR, and tissue molecular improvement. CONCLUSIONS Blood and microbiome biomarkers stratify endoscopic, histological, and tissue molecular responses to ritlecitinib, which may help guide future precision medicine approaches to UC treatment. ClinicalTrials.gov NCT02958865.
Collapse
Affiliation(s)
| | - Zhan Ye
- Pfizer Inc, Cambridge, MA, USA
| | - Li Xi
- Pfizer Inc, Cambridge, MA, USA
| | | | | | - Jacek Romatowski
- Provincial Complex Hospital, Gastroenterology, Bialystok, Poland
| | | | - Silvio Danese
- IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | | | | | | | | | - Randy S Longman
- Weill Cornell Medicine, Division of Gastroenterology and Hepatology, New York, NY, USA
| | | | | |
Collapse
|
8
|
Wang Y, Han J, Yang G, Zheng S, Zhou G, Liu X, Cao X, Li G, Zhang B, Xie Z, Li L, Zhang M, Li X, Chen M, Zhang S. Therapeutic potential of the secreted Kazal-type serine protease inhibitor SPINK4 in colitis. Nat Commun 2024; 15:5874. [PMID: 38997284 PMCID: PMC11245600 DOI: 10.1038/s41467-024-50048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Mucus injury associated with goblet cell (GC) depletion constitutes an early event in inflammatory bowel disease (IBD). Using single-cell sequencing to detect critical events in mucus dysfunction, we discover that the Kazal-type serine protease inhibitor SPINK4 is dynamically regulated in colitic intestine in parallel with disease activities. Under chemically induced colitic conditions, the grim status in Spink4-conditional knockout mice is successfully rescued by recombinant murine SPINK4. Notably, its therapeutic potential is synergistic with existing TNF-α inhibitor infliximab in colitis treatment. Mechanistically, SPINK4 promotes GC differentiation using a Kazal-like motif to modulate EGFR-Wnt/β-catenin and -Hippo pathways. Microbiota-derived diacylated lipoprotein Pam2CSK4 triggers SPINK4 production. We also show that monitoring SPINK4 in circulation is a reliable noninvasive technique to distinguish IBD patients from healthy controls and assess disease activity. Thus, SPINK4 serves as a serologic biomarker of IBD and has therapeutic potential for colitis via intrinsic EGFR activation in intestinal homeostasis.
Collapse
Affiliation(s)
- Ying Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing Han
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
- Division of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, P. R. China
| | - Guang Yang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, P. R. China
| | - Xiaocang Cao
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, P. R. China
| | - Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, P. R. China
| | - Bowen Zhang
- College of Life Sciences, Beijing Normal University, Beijing, P. R. China
| | - Zhuo Xie
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Mudan Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoling Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.
- Division of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, P. R. China.
| |
Collapse
|
9
|
Patel H, Sheikh MS, Huang Y. ECRG2/SPINK7 Tumor Suppressor as Modulator of DNA Damage Response. Int J Mol Sci 2024; 25:5854. [PMID: 38892042 PMCID: PMC11172197 DOI: 10.3390/ijms25115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Esophageal Cancer-Related Gene 2 (ECRG2), also known as Serine Peptidase Inhibitor Kazal type 7 (SPINK7), is a novel tumor suppressor gene from the SPINK family of genes that exhibits anticancer potential. ECRG2 was originally identified during efforts to discover genes involved in esophageal tumorigenesis. ECRG2 was one of those genes whose expression was absent or reduced in primary human esophageal cancers. Additionally, absent or reduced ECRG2 expression was also noted in several other types of human malignancies. ECRG2 missense mutations were identified in various primary human cancers. It was reported that a cancer-derived ECRG2 mutant (valine to glutamic acid at position 30) failed to induce cell death and caspase activation triggered by DNA-damaging anticancer drugs. Furthermore, ECRG2 suppressed cancer cell proliferation in cultured cells and grafted tumors in animals and inhibited cancer cell migration/invasion and metastasis. ECRG2 also was identified as a negative regulator of Hu-antigen R (HuR), an oncogenic RNA-binding protein that is known to regulate mRNA stability and the expression of transcripts corresponding to many cancer-related genes. ECRG2 function is important also for the regulation of inflammatory responses and the maintenance of epithelial barrier integrity in the esophagus. More recently, ECRG2 was discovered as one of the newest members of the pro-apoptotic transcriptional targets of p53. Two p53-binding sites (BS-1 and BS-2) were found within the proximal region of the ECRG2 gene promoter; the treatment of DNA-damaging agents in cancer cells significantly increased p53 binding to the ECRG2 promoter and triggered a strong ECRG2 promoter induction following DNA damage. Further, the genetic depletion of ECRG2 expression significantly impeded apoptotic cell death induced by DNA damage and wild-type p53 in cancer cells. These findings suggest that the loss of ECRG2 expression, commonly observed in human cancers, could play important roles in conferring anticancer drug resistance in human cancers. Thus, ECRG2 is a novel regulator in DNA damage-induced cell death that may also be a potential target for anticancer therapeutics.
Collapse
Affiliation(s)
| | - M. Saeed Sheikh
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA;
| | - Ying Huang
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA;
| |
Collapse
|
10
|
裴 蓓, 张 艺, 魏 思, 梅 语, 宋 标, 董 港, 温 子, 李 学. [Identification of potential pathogenic genes of intestinal metaplasia based on transcriptomic sequencing and bioinformatics analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:941-949. [PMID: 38862452 PMCID: PMC11166712 DOI: 10.12122/j.issn.1673-4254.2024.05.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To explore the potential pathogenic genes of intestinal metaplasia. METHODS Twenty-one patients with intestinal metaplasia admitted to the Department of Gastroenterology at the Second Affiliated Hospital of Anhui University of Chinese Medicine from January, 2022 to June, 2022, and 21 healthy subjects undergoing gastroscopic examination during the same period were enrolled in this study. All the participants underwent gastroscopy and pathological examination, and gastric tissue samples were collected for transcriptome sequencing to screen for differentially expressed genes (DEGs). The biological functions of the DEGs were analyzed using bioinformatics analysis, and qRT-PCR was used to validate the results. RESULTS Transcriptomic sequencing identified a total of 1373 DEGs, including 827 upregulated and 546 downregulated ones. The top 6 upregulated genes (AGMAT, CCL25, FABP1, CDX1, SPINK4, and MUC2), ranked based on their significance and average expression level, were selected for validation, and qRT-PCR showed significant upregulation of their mRNAs in the gastric tissues of patients with intestinal metaplasia (P < 0.05). CONCLUSION AGMAT, CCL25, FABP1, CDX1, SPINK4, and MUC2 participate in the occurrence and development of intestinal metaplasia, and may serve as potential biomarkers for diagnosing intestinal metaplasia.
Collapse
|
11
|
Ai LJ, Li GD, Chen G, Sun ZQ, Zhang JN, Liu M. Molecular subtyping and the construction of a predictive model of colorectal cancer based on ion channel genes. Eur J Med Res 2024; 29:219. [PMID: 38576045 PMCID: PMC10993535 DOI: 10.1186/s40001-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE Colorectal cancer (CRC) is a highly heterogeneous malignancy with an unfavorable prognosis. The purpose of this study was to address the heterogeneity of CRC by categorizing it into ion channel subtypes, and to develop a predictive modeling based on ion channel genes to predict the survival and immunological states of patients with CRC. The model will provide guidance for personalized immunotherapy and drug treatment. METHODS A consistent clustering method was used to classify 619 CRC samples based on the expression of 279 ion channel genes. Such a method was allowed to investigate the relationship between molecular subtypes, prognosis, and immune infiltration. Furthermore, a predictive modeling was constructed for ion channels to evaluate the ion channel properties of individual tumors using the least absolute shrinkage and selection operator. The expression patterns of the characteristic genes were validated through molecular biology experiments. The effect of potassium channel tetramerization domain containing 9 (KCTD9) on CRC was verified by cellular functional experiments. RESULTS Four distinct ion channel subtypes were identified in CRC, each characterized by unique prognosis and immune infiltration patterns. Notably, Ion Cluster3 exhibited high levels of immune infiltration and a favorable prognosis, while Ion Cluster4 showed relatively lower levels of immune infiltration and a poorer prognosis. The ion channel score could predict overall survival, with lower scores correlated with longer survival. This score served as an independent prognostic factor and presented an excellent predictive efficacy in the nomogram. In addition, the score was closely related to immune infiltration, immunotherapy response, and chemotherapy sensitivity. Experimental evidence further confirmed that low expression of KCTD9 in tumor tissues was associated with an unfavorable prognosis in patients with CRC. The cellular functional experiments demonstrated that KCTD9 inhibited the proliferation, migration and invasion capabilities of LOVO cells. CONCLUSIONS Ion channel subtyping and scoring can effectively predict the prognosis and evaluate the immune microenvironment, immunotherapy response, and drug sensitivity in patients with CRC.
Collapse
Affiliation(s)
- Lian-Jie Ai
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guo-Dong Li
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Chen
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zi-Quan Sun
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jin-Ning Zhang
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ming Liu
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
12
|
Vasudevan Nampoothiri R, Avery L, Pasic I, Prassas I, Diamandis E, Michelis FV. Multiplex Proteomics in the Identification of Potential Biomarkers of Very Severe Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease in Allogeneic Hematopoietic Cell Transplant Patients Treated with Defibrotide. Acta Haematol 2024; 147:511-524. [PMID: 38330921 DOI: 10.1159/000535706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Despite well-established clinical criteria for diagnosis of sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD) following allogeneic hematopoietic cell transplantation (HCT), there is a lack of established diagnostic protein biomarkers. METHODS Prospective samples were collected from patients with very severe SOS/VOD at diagnosis and days +3, +7, +14, and +30 post-initiation of defibrotide. Samples from age-matched controls with no VOD were collected at days +14, +30, +60, +90, and +180 following allogeneic HCT. Serum samples were analyzed for 2,925 protein levels by antibody-based proximity extension assay (PEA). Mean differences in the log-transformed abundance values were compared using t tests in a volcano plot. RESULTS Five patients with very severe SOS/VOD and 5 control patients were compared. Ten proteins were identified that showed a statistically significant and log-transformed 3-fold increase in concentration. They were CALCA, CCL20, GPR37, IGFBP4, IL1RL1, SLC39A14, SPINK4, FABP3, MYL3, and CHCHD10. Four different proteins, namely, CD83, leukocyte associated immunoglobulin-like receptor 2 (LAIR2), CD7, and HEM6 showed a significant decrease with defibrotide treatment. SOS/VOD resolved in 80% (n = 4) of patients, while 1 patient deceased due to SOS/VOD. CONCLUSION PEA technology identified 10 proteins that were significantly elevated in patients with very severe SOS/VOD. Prospective studies in a larger cohort using this technology may be able to conclusively identify diagnostic protein biomarkers for SOS/VOD.
Collapse
Affiliation(s)
- Ram Vasudevan Nampoothiri
- The Ottawa Hospital Transplantation and Cellular Therapy Program, University of Ottawa, Ottawa, Ontario, Canada,
| | - Lisa Avery
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Pasic
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eleftherios Diamandis
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Fotios V Michelis
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Chai R, Zhao Y, Su Z, Liang W. Integrative analysis reveals a four-gene signature for predicting survival and immunotherapy response in colon cancer patients using bulk and single-cell RNA-seq data. Front Oncol 2023; 13:1277084. [PMID: 38023180 PMCID: PMC10644708 DOI: 10.3389/fonc.2023.1277084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Colon cancer (CC) ranks as one of the leading causes of cancer-related mortality globally. Single-cell transcriptome sequencing (scRNA-seq) offers precise gene expression data for distinct cell types. This study aimed to utilize scRNA-seq and bulk transcriptome sequencing (bulk RNA-seq) data from CC samples to develop a novel prognostic model. Methods scRNA-seq data was downloaded from the GSE161277 database. R packages including "Seurat", "Harmony", and "singleR" were employed to categorize eight major cell types within normal and tumor tissues. By comparing tumor and normal samples, differentially expressed genes (DEGs) across these major cell types were identified. Gene Ontology (GO) enrichment analyses of DEGs for each cell type were conducted using "Metascape". DEGs-based signature construction involved Cox regression and least absolute shrinkage operator (LASSO) analyses, performed on The Cancer Genome Atlas (TCGA) training cohort. Validation occurred in the GSE39582 and GSE33382 datasets. The expression pattern of prognostic genes was verified using spatial transcriptome sequencing (ST-seq) data. Ultimately, an established prognostic nomogram based on the gene signature and age was established and calibrated. Sensitivity to chemotherapeutic drugs was predicted with the "oncoPredict" R package. Results Using scRNA-Seq data, we examined 33,213 cells, categorizing them into eight cell types within normal and tumor samples. GO enrichment analysis revealed various cancer-related pathways across DEGs in these cell types. Among the 55 DEGs identified via univariate Cox regression, four independent prognostic genes emerged: PTPN6, CXCL13, SPINK4, and NPDC1. Expression validation through ST-seq confirmed PTPN6 and CXCL13 predominance in immune cells, while SPINK4 and NPDC1 were relatively epithelial cell-specific. Creating a four-gene prognostic signature, Kaplan-Meier survival analyses emphasized higher risk scores correlating with unfavorable prognoses, confirmed across training and validation cohorts. The risk score emerged as an independent prognostic factor, supported by a reliable nomogram. Intriguingly, drug sensitivity analysis unveiled contrasting anti-cancer drug responses in the two risk groups, suggesting significant clinical implications. Conclusion We developed a novel prognostic four-gene risk model, and these genes may act as potential therapeutic targets for CC.
Collapse
Affiliation(s)
- Ruoyang Chai
- Department of General Practice, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengjia Su
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Li T, Jia Z, Liu J, Xu X, Wang H, Li D, Qiu Z. Transcription activation of SPINK4 by ELF-1 augments progression of colon cancer by regulating biological behaviors. Tissue Cell 2023; 84:102190. [PMID: 37586179 DOI: 10.1016/j.tice.2023.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND SPINK4 was highly expressed in colorectal cancer and resulted in worse prognosis of colorectal cancer patients. However, the expression and function of SPINK4 in colon cancer have not been revealed. METHODS Analysis from GEPIA website showed the expression and function of SPINK4 in colon cancer samples. Colon cancer cell lines were applied to detect the biological function of SPINK4. Functionally, the transcriptional factor of SPINK4 has been predicted and verified. Finally, the associations between transcriptional factor and SPINK4 have been confirmed. RESULTS SPINK4 expression was obviously increased in colon cancer samples. HCT-116 and DXH-1 cells in si-SPINK4-1 or si-SPINK4-2 group displayed an obvious reduction in its proliferation, cell cycle, invasion and migration compared to those in the si-control group. Moreover, transcriptional factor ELF-1 bound to the promoter of SPINK4 and affected its expression in colon cancer cells. High ELF-1 expression was presented in colon cancer samples and resulted in worse prognosis of colon cancer patients. Additionally, si-SPINK4 antagonized the function of ELF-1 overexpression in modulating colon cancer cell proliferation, cell cycle and mobility. CONCLUSIONS Our findings afforded a theoretical basis for further research on the treatment of colon cancer based on the control of ELF-1/SPINK4 expression.
Collapse
Affiliation(s)
- Tonghu Li
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Zheng Jia
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Jingxi Liu
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Xilei Xu
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Huajun Wang
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Da Li
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Zhengcai Qiu
- Department of General Surgery, Shuyang Hospital of Traditional Chinese Medicine, Suqian City, Jiangsu Province, China.
| |
Collapse
|
15
|
Chang WCL, Ghosh J, Cooper HS, Vanderveer L, Schultz B, Zhou Y, Harvey KN, Kaunga E, Devarajan K, Li Y, Jelinek J, Fragoso MF, Sapienza C, Clapper ML. Folic Acid Supplementation Promotes Hypomethylation in Both the Inflamed Colonic Mucosa and Colitis-Associated Dysplasia. Cancers (Basel) 2023; 15:2949. [PMID: 37296911 PMCID: PMC10252136 DOI: 10.3390/cancers15112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE The purpose of this study was to assess the effect of folic acid (FA) supplementation on colitis-associated colorectal cancer (CRC) using the azoxymethane/dextran sulfate sodium (AOM/DSS) model. METHODS Mice were fed a chow containing 2 mg/kg FA at baseline and randomized after the first DSS treatment to receive 0, 2, or 8 mg/kg FA chow for 16 weeks. Colon tissue was collected for histopathological evaluation, genome-wide methylation analyses (Digital Restriction Enzyme Assay of Methylation), and gene expression profiling (RNA-Seq). RESULTS A dose-dependent increase in the multiplicity of colonic dysplasias was observed, with the multiplicity of total and polypoid dysplasias higher (64% and 225%, respectively) in the 8 mg FA vs. the 0 mg FA group (p < 0.001). Polypoid dysplasias were hypomethylated, as compared to the non-neoplastic colonic mucosa (p < 0.05), irrespective of FA treatment. The colonic mucosa of the 8 mg FA group was markedly hypomethylated as compared to the 0 mg FA group. Differential methylation of genes involved in Wnt/β-catenin and MAPK signaling resulted in corresponding alterations in gene expression within the colonic mucosa. CONCLUSIONS High-dose FA created an altered epigenetic field effect within the non-neoplastic colonic mucosa. The observed decrease in site-specific DNA methylation altered oncogenic pathways and promoted colitis-associated CRC.
Collapse
Affiliation(s)
- Wen-Chi L. Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (J.G.); (B.S.)
| | - Harry S. Cooper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Lisa Vanderveer
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Bryant Schultz
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (J.G.); (B.S.)
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Kristen N. Harvey
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Esther Kaunga
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Yuesheng Li
- DNA Sequencing and Genomic Core Facility, National Heart, Lung, and Blood Institute, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jaroslav Jelinek
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (J.G.); (B.S.)
| | - Mariana F. Fragoso
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Carmen Sapienza
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (J.G.); (B.S.)
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| |
Collapse
|
16
|
Hu BL, Yin YX, Li KZ, Li SQ, Li Z. SPINK4 promotes colorectal cancer cell proliferation and inhibits ferroptosis. BMC Gastroenterol 2023; 23:104. [PMID: 37013514 PMCID: PMC10071753 DOI: 10.1186/s12876-023-02734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Little is known about the role of serine peptidase inhibitor Kazal type 4 (SPINK4) in colorectal cancer (CRC) and ferroptosis. Therefore, this study aimed to determine the effect of SPINK4 on CRC pathogenesis and ferroptosis. METHODS SPINK4 expression was analyzed in public datasets and examined using immunohistochemistry. The biological function of SPINK4 in CRC cell lines and its effect on ferroptosis were tested. An immunofluorescence assay was performed to determine the location of SPINK4 in cells, and mouse models were established to determine the effects of SPINK4 in vivo. RESULTS CRC datasets and clinical samples analysis revealed that SPINK4 mRNA and protein levels were significantly reduced in CRC tissues compared to control tissues (P < 0.05). Two CRC cell lines (HCT116 and LoVo) were selected, and the in vitro and in vivo experiments showed that overexpression of SPINK4 greatly promotes the proliferation and metastasis of CRC cells and tumor growth (P < 0.05). The immunofluorescence assay indicated that SPINK4 is mainly located in the nucleoplasm and nucleus of CRC cells. Furthermore, SPINK4 expression was reduced after cell ferroptosis induced by Erastin, and overexpression of SPINK4 greatly inhibited ferroptosis in CRC cells. The results of mouse model further demonstrated that SPINK4 overexpression inhibited CRC cell ferroptosis and facilitated tumor growth. CONCLUSIONS SPINK4 was decreased in CRC tissues and promoted cell proliferation and metastasis; overexpression of SPINK4 inhibited CRC cell ferroptosis.
Collapse
Affiliation(s)
- Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China.
| | - Yi-Xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China
| | - Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China
| | - Zhao Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China.
| |
Collapse
|
17
|
Construction of a TTN Mutation-Based Prognostic Model for Evaluating Immune Microenvironment, Cancer Stemness, and Outcomes of Colorectal Cancer Patients. Stem Cells Int 2023; 2023:6079957. [PMID: 36895786 PMCID: PMC9990748 DOI: 10.1155/2023/6079957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 02/23/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the commonest cancers worldwide. As conventional biomarkers cannot clearly define the heterogeneity of CRC, it is essential to establish novel prognostic models. Methods For the training set, data pertaining to mutations, gene expression profiles, and clinical parameters were obtained from the Cancer Genome Atlas. Consensus clustering analysis was used to identify the CRC immune subtypes. CIBERSORT was used to analyze the immune heterogeneity across different CRC subgroups. Least absolute shrinkage and selection operator regression was used to identify the genes for constructing the immune feature-based prognostic model and to determine their coefficients. Result A gene prognostic model was then constructed to predict patient outcomes; the model was then externally validated using data from the Gene Expression Omnibus. As a high-frequency somatic mutation, the titin (TTN) mutation has been identified as a risk factor for CRC. Our results demonstrated that TTN mutations have the potential to modulate the tumor microenvironment, converting it into the immunosuppressive type. In this study, we identified the immune subtypes of CRC. Based on the identified subtypes, 25 genes were selected for prognostic model construction; a prediction model was also constructed, and its prediction accuracy was tested using the validation dataset. The potential of the model in predicting immunotherapy responsiveness was then explored. Conclusion TTN-mutant and TTN-wild-type CRC demonstrated different microenvironment features and prognosis. Our model provides a robust immune-related gene prognostic tool and a series of gene signatures for evaluating the immune features, cancer stemness, and prognosis of CRC.
Collapse
|
18
|
Zhao Z, Yang Y, Liu Z, Chen H, Guan X, Jiang Z, Yang M, Liu H, Chen T, Gao Y, Zou S, Wang X. Prognostic and immunotherapeutic significance of mannose receptor C type II in 33 cancers: An integrated analysis. Front Mol Biosci 2022; 9:951636. [PMID: 36188226 PMCID: PMC9519056 DOI: 10.3389/fmolb.2022.951636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The type 2 mannose receptor C (MRC2) is involved in tumor biological processes and plays a new role in the remodeling of the extracellular matrix turnover. Previous studies have demonstrated MRC2 expression profiling and prognostic relevance in some tumor types. However, the clinical and immunotherapeutic value of MRC2 in pan-cancers remains controversial. Our study aimed to evaluate MRC2 expression pattern, clinical characteristics and prognostic significance in 33 cancers, explore the relationship between MRC2 and immune-related characteristics, and assess the prediction of MRC2 for the immunotherapeutic response. Methods: Transcriptional and clinical data of 33 cancers were downloaded from The Cancer Genome Atlas database (TCGA) database and two independent immunotherapeutic cohorts were obtained from GSE67501 and the IMvigor210 study. Next, patients stratified by MRC2 expression levels were displayed by Kaplan-Meier plot to compare prognosis-related indexes. Meanwhile, immune infiltrates of different cancers were estimated by tumor immune estimation resources (TIMER) and CIBERSORT. The ESTIMATE algorithm was used to estimate the immune and stromal scores in tumor tissues. MRC2 expression and immunological modulators, including immune inhibitors, immune stimulators, and MHC molecules, were screened through the TISIDB portal. Gene-set enrichment analysis analyses were performed to explore the underlying biological process of MRC2 across different cancers. The immunotherapeutic response prediction was performed in two independent cohorts (GSE78220: metastatic melanoma with pembrolizumab treatment and IMvigor210: advanced urothelial cancer with atezolizumab intervention). Results: MRC2 is expressed differently in many cancers and has been shown to have potential prognostic predicting significance. MRC2 was significantly associated with immune cell infiltration, immune modulators, and immunotherapeutic markers. Notably, the immunotherapeutic response group was associated with lower MRC2 expression in metastatic melanoma and advanced urothelial carcinoma cohort. Conclusion: This study demonstrated that MRC2 could be a prognostic indicator for certain cancer and is critical for tumor immune microenvironments. MRC2 expression level may influence and predict immune checkpoint blockade response as a potential indicator.
Collapse
Affiliation(s)
- Zhixun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanwei Yang
- Department of Laboratory, National Center for Children’s Health/Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haipeng Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianli Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Shuangmei Zou, ; Xishan Wang,
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Shuangmei Zou, ; Xishan Wang,
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Shuangmei Zou, ; Xishan Wang,
| |
Collapse
|
19
|
Lee JE, Choi YY, An JY, Kim KT, Shin SJ, Cheong JH. Clinicopathologic and genomic characteristics of mucinous gastric adenocarcinoma. Gastric Cancer 2022; 25:697-711. [PMID: 35534656 DOI: 10.1007/s10120-022-01295-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mucinous gastric adenocarcinoma (MGC) is a rare but distinctive histologic subtype of gastric cancer (GC). The clinico-pathologic and genomic characteristics of MGC have not been well evaluated. METHODS We collected individual data from five cohorts targeting the microsatellite instability (MSI) of GC (n = 5089) to evaluate the clinico-pathologic characteristics of MGC. In addition, public genomic databases were used for genomic analysis. The characteristics of MGC were compared with those of non-mucinous GC (NMGC). RESULTS MGC (n = 158, 3.1%) showed distinctive characteristics in terms of age, sex, and TNM stage compared to NMGC (n = 4931). MGC was frequently associated with MSI-high (OR: 2.24, 95% confidence interval [CI] 1.44-3.40, p < 0.001), while mutually exclusive to the Epstein-Barr virus type. The prognosis of MGC was better than that of NMGC (adj.HR: 0.731, 95% CI 0.556-0.962, p = 0.025). There was no clear benefit from postoperative chemotherapy in MGC. TP53 was the main driver mutation in the MGC without recurrent variants. MGC was related to high expression of GPR120 and B3GNT6 and moderate regulation of epithelial-mesenchymal transition (EMT)-up signature with a high EMT-down signature, and those characteristics was related to favorable prognosis of GC (log-rank p = 0.044, p < 0.001, p < 0.001, respectively). MSI-H of MGC was associated with low cancer-associate fibroblasts but high CD274 (PD-L1) expression compared to microsatellite stable MGC, suggesting that immune checkpoint inhibitors may be useful for the MSI-H of MGC. CONCLUSION MGC could be a surrogate for performing MSI but not the EBV test in GC. Further, its genetic characteristics lead to a favorable prognosis for MGC.
Collapse
Affiliation(s)
- Jae Eun Lee
- Graduate School of Integrated Medicine, CHA Ilsan Medical Center, CHA University School of Medicine, Pocheon, Korea
| | - Yoon Young Choi
- Department of Surgery, CHA Ilsan Medical Center, CHA University School of Medicine, Pocheon, Korea.,Department of Surgery, Soonchunhyang Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ji Yeong An
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Tae Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| |
Collapse
|
20
|
Xiao S, Yang C, Zhang Y, Lai C. Downregulation of B3GNT6 is a predictor of poor outcomes in patients with colorectal cancer. World J Surg Oncol 2022; 20:110. [PMID: 35387659 PMCID: PMC8988341 DOI: 10.1186/s12957-022-02561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background The B3GNT6 protein is a member of the O-GlcNAc transferase (OGT) family and is responsible for the production of the core 3 structure of O-glycans. It is generally expressed in the gastrointestinal (GI) tract; however, its clinical significance in colorectal cancer remains largely unexplored. Methods We obtained mRNA transcriptomic sequencing data from 3 gene expression omnibus (GEO) datasets (GSE37182, GSE39582, GSE103512) and The Cancer Genome Atlas (TCGA) to compare the B3GNT6 mRNA levels between colorectal cancer and normal tissues and further evaluate its value as a prognostic marker in colorectal cancer. We further validated this at the protein level in our cohort using immunohistochemical staining of B3GNT6 as well as the Human Protein Atlas online database. Results B3GNT6 expression was downregulated in colorectal cancer tissues as compared to that in the normal tissues at both mRNA and protein levels. Downregulation of B3GNT6 expression was found to be associated with poor overall survival in patients with colorectal cancer as per the data in GSE39582 and TCGA databases. Low B3GNT6 mRNA levels were significantly associated with chromosome instability (CIN) and KRAS mutations in patients with colorectal cancer. Gene set enrichment analysis (GSEA) revealed that low B3GNT6 expression levels in colorectal cancer were associated with increased proteasome activity. Conclusions The results of this study demonstrate that low expression of B3GNT6 is a potential biomarker for poor outcomes in patients with CRC. Moreover, the low expression of B3GNT6 may indicate more frequent activation of the KRAS/ERK signaling pathway, high CIN, and increased proteasomal activity. These novel findings may prove helpful for molecular diagnosis and provide a new therapeutic target for colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02561-x.
Collapse
Affiliation(s)
- Shihan Xiao
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
| | - Chen Yang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,Department of Colorectal Surgery, 1st Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Yang Zhang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China. .,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.
| |
Collapse
|
21
|
Liao C, Wang Q, An J, Zhang M, Chen J, Li X, Xiao L, Wang J, Long Q, Liu J, Guan X. SPINKs in Tumors: Potential Therapeutic Targets. Front Oncol 2022; 12:833741. [PMID: 35223512 PMCID: PMC8873584 DOI: 10.3389/fonc.2022.833741] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
The serine protease inhibitor Kazal type (SPINK) family includes SPINK1-14 and is the largest branch in the serine protease inhibitor family. SPINKs play an important role in pancreatic physiology and disease, sperm maturation and capacitation, Nager syndrome, inflammation and the skin barrier. Evidence shows that the unregulated expression of SPINK1, 2, 4, 5, 6, 7, and 13 is closely related to human tumors. Different SPINKs exhibit various regulatory modes in different tumors and can be used as tumor prognostic markers. This article reviews the role of SPINK1, 2, 4, 5, 6, 7, and 13 in different human cancer processes and helps to identify new cancer treatment targets.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
22
|
Ye Y, Ma J, Zhang Q, Xiong K, Zhang Z, Chen C, Xiao H, Wang D. A CTL/M2 macrophage-related four-gene signature predicting metastasis-free survival in triple-negative breast cancer treated with adjuvant radiotherapy. Breast Cancer Res Treat 2021; 190:329-341. [PMID: 34482483 DOI: 10.1007/s10549-021-06379-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE This study aimed to develop and validate a prognostic model for metastasis-free survival (MFS) based on genes that may functionally interact with cytotoxic T lymphocytes (CTLs) and M2 macrophages in patients with triple-negative breast cancer (TNBC) who underwent adjuvant radiotherapy. METHODS The transcriptional and phenotypic profiles of TNBC and other breast cancer subtypes were downloaded from gene expression omnibus (GEO). The abundance of infiltrated immune cells was evaluated through CIBERSORTx or MCP-counter. A weighted linear model, the score for MFS (SMFS), was developed using the least absolute shrinkage and selection operator (LASSO) in GSE58812 and validated in GSE2034 and GSE12276. The biological implication of the SMFS was explored by evaluating its associations with TNBC molecular subtypes and other radiosensitivity- or immune-related signatures. RESULTS A model consisting of the PCDH12/ELP3, PCDH12/MSRA, and FAM160B2/MSRA gene expression ratios with non-zero coefficients finally selected by LASSO was developed using GSE58812. In GSE2034 (treatment with adjuvant radiotherapy), the SMFS was significantly associated with MFS in TNBC patients (hazard ratio (HR) = 8.767, 95% confidence interval (CI) 1.856-41.408, P = 0.006) and, to a lesser extent, in non-TNBC patients (HR = 2.888, 95% CI 1.076-7.750, P = 0.035). However, the interaction of subtype (TNBC vs non-TNBC) and the SMFS tended to be significant (Pinteraction = 0.081). In contrast, the SMFS was not significantly associated with MFS in either TNBC patients (P = 0.499) or non-TNBC patients (P = 0.536) in GSE12276 (treatment without radiotherapy). Among the four TNBC molecular subtypes, the c1 and c4 subtypes exhibited higher CTL infiltration and lower SMFS values than the c2 and c3 subtypes. In addition, the SMFS was positively correlated with the abundance of endothelial cells (r = 0.413, P < 0.001). CONCLUSION The proposed model has the potential to predict MFS in TNBC patients after adjuvant radiotherapy, and the SMFS may represent a measurement of tumor immune suppression.
Collapse
Affiliation(s)
- Yunfei Ye
- Department of Cancer Center, Daping Hospital & Army Medical Center of PLA, Third Military Medical University (Army Medical University), No. 10 Changjiang Zhilu, Yuzhong District, Chongqing, 400042, China
| | - Jungang Ma
- Department of Cancer Center, Daping Hospital & Army Medical Center of PLA, Third Military Medical University (Army Medical University), No. 10 Changjiang Zhilu, Yuzhong District, Chongqing, 400042, China
| | - Qin Zhang
- Department of Cancer Center, Daping Hospital & Army Medical Center of PLA, Third Military Medical University (Army Medical University), No. 10 Changjiang Zhilu, Yuzhong District, Chongqing, 400042, China
| | - Kai Xiong
- Department of Cancer Center, Daping Hospital & Army Medical Center of PLA, Third Military Medical University (Army Medical University), No. 10 Changjiang Zhilu, Yuzhong District, Chongqing, 400042, China
| | - Zhimin Zhang
- Department of Cancer Center, Daping Hospital & Army Medical Center of PLA, Third Military Medical University (Army Medical University), No. 10 Changjiang Zhilu, Yuzhong District, Chongqing, 400042, China
| | - Chuan Chen
- Department of Cancer Center, Daping Hospital & Army Medical Center of PLA, Third Military Medical University (Army Medical University), No. 10 Changjiang Zhilu, Yuzhong District, Chongqing, 400042, China
| | - He Xiao
- Department of Cancer Center, Daping Hospital & Army Medical Center of PLA, Third Military Medical University (Army Medical University), No. 10 Changjiang Zhilu, Yuzhong District, Chongqing, 400042, China
| | - Dong Wang
- Department of Cancer Center, Daping Hospital & Army Medical Center of PLA, Third Military Medical University (Army Medical University), No. 10 Changjiang Zhilu, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
23
|
Salem AZ, Medhat D, Fathy SA, Mohamed MR, El-Khayat Z, El-Daly SM. Indole glucosinolates exhibit anti-inflammatory effects on Ehrlich ascites carcinoma cells through modulation of inflammatory markers and miRNAs. Mol Biol Rep 2021; 48:6845-6855. [PMID: 34476740 DOI: 10.1007/s11033-021-06683-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Nuclear factor-κB (NF-κB) has been identified as the major link between inflammation and cancer. Natural agents that inhibit this pathway are essential in attenuating inflammation induced by cancer or chemotherapeutic drugs. High intake of Brassicaceae vegetables has been determined to modulate essential pathways related to chronic diseases. In this study, we investigated the anti-proliferative and anti-inflammatory effects of the indole glucosinolates; indole-3-carbinol (I3C) and its metabolite 3,3-diindolylmethane (DIM) on the inflammatory biomarkers and miRNAs controlling the NF-κB pathway. METHODS AND RESULTS In our study, we inoculated Ehrlich ascites carcinoma (EAC) cells in female albino mice, which increased their packed cell volume and induced a significant increase in the levels of several cytokines and inflammatory biomarkers (NF-κB IL-6, IL-1b, TNF-α, and NO). A significant elevation in inflammatory-medicated miRNAs (miR-31 and miR-21) was also noted. Treatment with 5-fluorouracil (5-FU) significantly reduced packed cell volume and viable cell count. However, it was accompanied by a significant increase in the levels of inflammatory markers and expression of miR-31 and miR-21. Nevertheless, although treatment with indoles (I3C and DIM) significantly reduced the packed cell volume and viable cell count, their prominent effect was the marked reduction of all inflammatory biomarkers compared to both the EAC untreated group and the EAC group treated with 5-FU. Moreover, the anti-inflammatory effect of I3C or DIM was accompanied by a significant decrease in the expression of miR-31 and miR-21. CONCLUSION Our findings have; therefore, revealed that I3C and DIM have strong anti-inflammatory effects, implying that their use as a co-treatment with chemotherapeutic drugs can effectively improve the anti-tumor effect of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ayah Z Salem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, Medical Research Division, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt
| | - Shadia A Fathy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed R Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Zakaria El-Khayat
- Medical Biochemistry Department, Medical Research Division, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt. .,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt.
| |
Collapse
|
24
|
Madka V, Kumar G, Pathuri G, Panneerselvam J, Zhang Y, Ganta V, Lightfoot S, Lubet RA, Suen CS, Steele VE, Janakiram NB, Mohammed A, Rao CV. Proton pump inhibitor omeprazole suppresses carcinogen induced colonic adenoma progression to adenocarcinoma in F344 rat. Cancer Prev Res (Phila) 2021; 14:1009-1020. [PMID: 34341012 DOI: 10.1158/1940-6207.capr-21-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) causes over 53,000 deaths annually in the United States. Its rising incidences worldwide and particularly in young adults is a major concern. Here, we evaluated the efficacy of omeprazole (OME) that is clinically approved for treating acid-reflux, to enable its repurposing for CRC prevention. In the azoxymethane (AOM)-induced rat CRC model, dietary OME (250 and 500 ppm) was administered at early adenoma stage (8 weeks after AOM) to assess the progression of early lesions to adenocarcinoma. Administration of OME at 250 ppm or 500 ppm doses led to suppression of total colon adenocarcinoma incidence by 15.7% and 32% (p<0.01), respectively. Importantly, invasive carcinoma incidence was reduced by 59% (p<0.0005) and 90% (p<0.0001) in OME administered rats in a dose-dependent manner. There was also a strong and dose-dependent inhibition in the adenocarcinoma multiplicity in rats exposed to OME. Administration of 250 and 500 ppm OME inhibited total colon adenocarcinoma multiplicity by ~49% and ~65% (p<0.0001), respectively. While non-invasive adenocarcinomas multiplicity was suppressed by ~34% to ~48% (p<0.02), the invasive carcinomas multiplicity was reduced by ~74% to ~94% (p<0.0001) in OME exposed rats in comparison to the untreated rats. Biomarker analysis results showed a decrease in cell proliferation and anti-apoptotic/pro-survival proteins with an increase in apoptosis. Transcriptome analysis of treated tumors revealed a significant increase in adenocarcinoma inhibitory genes (Olmf4; Spink4) expression and down regulation of progression promoting genes (SerpinA1, MMP21, IL6). In summary, OME showed significant protection against the progression of adenoma to adenocarcinoma.
Collapse
Affiliation(s)
- Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center
| | - Janani Panneerselvam
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center
| | - Vishal Ganta
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center
| | - Stanley Lightfoot
- Pathology-Retired, Center for Cancer Prevention and Drug Development
| | - Ronald A Lubet
- Division of Cancer Prevention, National Cancer Institute
| | - Chen S Suen
- Cancer Prevention, National Cancer Institute
| | | | | | - Altaf Mohammed
- Division of Cancer Prevention, National Cancer Institute
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center
| |
Collapse
|
25
|
Chen TJ, Tian YF, Chou CL, Chan TC, He HL, Li WS, Tsai HH, Li CF, Lai HY. High SPINK4 Expression Predicts Poor Outcomes among Rectal Cancer Patients Receiving CCRT. ACTA ACUST UNITED AC 2021; 28:2373-2384. [PMID: 34202399 PMCID: PMC8293060 DOI: 10.3390/curroncol28040218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 01/21/2023]
Abstract
Background: Patients with rectal cancer can prospectively be favored for neoadjuvant concurrent chemoradiotherapy (CCRT) to downstage before a radical proctectomy, but the risk stratification and clinical outcomes remain disappointing. Methods: From a published rectal cancer transcriptome dataset (GSE35452), we highlighted extracellular matrix (ECM)-linked genes and identified the serine protease inhibitor Kazal-type 4 (SPINK4) gene as the most relevant among the top 10 differentially expressed genes associated with CCRT resistance. We accumulated the cases of 172 rectal cancer patients who received neoadjuvant CCRT followed by surgery and collected tumor specimens for the evaluation of the expression of SPINK4 using immunohistochemistry. Results: The results revealed that high SPINK4 immunoexpression was significantly related to advanced pre-CCRT and post-CCRT tumor status (both p < 0.001), post-CCRT lymph node metastasis (p = 0.001), more vascular and perineurial invasion (p = 0.015 and p = 0.023), and a lower degree of tumor regression (p = 0.001). In univariate analyses, high SPINK4 immunoexpression was remarkably correlated with worse disease-specific survival (DSS) (p < 0.0001), local recurrence-free survival (LRFS) (p = 0.0017), and metastasis-free survival (MeFS) (p < 0.0001). Furthermore, in multivariate analyses, high SPINK4 immunoexpression remained independently prognostic of inferior DSS and MeFS (p = 0.004 and p = 0.002). Conclusion: These results imply that high SPINK4 expression is associated with advanced clinicopathological features and a poor therapeutic response among rectal cancer patients undergoing CCRT, thus validating the prospective prognostic value of SPINK4 for those patients.
Collapse
Affiliation(s)
- Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-L.H.); (W.-S.L.); (H.-H.T.)
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (Y.-F.T.); (C.-L.C.)
| | - Chia-Lin Chou
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (Y.-F.T.); (C.-L.C.)
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-L.H.); (W.-S.L.); (H.-H.T.)
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Wan-Shan Li
- Department of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-L.H.); (W.-S.L.); (H.-H.T.)
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Hsin-Hwa Tsai
- Department of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-L.H.); (W.-S.L.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-L.H.); (W.-S.L.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-F.L.); (H.-Y.L.)
| | - Hong-Yue Lai
- Department of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-L.H.); (W.-S.L.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- Correspondence: (C.-F.L.); (H.-Y.L.)
| |
Collapse
|
26
|
Jie Y, Yang X, Chen W. Expression and gene regulation network of TYMS and BCL2L1 in colorectal cancer based on data mining. PeerJ 2021; 9:e11368. [PMID: 34141464 PMCID: PMC8179227 DOI: 10.7717/peerj.11368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background The purpose of this study was to study the role of thymidylate synthetase (TYMS) and B-cell lymphoma-2 like 1 (BCL2L1) in the occurrence and development of colorectal cancer and its potential regulatory mechanism. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were analyzed to examine the expression and prognostic value of TYMS and BCL2L1 in colorectal cancer. C-BioPortal analysis was used to detect the TYMS and BCL2L1 alterations. Through The Human Protein Atlas (THPA), the TYMS and BCL2L1 protein levels were also assessed. The protein protein interaction (PPI) network was built using GeneMANIA analysis, while co-expression genes correlated with TYMS and BCL2L1 were identified using LinkedOmics analysis. Finally, we collected clinical samples to verify the expressions of TYMS and BCL2L1 in colorectal cancer. Results TYMS and BCL2L1 were up-regulated, and TYMS and BCL2L1 genomic alterations were not associated with the occurrence of colorectal cancer. TYMS and BCL2L1 were significantly connected with the prognosis of colorectal cancer patients. The genes interacted with TYMS and BCL2L1 were linked to functional networks involving pathway of apoptosis, apoptosis-multiple species, colorectal cancer, platinum drug resistance and p53 signaling pathway. qRT-PCR verification results of TYMS were consistent with the result of TCGA and GEO analysis. Conclusions This study display that data mining can efficiently provide information on expression of TYMS and BCL2L1, correlated genes of TYMS and BCL2L1, core pathways and potential functional networks in colorectal cancer, suggesting that TYMS and BCL2L1 may become new prognostic and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Yanghua Jie
- Department of Radiotherapy center, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaobei Yang
- Department of Anorectal, Urumqi City Hospital of Traditional Chinese Medicine, Urumqi, China
| | - Weidong Chen
- Department of Anorectal, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| |
Collapse
|